
Electronic Preprint for Journal of Information Processing Vol.24 No.5

Regular Paper

Reservation-Based Scheduling for Automotive DSMS
under High Overload Condition

Jaeyong Rho1,a) Takuya Azumi2,b) Akihiro Yamaguchi3,c) Kenya Sato4,d)

Nobuhiko Nishio1,e)

Received: November 18, 2015, Accepted: May 17, 2016

Abstract: Recent automotive systems require various data, including data from on-board sensors and external sources
to recognize environmental conditions. As the amount of sensor data used in automotive systems increases, processes
that use such data become increasingly complicated. In addition, similar data processing can be duplicated over mul-
tiple applications. To address these issues, a data stream management system (DSMS) for automotive systems based
on a data integration architecture has been developed. However, hard real-time deadlines cannot be guaranteed due
to unpredictable load changes caused by data streams. For example, the arrival time and CPU utilization requested
by data streams from vehicle-to-vehicle communications change rapidly depending on environmental conditions. We
propose the reservation-based operator path earliest deadline first (ROP-EDF) scheduling algorithm for an automotive
DSMS under overload conditions. The proposed algorithm reserves processor time preferentially for hard real-time
tasks so that tasks can meet deadlines under overload conditions. ROP-EDF can be used for load testing on a sin-
gle processor system. Experimental results show the effectiveness of the proposed algorithm compared with existing
algorithms relative to the deadline miss ratio under overload conditions.
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1. Introduction

Recently, many automotive applications, such as pre-crash
safety, adaptive cruise control, and lane keeping assist systems,
have emerged. In such applications, several types of sensor data,
such as camera images, radar data, and acceleration data, are re-
quired. In addition, data from other vehicles and road sensors are
required to improve prediction accuracy. Consequently, the to-
tal amount of required data is significant. In current automotive
systems, data are processed and managed individually in elec-
tronic control units (ECU). Thus, processes that use the data can
be duplicated over multiple applications in ECUs. In addition,
the associated software development costs increase as the amount
of data increases. Automotive data stream management systems
(DSMS) [1], [2], [3] have been developed to address these issues.

A DSMS is suitable for real-time processing and manage-
ment of rapidly generated continuous data streams (e.g., sen-
sor data) with low latency. Most DSMS, including Borealis [4],
STREAM [5], and TelegraphCQ [6], are designed to run on
general-purpose computers. Research into operator schedul-
ing [7], e.g., chain scheduling [8] and scheduling for a wide-area
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network [9], has been conducted. Such scheduling algorithms pri-
marily target streaming applications, such as network monitoring,
financial data analysis, and sensor networks, to minimize memory
usage or network latency and maximize throughput.

In contrast to existing scheduling algorithms for generic
DSMS, strict real-time constraints are required for the automo-
tive DSMS. The automotive DSMS processes and combines data
streams from on-board sensors and external sources, and must
provide data to multiple applications within timing constraints
called deadlines. For example, for adaptive cruise control and
collision avoidance systems, computing the distance to another
vehicle from several sensors’ information and applying the brakes
automatically when the distance is less than a predetermined
threshold must be completed within strict timing constraints. The
deadline in safety-related applications must be met to avoid seri-
ous car accidents. Such processing is called a hard real-time task,
and it must execute within a deadline.

Existing real-time scheduling algorithms in DSMS cannot be
applied directly to the automotive DSMS because hard real-time
task deadlines will be missed under overload conditions. Sev-
eral studies have adopted real-time scheduling in DSMS to meet
timing constraints over data streams [10], [11], [12], [13]. Li et
al. [10] proposed operator path earliest deadline first (OP-EDF)
scheduling to handle huge amounts of sensor data and satisfy
real-time requirements. They define an OP that comprises op-
erators and stream queues and treat it as a task. The objective of
OP-EDF is to minimize the deadline miss ratio (DMR). Schmidt
et al. [12], Wei et al. [11], and Ma et al. [13] proposed algorithms
that can handle hard real-time tasks when systems are not over-
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loaded. However, the algorithm proposed by Schmidt et al. only
handles hard real-time tasks with predictable arrival times and
may miss deadlines in an unpredictable manner under overload
conditions. The algorithms proposed by Wei et al. and Ma et al.
only concentrate on minimizing the DMR, tuple value loss ratio,
and load shedding overhead when a system is overloaded.

Developers of the automotive DSMS must perform load test-
ing to confirm system performance because such systems must
perform reliably under overload conditions. Vehicle-to-vehicle
(V2V) communication provides accurate detection of potentially
dangerous situations that on-board sensors alone cannot de-
tect [14]. Thus, by exchanging data between vehicles, V2V com-
munication can improve safety [15], [16]. The volume and ar-
rival time of data streams from V2V communication can change
rapidly depending on environmental conditions, e.g., many V2V
data streams will be generated at a congested urban intersection.
The European Telecommunications Standards Institute specifica-
tion for collision risk warning applications using V2V commu-
nications requires a vehicle to receive and process at least 1,000
data packets (e.g., position and speed) per second [17]. The large
volumes of V2V data streams require significant processing time,
which can interfere with hard real-time task requirements; thus,
hard deadlines cannot always by guaranteed.

The previously proposed ER-EDF [18] guarantees that such
deadlines are met under overload conditions. ER-EDF provides
reserved processor time for soft and hard real-time tasks. How-
ever, it is only valid when the requested CPU utilization is less
than or equal to 100%. Therefore, adopting ER-EDF in auto-
motive systems in which requested CPU utilization can exceed
100% is difficult. Generally, automotive systems have low-speed
and low-capacity memory, as well as low CPU performance due
to strict cost limitations. Therefore, systems can become over-
loaded quite quickly when the amount of V2V data increases be-
yond capacity.

Contribution: This paper presents a reservation-based OP-
EDF (ROP-EDF) for the automotive DSMS. ROP-EDF consists
of two admissions and scheduling algorithms and can handle hard
real-time tasks under high overload conditions. ROP-EDF can
perform load testing on single processor systems to test real-time
constraints, and satisfy hard deadlines under overload conditions.
The main contribution of this study is as follows.
• We address the problem with OP-EDF, i.e., hard real-time

tasks can miss deadlines due to transient overload. Simulation
results show significant improvement in terms of deadline miss
ratio in comparison with OP-EDF under overload conditions.
• We resolve ER-EDF limitations, i.e., hard real-time task

deadlines cannot be guaranteed when requested CPU utilization
exceeds 100%. Simulation results performed in comparison with
ER-EDF demonstrate that ROP-EDF does not allow deadline
misses when the total requested CPU utilization exceeds 100%.

Organization: The remainder of this paper is organized as fol-
lows. Section 2 presents the system and task models. Problem
definitions are given in Section 3. Section 4 presents the proposed
algorithm. Section 5 evaluates the effectiveness of the proposed
algorithm. Related work is discussed in Section 6, and we con-
clude the paper in Section 7.

2. Preliminaries

Here, we describe stream processing, an automotive DSMS us-
ing an eDSMS [1], [3], and our task model.

2.1 Basic Concept of Stream Processing
Stream processing systems, such as a DSMS, are designed to

handle high-volume and bursty data streams. DSMS typically tar-
get applications such as on-line financial analysis, network mon-
itoring, and sensor networks that require continuous data stream
processing. A data stream is defined as an ordered sequence of
data that is generated continuously in large volumes with unpre-
dictable data arrival rate.

A query that describes the data stream processing flow using
multiple operators is registered with the system. The query is
composed of one or more operators, and two consecutive oper-
ators are connected by a stream queue. The query processes
operators continuously as new data stream arrives. An operator
represents a particular algorithmic transformation of an input tu-
ple to an output tuple. In Fig. 1, the circles and the edges between
the circles in the query file indicate operators and stream queues,
respectively. A tuple is a set of data values (e.g., vehicle ID, ve-
hicle speed, and vehicle position). In stream processing, a prece-
dent operator executes a tuple from an input stream queue and
produces one or more result tuples. The result tuples are stored
in an output stream queue. The data streams in the output stream
queue are delivered to a subsequent operator or an application.

2.2 Data Integration Architecture Based on DSMS
Figure 2 shows the current architecture for an automotive sys-

tem. In the current architecture, data retrieved from on-board
sensors and external sources are processed individually by each
application program embedded in ECUs because automotive sup-
pliers provide a product as a set, i.e., the software and the related
sensor. Therefore, similar data processing can be duplicated over
multiple applications in different ECUs. Furthermore, if system

Fig. 1 Data integration architecture for an automotive system.

Fig. 2 Current architecture for an automotive system.
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properties (e.g., sensor type) are changed, large parts of the ap-
plication programs must be modified.

To tackle these issues, an automotive DSMS based on a data
integration architecture has been developed [1], [3] (Fig. 1). Ap-
plications can be separated from sensor devices because data pro-
cessing using various sensors is defined in the automotive DSMS.
Data processed by the automotive DSMS can be accessible in a
location-transparent manner from multiple applications. In ad-
dition, changing system properties becomes easier than the cur-
rent architecture since application programs are independent from
specific sensors; thus, automotive software development costs
can be reduced.

Operators, such as Filter, Map, Aggregate, and Join, used in a
query for an automotive DSMS are based on the general-purpose
Borealis DSMS [4]. Filter filters an input data stream accord-
ing to a static condition and outputs more than one filtered data
stream. The Map operator applies a function to an input data
stream to obtain the corresponding output data stream, and the
Aggregate operator outputs a group of data streams that have the
same attribute among multiple data streams. The Join operator
combines input data streams from multiple sources into one data
stream according to given conditions.

2.3 Task Model
In an automotive DSMS, two types of tasks can coexist simul-

taneously, i.g., a set of m hard real-time tasks {OPH1,OPH2, . . . ,

OPHm} and n soft real-time tasks {OPS 1,OPS 2, . . . ,OPS n} *1. For
example, computing the distance to another vehicle for adaptive
cruise control and collision avoidance systems can be a hard real-
time task. This type of task must finish its execution within a
deadline even under overload conditions. Missing deadlines can
result in large negative values and may cause a collision.

For soft real-time tasks, minimizing the delay is still valuable
for the system to complete the execution of tasks even if they
miss their deadlines. Results produced after deadlines can still
valuable for the system, though the values may decrease with
time. For example, in a vehicle-infrastructure cooperative right-
turn collision caution application, audio and visual alerts are trig-
gered if a driver takes their foot off the brake when they are wait-
ing to make a right turn and another vehicle approaches from the
opposite direction [20]. A task used in this system has a soft dead-
line because it may not negatively affect the system if the soft
deadline is missed. Even if a soft deadline is missed, we can still
provide safety to drivers and prevent service quality from degrad-
ing severely by completing the execution of this type of tasks as
quickly as possible rather than aborting the task execution.

In this paper, we consider an OP (dotted line, Fig. 3) as a sin-
gle task. An OP comprises one or more operators (circles, Fig. 3)
and queues (edges, Fig. 3) between two consecutive operators.
When a tuple enters a unique OP, it is processed by operators in
sequence. The i-th task OPti is expressed as follows.

< Cti, ati,Dti, dti > (1)

*1 In this paper, we use definitions of hard and soft real-time that are de-
scribed in Ref. [19].

Fig. 3 Methods for allocating a task using OP (operator path).

Fig. 4 Real-time task states.

Cti =

n∑

z=1

ctiz (2)

Here i ≥ 1, t represents the task type where H denotes hard
real-time tasks and S denotes soft real-time tasks, and Cti denotes
the execution time of task OPti. Assume OPti consists of n oper-
ators, and the execution time of the j-th operator in OPti with a
tuple is cti j. ati denotes the time at which an input tuple arrives
at OPti, and dti is the absolute deadline of OPti. We assume that
the arrival time of the input tuple is the same as the release time
of the task OP.

J l
ti

represents a job that is the l-th instance of task OPti. Each
job of task OPti has the same relative deadline as OPti’s relative
deadline Dti. The absolute deadline of task OPti can be calcu-
lated as ati + Dti. All tasks OPti have relative deadlines that are
less than or equal to their periods. Furthermore, we assume that
the first job of task OPti, except for aperiodic tasks, is released at
time 0 when we refer to a sequence of jobs.

Methods to allocate a task OP with more than one operator and
stream queue have three patterns (Fig. 3). A set of sequence oper-
ators (each operator has a single input and output stream queue) is
defined as one task OP (Fig. 3 (a)). Figure 3 (b) shows the method
for allocating a task for an operator that combines and fuses more
than two input data streams. An operator connected to more than
two input stream queues processes when an input data stream ar-
rives and places its result into an output-stream queue. Each task
OP has the same relative deadline. Figure 3 (c) shows the method
for allocating a task for an operator with more than two output
stream queues. Here, OPti with a minimum relative deadline (i.e.,
a key path) is executed first, and other branch paths (e.g., OPti+1,
Fig. 3 (c)) are executed in the order of their deadlines.

In the task model, real-time tasks OPti can be in one of three
states: dormant, ready, or overrun (Fig. 4). When a task is cre-
ated, its default state is dormant. A dormant task goes into the
ready state at the task release time. When the execution of a
ready task is not finished and exceeds the reserved time, it enters
the overrun state. When a ready task completes execution, it goes
to the dormant state and waits to begin a new task period.
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3. Problem Statement

In an automotive DSMS, the number of received data streams
from on-board sensors (e.g., a radar sensor) and external commu-
nications changes depending on environmental conditions. Thus,
the CPU utilization requested by these data streams can increase
rapidly and may exceed processor capacity. However, due to
high requested CPU utilization caused by a large number of data
streams, deadlines for hard real-time tasks cannot always be sat-
isfied. To guarantee the deadlines for hard real-time tasks (e.g., a
late response to stop a car may cause an accident), we must ad-
dress the problems of OP-EDF [10] and ER-EDF [18]. The pro-
posed algorithm primarily targets the overload situation caused
by a high volume of data streams and is intended to perform load
testing.

The EDF algorithm has been proven to be optimal and can
schedule tasks with CPU utilization up to 100%. When the
system is overloaded (i.e., total CPU utilization > 100%), tasks
scheduled using EDF may miss deadlines unpredictably. OP-
EDF can cause hard real-time tasks to miss deadlines if overload
occurs; thus, we must consider the range of overload conditions
for OP-EDF to be applicable in an automotive DSMS.

The ER-EDF algorithm [18] was proposed to guarantee that
deadlines are satisfied for hard real-time tasks under overload
conditions. However, it is only valid when the total requested
CPU utilization is less than or equal to 100%. In ER-EDF, the
requested CPU utilization of a task represents the peak CPU uti-
lization for hard real-time tasks and the average CPU utilization
for soft real-time tasks. Thus, the total requested CPU utiliza-
tion is computed by

∑m
i=1 ψ(OPHi) +

∑n
j=1 θ(OPS j), where the

number of hard and soft real-time tasks is m and n, respec-
tively. Here, ψ represents the peak CPU utilization of OPti, i.e.,
the maximum CPU utilization among all OPti jobs, and θ de-
notes the average CPU utilization of OPti, which is computed
by θ(OPti) =

(∑l
k=1 U(Jk

ti)
)
/l with l jobs. CPU utilization U of

the k-th job of OPti is U(Jk
ti) = Processing time(C)/Relative

deadline(D). Under ER-EDF admission control, soft and hard
real-time tasks share a common capacity to reserve processor
time. Therefore, hard real-time tasks can fail to reserve processor
time due to insufficient capacity.

We show an example in which a hard real-time task fails to
reserve processor time because soft real-time tasks reserve the
processor time (in Fig. 5). In this example, there is a task set
with one hard real-time task OPH1 and three soft real-time tasks
OPS 1, OPS 2, and OPS 3(A), as shown in Table 1. Here OPS 3(A)
is an aperiodic task activated by external sources such as V2V
communication. The CPU utilization U of OPti jobs can change
in a range; e.g., the utilizations of OPS 3 jobs range from 10%
to 50%. In Table 1, the system is under overload condition, i.e.,
ψ(OPH1) +

∑n
j=1 ψ(OPS j) = 145%, and the total requested CPU

utilization is 105%.
If there is no ready task and only an overrun task exists, then

reserved processor time � of the overrun task will be replen-
ished, and the task will be processed again. As can be seen in
Fig. 5, when the CPU utilization of J1

S 1 and J1
S 2 are 40% and

30%, respectively, the reserved processor time � of OPS 1 and

Fig. 5 Restrictive reservation in ER-EDF.

Table 1 Task set parameters.

TASK (OPti) OPH1 OPS 1 OPS 2 OPS 3(A)

Period (T ) 12 ms 10 ms 10 ms —
Relative deadline (D) 12 ms 10 ms 10 ms 10 ms
CPU util. of jobs (U) 15%–25% 20%–40% 10%–30% 10%–50%
Requested CPU util. 25% 30% 20% 30%
Average CPU util. (θ) 20% 30% 20% 30%
Peak CPU util. (ψ) 25% 40% 30% 50%

OPS 2 will be replenished at time 8 and 9, respectively. At time
10, OPS 1 reserves processor time�(OPS 1) = 10×0.3 = 3 (D×θ)
because it has the shortest relative deadline among all OPs. We
assume that the processing time of J2

S 1 is 10 × 0.3 = 3 (D × U).
Then, �(OPS 2) is 10 × 0.2 = 2, and we assume that execution
time of J2

S 2 is 10 × 0.2 = 2. At time 11, OPS 3 reserves processor
time 10×0.3 = 3 (D×θ), and execution time of J1

S 3 is 10×0.5 = 5.
The remaining capacity is 1 − 0.3 − 0.2 − 0.3 = 0.2. At time 12,
OPH1 attempts to reserve processor time 12 × 0.25 = 3 (D × ψ);
however, there is insufficient capacity for OPH1 (0.25 > 0.2).
Thus, J2

H1 fails to reserve processor time and is rejected.

4. ROP-EDF Algorithm

The proposed ROP-EDF algorithm, which is an improved form
of the OP-EDF and ER-EDF algorithms, is suitable for an au-
tomotive DSMS. ROP-EDF consists of admission control and
scheduling algorithms. To guarantee that hard real-time task
deadlines are satisfied under overload conditions, ROP-EDF em-
ploys a strategy to reserve processor time based on task type (i.e.,
hard or soft real-time tasks). The proposed ROP-EDF is based on
ER-EDF [18], which is an enhanced version of R-EDF [21].

We propose two following admission policies: i) policy 1 allo-
cates reserved processor time� according to the CPU utilization
of a job for soft real-time tasks; ii) policy 2 allocates a propor-
tional distribution of reserved processor time � to soft real-time
tasks.

Here, the total processor capacity is defined as 1. The average
CPU utilization of a task is expressed as θ, and the peak CPU
utilization of the task is expressed as ψ. The capacity of hard
real-time tasks CSUMH denotes summation of the peak CPU uti-
lizations of hard tasks, and CSUMS denotes summation of the av-
erage CPU utilizations of soft tasks. CS represents the amount of
usable CPU utilization for soft tasks. The peak real-time capacity
PCSUMRT indicates the total peak CPU utilization of all real-time
tasks.

The number of hard and soft real-time tasks is denoted m and n,
respectively. Here, these capacities can be computed by CS UMH =∑m

i=1 ψ(OPHi), CS UMS =
∑n

i=1 θ(OPS i), CS = 1 − CS UMH , and
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Algorithm 1 Admission Control (policy 1)
1: STEP 1: Initialize CS UMH ← ∑m

i=1 ψ(OPHi), CS ← 1 − CS UMH ,

PCS UMRT ← 0

2: STEP 2: Sort tasks by ascending absolute deadline and the deadline miss

ratio

3: if a task is a hard real-time task then

4: if CS UMH − ψ ≥ 0 then

5: CS UMH ← CS UMH − ψ
6: PCS UMRT ← PCS UMRT + ψ

7: end if

8: else

9: if CS − U ≥ α then

10: CS ← CS − U

11: PCS UMRT ← PCS UMRT + ψ

12: end if

13: end if

14: STEP 3: Return the reserved processor time of a task

15: if a task is a hard real-time task then

16: CS UMH ← CS UMH + ψ

17: PCS UMRT ← PCS UMRT − ψ
18: else

19: CS ← CS + U

20: PCS UMRT ← PCS UMRT − ψ
21: end if

PCS UMRT =
∑m

i=1 ψ(OPHi) +
∑n

i=1 ψ(OPS i), where OPti(i ≥ 1) is
admitted to a processor. When PCS UMRT + α > 1, the system
is considered to be in an overload condition, where α *2 denotes
the overall overhead costs associated with context-switching and
scheduling for all tasks. Otherwise, the system is in a non-
overload condition (i.e., PCS UMRT + α ≤ 1).

4.1 Admission Control
In ROP-EDF admission control, the capacities of hard and soft

real-time tasks are initially computed, i.e., initialize PCS UMRT ,
CS UMH , CS , RM, and CS UMS (Algorithm 2 only), as shown in
Algorithms 1 and 2.

At release time, all tasks must undergo a feasibility test prior
to admission to ROP-EDF scheduling. Release time OPti is de-
fined as the time at which data arrives into OPti. If more than
one OPti is released in a given time unit, then the task with the
shortest absolute deadline is tested first. Initially, the test deter-
mines whether the task is a hard or soft real-time task. Then, the
scheduler checks resource availability. For example, OPHi can be
allocated to a processor if ψ(OPHi) ≤ CS UMH . Otherwise, OPHi

will fail to release a new job.
Two policies apply to a soft real-time task OPS i. In policy 1, if

CS ≥ CPU utilization of job U, then OPS i will be allocated to a
processor and can release a job, as shown in Algorithm 1. Thus,
only a job with CPU utilization less than the amount of usable
CPU utilization for soft real-time tasks can reserve the processor
time and be released. If resource contention occurs between two
OPS is with the same release time, period, and absolute deadline,
task starvation can be avoided by rejecting the task with the lower

*2 Scheduling and context-switching overheads used in this paper are ex-
plained in Ref. [22]. In this paper, we assume that the worst-case ex-
ecution time of each task includes cache-related preemption delay and
assume the case of all cache assesses miss since we must consider the
worst-case scenario.

Algorithm 2 Admission Control (policy 2)
1: STEP 1: Initialize CS UMH ← ∑m

i=1 ψ(OPHi), CS UMS ← ∑n
i=1 θ(OPS i),

CS ←1 −CS UMH , PCS UMRT ←0, and RM ←CS .

2: STEP 2: Sort tasks by ascending absolute deadline

3: if a task is a hard real-time task then

4: if CS UMH − ψ ≥ 0 then

5: CS UMH ← CS UMH − ψ
6: PCS UMRT ← PCS UMRT + ψ

7: end if

8: else

9: ω← RM × θ
CS UMS

10: if a job of the task has finished then

11: if CS − ω ≥ α then

12: CS ← CS − ω
13: PCS UMRT ← PCS UMRT + ψ

14: end if

15: end if

16: end if

17: STEP 3: Return the reserved processor time of a task

18: if a task is a hard real-time task then

19: CS UMH ← CS UMH + ψ

20: PCS UMRT ← PCS UMRT − ψ
21: else

22: CS ← CS + ω

23: PCS UMRT ← PCS UMRT − ψ
24: end if

DMR. A scheduler must record deadline miss counts and satisfied
deadline counts for each task to calculate the DMR. Therefore,
processor time is reserved for a task with higher DMR.

In policy 2, the remaining processor time for soft real-time
tasks CS will be distributed proportionally to the average CPU
utilization of the soft real-time tasks based on ω, as shown in
Algorithm 2. To prevent the number of unfinished jobs from in-
creasing, a new job cannot be released if unfinished jobs exist.

Upon task completion, the reserved processor time must be re-
leased. For a hard real-time task, CS UMH increases by its peak
CPU utilization in both policies. For a soft real-time task, CS in-
creases by the CPU utilization of job U in policy 1 and increases
the amount of ω in policy 2. PCS UMRT decreases by the peak
CPU utilization in both policies and releases the reserved proces-
sor time.

4.2 Scheduling
The proposed scheduling algorithm is based on ER-EDF. The

scheduler assumes that each real-time task releases jobs accord-
ing to the period parameter and assigns � to task OPti released
through admission control. For a hard real-time task OPHi, pro-
cessor time �(OPHi) = DHi × ψ is assigned to OPHi. The
� for a soft real-time task differs between policies 1 and 2.
For policy 1, when processor time is reserved, processor time
�(OPS i) = Dti × U is assigned to each soft real-time task OPS i.
Here, U is the CPU utilization of Jk

S i released by OPS i. For policy
2, the scheduler assigns processor time �(OPS i) = Dti × ω to a
soft real-time task OPS i.

The proposed ROP-EDF algorithm protects against overload
conditions; otherwise, tasks are scheduled according to the EDF
strategy. If a task requires additional execution time after using
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Algorithm 3 Scheduling
1: STEP 1: Select a task for execution

2: if any real-time task is in the ready state then

3: Select a task whose latest released job has the earliest deadline and

execute its job

4: else if there is a task in the overrun state then

5: Select a task in the overrun state whose latest released job has the ear-

liest deadline, put it in the ready state and execute its job

6: end if

7: STEP 2: The scheduler waits until the next time unit

8: if a running task finishes all its jobs then

9: It enters the dormant state

10: else if the system is overloaded (PCS UMRT + α > 1) and the current task

does not finished its execution and the task used all its� then

11: if any real-time task is in the ready state then

12: Current task enters the overrun state

13: else if CPU utilization of the current task is greater than or equal to

(1 − α) then

14: Its state is switched into overrun state

15: else

16: It continues to execute

17: end if

18: end if

19: Check all tasks for reached release times and set them to the ready state

20: STEP 3: Go to step 1

all reserved processor time �, the state switches from ready to
overrun and the task is preempted by other ready tasks. Replen-
ishment of� is then assigned to task OPti when a new task OPti

begins. However, to ensure efficient use of processor time, if an
overrun task exists and there is no ready task,� will be assigned
to the overrun task and the task is processed until a ready task
appears. Algorithm 3 shows the proposed ROP-EDF scheduling
algorithm.
Theorem 1. The upper CPU utilization bound of total hard real-

time tasks Uub for ROP-EDF is Uub = 1 − α.

Proof. According to a schedulability test by Liu et al. [23], a
task set of s independent, preemptable, periodic tasks with rela-
tive deadlines Di equal to their periods Ti can be scheduled on a
single processor feasibly if Eq. (3) is valid.

s∑

i=1

Ci

Di
≤ 1 (3)

Here, Ci denotes execution time.
In ROP-EDF, the real-time task capacity for soft and hard tasks

is managed separately to prevent hard real-time tasks from be-
ing deprived of processor time by soft real-time tasks that have
been released prior to hard real-time tasks. If 100% processor
time is allocated to hard real-time tasks and the total amount of
overhead incurred during scheduling and context-switching α is
0, then ROP-EDF performs in the same manner as EDF. In this
paper, we assume that the worst-case execution time of each task
already includes cache-related preemption overhead. Thus, hard
real-time tasks can reserve processor time and meet deadlines if
Eq. (3) is valid regardless of the requested CPU utilization for
soft real-time tasks. Thus, according to Eq. (3), the upper CPU
utilization bound for the total hard tasks is 1 − α. �

5. Performance Evaluation

Simulations of ROP-EDF were conducted to evaluate and com-
pare performance with OP-EDF and ER-EDF *3.

5.1 Experimental Setup
Simulation experiments were conducted using a PC (Intel Core

i7-4500U, 1.80 GHz; 8 GB RAM). We assumed that all hard real-
time tasks were periodic tasks that must complete by their dead-
lines. The relative deadlines of the periodic tasks were assumed
to be equal to their periods. The peak CPU utilization of OP in-
dicates the highest utilization among all OP jobs, and the average
CPU utilization of OP equals the average CPU utilization among
all OP jobs. The requested CPU utilization of OP is the peak
CPU utilization for hard real-time tasks and the average CPU uti-
lization for soft real-time tasks. The requested CPU utilization
is required to determine the reserved processor time for policy
2. Note that context-switching overhead (α = 0) was ignored in
these simulations. The DMR is the primary comparison parame-
ter, which is expressed as follows.

DMR =
1
b

b∑

i=1

miss( fi) (4)

Here, b is the number of jobs, and miss( fi) is defined as follows.

miss( fi) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 ( fi ≤ di)

1 (otherwise)

Here, fi and di are the completion time and absolute deadline of
the i-th job, respectively.

5.2 OP-EDF Comparison
Here, the task set comprised two hard and three soft real-time

tasks (Table 2). The relative task deadlines were equal to their pe-
riods. The execution time was 20,000 ms. This experiment was
performed within a particular requested CPU utilization range
[100%, 130%]; i.e., the system was full and overload conditions.

The simulation parameters used for this experiment when the
total requested CPU utilization was 100% are shown in Table 2.
All jobs for each OP received constant CPU utilization (denoted
cnst) when the total requested CPU utilization was 100%. For the
parameters in the range [110%, 130%], CPU utilizations of OPS 2

Table 2 Total Requested CPU Utilization = 100%.

TASK (OPti) OPH1 OPH2 OPS 1 OPS 2 OPS 3

The number of jobs 222 200 100 133 200
Period (T ) 90 ms 100 ms 200 ms 150 ms 100 ms
Relative deadline (D) 90 ms 100 ms 200 ms 150 ms 100 ms
Distribution cnst cnst cnst cnst cnst
CPU util. of jobs (U) 25% 16% 26% 18% 15%
Requested CPU util. 25% 16% 26% 18% 15%
Average CPU util. (θ) 25% 16% 26% 18% 15%
Peak CPU util. (ψ) 25% 16% 26% 18% 15%
Total peak CPU util. 100%
Total requested CPU util. 100%

*3 A constant bandwidth server (CBS) based on resource reservation [27] is
not included in the performance evaluation because it does not discuss
a task with multiple deadlines; thus, it cannot directly schedule tasks
having multiple deadlines.
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Table 3 Total Requested CPU Utilization = 110%.

TASK (OPti) OPH1 OPH2 OPS 1 OPS 2 OPS 3

The number of jobs 222 200 100 133 200
Period (T ) 90 ms 100 ms 200 ms 150 ms 100 ms
Relative deadline (D) 90 ms 100 ms 200 ms 150 ms 100 ms
Distribution cnst cnst cnst cnst gaus
CPU util. of jobs (U) 25% 16% 26% 18% 15%–35%
Requested CPU util. 25% 16% 26% 18% 25%
Average CPU util. (θ) 25% 16% 26% 18% 25%
Peak CPU util. (ψ) 25% 16% 26% 18% 35%
Total peak CPU util. 120%
Total requested CPU util. 110%

Table 4 Total Requested CPU Utilization = 120%.

TASK (OPti) OPH1 OPH2 OPS 1 OPS 2 OPS 3

The number of jobs 222 200 100 133 200
Period (T ) 90 ms 100 ms 200 ms 150 ms 100 ms
Relative deadline (D) 90 ms 100 ms 200 ms 150 ms 100 ms
Distribution cnst cnst cnst cnst gaus
CPU util. of jobs (U) 25% 16% 26% 18% 15%–55%
Requested CPU util. 25% 16% 26% 18% 35%
Average CPU util. (θ) 25% 16% 26% 18% 35%
Peak CPU util. (ψ) 25% 16% 26% 18% 55%
Total peak CPU util. 140%
Total requested CPU util. 120%

Table 5 Total Requested CPU Utilization = 130%.

TASK (OPti) OPH1 OPH2 OPS 1 OPS 2 OPS 3

The number of jobs 222 200 100 133 200
Period (T ) 90 ms 100 ms 200 ms 150 ms 100 ms
Relative deadline (D) 90 ms 100 ms 200 ms 150 ms 100 ms
Distribution cnst cnst cnst gaus gaus
CPU util. of jobs (U) 25% 16% 26% 18%–38% 15%–55%
Requested CPU util. 25% 16% 26% 28% 35%
Average CPU util. (θ) 25% 16% 26% 28% 35%
Peak CPU util. (ψ) 25% 16% 26% 38% 55%
Total peak CPU util. 160%
Total requested CPU util. 130%

and OPS 3 were changed to increase the total requested CPU uti-
lization to 110%, 120%, and 130%. The requested CPU utiliza-
tion of OPS 3 was set to 25%, and the CPU utilization of the OPS 3

jobs ranged from 15% to 35% (Table 3). For the total requested
CPU utilization of 120%, the requested CPU utilization of OPS 3

was changed to 35%, and the CPU utilization of OPS 3 jobs ranged
from 15% to 55% (Table 4). At 130%, the CPU utilization re-
quested by OPS 2 was set to 28%, and the CPU utilization of its
OPS 2 jobs ranged from 18% to 38% (Table 5).

For OPS 2 and OPS 3 jobs with variable CPU utilization, we as-
sumed that the processing time of each job would vary because
the amount of received data changes according to the number of
vehicles within V2V communication range. The variable OPS 2

and OPS 3 CPU utilizations were assigned by random Gaussian
distribution. We assumed that all hard real-time OPH1 and OPH2

tasks were periodic. The task order was as follows: tasks one
and two were hard real-time tasks, and tasks three to five were
soft real-time tasks. Thus, hard real-time tasks were allocated to
a processor first when their absolute deadlines and release times
were the same as the soft real-time tasks. We generated 10 task
sets for each requested CPU utilization level and compared the
average DMR obtained by each algorithm.

We evaluated the DMR of hard and soft real-time tasks sched-
uled by the proposed ROP-EDF and OP-EDF for the range
[100%, 130%] of total requested CPU utilization. When the total

Fig. 6 Total requested CPU utilization = 110%.

Fig. 7 Total requested CPU utilization = 120%.

Fig. 8 Total requested CPU utilization = 130%.

requested CPU utilization was 100%, no deadlines were missed
for five OPs because both algorithms are based on the EDF al-
gorithm, which guarantees that all deadlines will be met if the
total CPU utilization does not exceed 100%. At 110%, OPH1 and
OPH2 missed deadlines under OP-EDF; however, no deadlines
were missed under the proposed ROP-EDF (Fig. 6). As shown in
Figs. 7 and 8, when the total CPU utilization was 120% to 130%,
all OPs scheduled by OP-EDF missed deadlines, and the miss
rates were greater than 95%. Under ROP-EDF, no deadlines were
missed for hard real-time OPs because ROP-EDF reserves suffi-
cient processor time.

Under policy 1, soft real-time OPs began to miss deadlines be-
cause the allocated processor time was insufficient in the range
[110%, 130%]. More than one of the three soft real-time OPs
could not release jobs at the least common multiple period be-
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cause competition to reserve execution time occurred. Further-
more, soft real-time OPs missed deadlines because the task with
the lowest DMR was rejected to prevent task starvation. All
missed deadlines for soft real-time tasks were caused by job rejec-
tion; however, soft real-time tasks that were released could com-
plete jobs on time.

Under policy 2, the processor time distributed proportionally
to average CPU utilizations was allocated to three soft real-time
OPs. To prevent accumulation of unfinished jobs, a task cannot
release a new job while unfinished jobs remain. A soft real-time
OP with a shorter relative deadline has a higher DMR, as shown
in Fig. 6 to Fig. 8. In contrast, a soft real-time OP with a longer
relative deadline has more chances to be executed before its ab-
solute deadline with additional replenishment of processor time.
This occurs when all hard real-time tasks are completed and no
ready state tasks exist.

5.3 ER-EDF Comparison
We compared the average DMR for hard real-time tasks sched-

uled by the proposed ROP-EDF and ER-EDF. This experiment
was performed in the range [100%, 130%] of total requested CPU
utilization. We generated 50 task sets randomly for 100%, 110%,
120%, and 130% requested CPU utilization. Each task set had 10
tasks comprising four hard real-time tasks and six soft real-time
tasks. The first to ninth tasks were periodic tasks, and the tenth
task was aperiodic. The task order in each task set was as fol-
lows: tasks one to four were hard real-time tasks, and tasks five
to ten were soft real-time tasks. Thus, hard real-time tasks were
allocated to a processor first when their absolute deadlines and
release times were the same as the soft real-time tasks. The rela-
tive deadlines of the first to ninth tasks were generated randomly
in the range [10 ms, 100 ms]. In addition, the requested CPU uti-
lizations of all tasks, except for the aperiodic task, were generated
randomly, and the summation of their requested CPU utilizations
was 100%. It was assumed that the minimum arrival time be-
tween any two consecutive jobs of the aperiodic task and the rel-
ative deadline was 50 ms for the aperiodic task, and its requested
CPU utilization was set to the total requested CPU utilization of
each task set to become 110%, 120%, and 130%. The execution
time of the first experiment was 20,000 ms, and we compared the
average DMR of the hard real-time tasks for each total requested
CPU utilization rate.

We evaluated the average DMR of the hard real-time tasks
scheduled by the proposed ROP-EDF and ER-EDF in the total re-
quested CPU utilization range [100%, 130%]. Figure 9 shows the
average DMR measured for each ER-EDF and OP-EDF simula-
tion performed at 100%, 110%, 120%, and 130% utilization rates.
As can be seen in Fig. 9, the proposed ROP-EDF did not miss any
deadlines for hard real-time tasks for any total requested CPU
utilization. In contrast, the average DMR for the hard real-time
tasks increased as the total requested CPU utilization increased
with ER-EDF. The processor time was insufficient when the total
requested CPU utilization exceeded 100% due to the aperiodic
task. Thus, tasks that could not reserve sufficient processor time
could be hard real-time tasks because the aperiodic task reserved
processor time before the hard real-time tasks could reserve pro-

Fig. 9 Comparison of DMR under ER-EDF and ROP-EDF.

cessor time. On the other hand, the hard real-time tasks with
ROP-EDF could reserve sufficient processor time even if the total
requested CPU utilization exceeded 100%, because capacities for
hard and soft real-time tasks were managed individually.

5.4 Discussion
In the first experiment, there were no missed deadlines for the

hard real-time tasks with ROP-EDF; however, the average DMRs
for all tasks under OP-EDF were greater than 95% when the total
requested CPU utilization exceeded 100%. The DMR of the hard
real-time tasks is a constant zero, which means that the schedu-
lability of the hard real-time tasks is not influenced by the soft
real-time tasks.

In the second experiment, the average DMR of the hard real-
time tasks increased with total requested CPU utilization under
ER-EDF. In contrast, the deadlines for all hard real-time tasks
were met under the proposed ROP-EDF. Therefore, we consider
that policy 1 should be applied to systems that prioritize the com-
pletion of soft real-time tasks on time, and policy 2 should be
applied to systems that must execute as many soft real-time tasks
as fairly as possible.

6. Related Work

Babcock et al. [8] introduced the chain scheduling algorithm
that targets applications such as networking systems, financial
services, and sensor networks. This algorithm attempts to min-
imize run-time system memory usage by reducing the internal
buffer size. Furthermore, it uses the average execution time and
selectivity of operators as parameters to adapt to changing system
loads. However, this algorithm does not consider hard real-time
constraints, which is important for real-time processing. Thus, it
is difficult to adopt the chain scheduling algorithm in embedded
automotive systems.

Schmidt et al. [11] introduced the RM scheduling algorithm,
which is based on the rate monotonic algorithm and a hard real-
time scheduling strategy. It targets electrical train services and
presents two different strategies, i.e., minimum output delay and
maximum DSMS throughput. RM scheduling attempts to satisfy
timing constraints by assigning higher priority to operators with
shorter periods. This algorithm assumes that RM scheduling can
be applied to applications with only periodic tasks and is thus dif-
ficult to employ in embedded automotive systems because tasks
with unpredictable arrival times should be schedulable.
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Table 6 ROP-EDF vs Prior Work.

Hard real-time guarantee
in non-overload conditions

Hard real-time guarantee
in overload conditions

Tasks with multiple
deadlines

Requested CPU
util. over 100%

Chain algorithm [8]
RM algorithm [11] ✗

RTSTREAM [12] ✗ ✗

Semantic load shedding [13] ✗

OP-EDF [10] ✗ ✗

D R EDF etc. [24], [25], [26] ✗

CBS etc. [27], [28], [29], [30] ✗ ✗ ✗

ER-EDF [18] ✗ ✗

ROP-EDF ✗ ✗ ✗ ✗

Wei et al. [12] proposed RTSTREAM, which can handle huge
amounts of sensor data streams and can process queries according
to their deadlines. However, it is difficult to apply RTSTREAM to
an automotive DSMS because it cannot handle a query with more
than one deadline. RTSTREAM considers a query as a task and
assumes that each task has only one deadline. In an automotive
DSMS, data processing in a query should be shared with multiple
applications with different deadlines.

Ma et al. [13] proposed the semantic load shedding algorithm,
which targets Forest Fireproof Monitoring Control (FFMC). Note
that FFMC requires real-time processing. They used an algo-
rithm based on a priority table that considers the execution cost
and value of a tuple. Tuples with higher execution cost and a
lower value will be dropped first to shed load efficiently in over-
load conditions. Thus, they can determine which tuples should be
discarded to decrease system load to obtain better performance.
However, it is difficult to employ the semantic load shedding al-
gorithm in embedded automotive systems because it only con-
centrates on minimizing the DMR, the tuple value loss ratio, and
load shedding overhead.

Li et al. [10] introduced the OP-EDF scheduling algorithm for
a DSMS in which a task with a shorter absolute deadline is as-
signed higher priority to minimize the DMR. They define an
OP that consists of operators and queues and treat this OP as
a real-time task instance. OP-EDF defines task allocation using
multiple operators and queues. In addition, OP-EDF addresses
task dependence and reduces system overhead by grouping op-
erators and queues as a single task. The EDF algorithm works
effectively under non-overload conditions; however, it can miss
deadlines under overload conditions. Accordingly, OP-EDF does
not meet the requirement of embedded automotive systems that
hard real-time tasks must meet their deadlines even under over-
load conditions.

Several algorithms have been proposed to eliminate the weak-
nesses of EDF [24], [25], [26], because EDF misses deadlines un-
predictably when the system is overloaded. The adaptive schedul-
ing algorithm [24] uses EDF in underload conditions and uses Ant
Colony Optimization to obtain outstanding results under overload
conditions. The D R EDF algorithm [25] and a task scheduling
algorithm [26] use EDF when a system is not overloaded, and
these algorithms switch to the more efficient rate-monotonic al-
gorithm in overload conditions. However, these algorithms aim to
improve the success ratio of jobs and CPU utilization. Therefore,
hard real-time tasks can miss deadlines in overload conditions
with these algorithms.

Fig. 10 Query for automotive data processing.

In traditional real-time systems, there are many mixed schedul-
ing algorithms based on resource reservation strategies to sched-
ule hard periodic tasks and soft aperiodic tasks [27], [28], [29],
[30]. These algorithms are based on reserving a fraction of the
processor time to each task using the EDF algorithm. We show
an example of a query for automotive data processing and explain
why such existing methods are not applicable to an automotive
DSMS in Fig. 10.

Group A in Fig. 10 which consists of four operators outputs ve-
hicle data from on-board sensors. The output data from Group A
is combined with output data from Group B, which provides in-
formation about surrounding vehicles based on an on-board sen-
sor and V2V communication using Join 3. This combined data
is used for automotive navigation with a deadline of 150 ms, and
the output data from Group A is used for a collision risk warning
application with a deadline of 100 ms. As a result, the opera-
tors in Group A and the output result from Group A are shared
between two applications with different deadlines. According to
this example, the operators in the automotive DSMS are shared
between multiple applications to reduce memory usage. In addi-
tion, there are operators that output multiple processed data from
one input data, and these output data are used for different appli-
cations. Thus, an algorithm for an automotive DSMS should be
able to handle operators with more than one deadline.

However, the existing algorithms based on resource reservation
strategies [27], [28], [29], [30] assume that a single task has only
one deadline or period. Consequently, these algorithms cannot
handle tasks with multiple deadlines directly.

Table 6 shows a comparison of ROP-EDF and previous work.
ROP-EDF can handle hard real-time tasks under high overload
conditions and tasks with multiple deadlines. Furthermore, the
proposed algorithm can guarantee the hard real-time constraints
when the total requested CPU utilization is over 100%. The CBS
resource reservation strategy [27] is similar to ROP-EDF; how-
ever, it cannot directly manage tasks that have multiple deadlines.
This is because CBS assumes that a single task has only one dead-
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line or period. To deal with a task with one or more deadlines,
ROP-EDF uses methods required to construct operator paths de-
scribed in Section 2 and applies resource reservation strategies to
guarantee hard real-time constraints under overload conditions.
Note that ROP-EDF has demonstrated all features shown in Ta-
ble 6.

7. Conclusion

This paper has proposed the ROP-EDF algorithm, which is
an efficient algorithm for load testing on a single processor for
an automotive DSMS. The proposed algorithm is based on the
OP-EDF and ER-EDF algorithms and resolves the limitations of
existing algorithms based on resource reservation. We consider
cases where hard real-time tasks can miss deadlines under OP-
EDF when a system is overloaded. With ER-EDF, hard real-
time tasks cannot always reserve processor time when the total
requested CPU utilization of the task set exceeds 100%. We have
addressed these problems, and the proposed ROP-EDF shows sig-
nificant improvement compared to the OP-EDF and ER-EDF al-
gorithms. According to our simulation results, ROP-EDF offers
schedulability of hard real-time tasks even under overload condi-
tions. While the DMRs increase for hard real-time tasks in OP-
EDF and ER-EDF when the total requested CPU utilization ex-
ceeds 100%, the proposed ROP-EDF can guarantee deadlines for
hard real-time tasks.

In future, we plan to extend the ROP-EDF algorithm so that it
can be employed in distributed environments. In addition, if an
automotive DSMS is implemented and run on multiple proces-
sors connected over communication networks, communication
latency between processors should be considered.
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