ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 論文誌(トランザクション)
  2. データベース(TOD)[電子情報通信学会データ工学研究専門委員会共同編集]
  3. Vol.48
  4. No.SIG11(TOD34)

A High Collusion-Resistant Approach to Distributed Privacy-preserving Data Mining

https://ipsj.ixsq.nii.ac.jp/records/17434
https://ipsj.ixsq.nii.ac.jp/records/17434
394d574d-a739-4976-a4bc-0a30bfa69c70
名前 / ファイル ライセンス アクション
IPSJ-TOD4811012.pdf IPSJ-TOD4811012.pdf (1.1 MB)
Copyright (c) 2007 by the Information Processing Society of Japan
オープンアクセス
Item type Trans(1)
公開日 2007-06-15
タイトル
タイトル A High Collusion-Resistant Approach to Distributed Privacy-preserving Data Mining
タイトル
言語 en
タイトル A High Collusion-Resistant Approach to Distributed Privacy-preserving Data Mining
言語
言語 jpn
キーワード
主題Scheme Other
主題 研究論文
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_6501
資源タイプ journal article
著者所属
Faculty of Software and Information Science Iwate Prefectural University Presently with Hitachi East Japan Solutions
著者所属
Faculty of Software and Information Science Iwate Prefectural University
著者所属
Faculty of Software and Information Science Iwate Prefectural University
著者所属
Faculty of Software and Information Science Iwate Prefectural University
著者所属(英)
en
Faculty of Software and Information Science, Iwate Prefectural University , Presently with Hitachi East Japan Solutions
著者所属(英)
en
Faculty of Software and Information Science, Iwate Prefectural University
著者所属(英)
en
Faculty of Software and Information Science, Iwate Prefectural University
著者所属(英)
en
Faculty of Software and Information Science, Iwate Prefectural University
著者名 Shintaro, Urabe Jiahong, Wang Eiichiro, Kodama Toyoo, Takata

× Shintaro, Urabe Jiahong, Wang Eiichiro, Kodama Toyoo, Takata

Shintaro, Urabe
Jiahong, Wang
Eiichiro, Kodama
Toyoo, Takata

Search repository
著者名(英) Shintaro, Urabe Jiahong, Wang Eiichiro, Kodama Toyoo, Takata

× Shintaro, Urabe Jiahong, Wang Eiichiro, Kodama Toyoo, Takata

en Shintaro, Urabe
Jiahong, Wang
Eiichiro, Kodama
Toyoo, Takata

Search repository
論文抄録
内容記述タイプ Other
内容記述 Data mining across different companies organizations online shops or the likes called sites is necessary so as to discover valuable shared patterns associations trends or dependencies in their shared data. Privacy however is a concern. In many situations it is required that data mining should be conducted without any privacy being violated. In response to this requirement this paper proposes an effective distributed privacy-preserving data mining approach called CRDM (Collusion-Resistant Data Mining). CRDM is characterized by its ability to resist the collusion. Unless all sites but the victim collude privacy of a site cannot be violated. Considering that for such applications that need not so high a level of security excess security assurance would incur extra costs in communication an extension scheme is also presented so that communication cost can be restrained while still maintaining a user-specified level of security. Results of both analytical and experimental performance study demonstrate the effectiveness of CRDM.
論文抄録(英)
内容記述タイプ Other
内容記述 Data mining across different companies, organizations, online shops, or the likes, called sites, is necessary so as to discover valuable shared patterns, associations, trends, or dependencies in their shared data. Privacy, however, is a concern. In many situations it is required that data mining should be conducted without any privacy being violated. In response to this requirement, this paper proposes an effective distributed privacy-preserving data mining approach called CRDM (Collusion-Resistant Data Mining). CRDM is characterized by its ability to resist the collusion. Unless all sites but the victim collude, privacy of a site cannot be violated. Considering that for such applications that need not so high a level of security, excess security assurance would incur extra costs in communication, an extension scheme is also presented so that communication cost can be restrained while still maintaining a user-specified level of security. Results of both analytical and experimental performance study demonstrate the effectiveness of CRDM.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AA11464847
書誌情報 情報処理学会論文誌データベース(TOD)

巻 48, 号 SIG11(TOD34), p. 104-117, 発行日 2007-06-15
ISSN
収録物識別子タイプ ISSN
収録物識別子 1882-7799
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-22 23:20:26.594973
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

Toyoo, Takata, 2007: 情報処理学会, 104–117 p.

Loading...

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3