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Using a Partial Geometric Feature for Similarity Search of 3D Objects

Yingliang Lu,† Kunihiko Kaneko† and Akifumi Makinouchi††

Searching in a spatial database for 3D objects that are similar to a given object is an
important task that arises in a number of database applications, for example, in medicine and
CAD fields. Most of the existing similarity searching methods are based on global features
of 3D objects. Developing a feature set or a feature vector of 3D object using their partial
features is a challenging. In this paper, we propose a novel segment weight vector for matching
3D objects rapidly. We also describe a partial and geometrical similarity based solution to
the problem of searching for similar 3D objects. As the first step, we split each 3D object into
parts according to its topology. Next, we introduce a new method to extract the thickness
feature of each part of every 3D object to generate its feature vector and a novel searching
algorithm using the new feature vector. Finally, we present a novel solution for improving the
accuracy of the similarity queries. We also present a performance evaluation of our stratagem.
The experiment result and discussion indicate that the proposed approach offers a significant
performance improvement over the existing approach. Since the proposed method is based on
partial features, it is particularly suited to searching objects having distinct part structures
and is invariant to part architecture.

1. Introduction

Since 3D models are increasingly created and
designed using computer graphics, computer vi-
sion, CAD medical imaging, and a variety of
other applications, a large number of 3D mod-
els are being shared and offered on the Web.
Large databases of 3D models, such as the
Princeton Shape Benchmark Database 17), the
3D Cafe repository, are now publicly available.
These datasets are made up of contributions
from the CAD community, computer graphic
artists, and the scientific visualization commu-
nity. The problem of searching for a specific
shape in a large database of 3D models is an
important area of research. Text descriptors
associated with 3D shapes can be used to drive
the search process, as is the case for 2D im-
ages. However, text descriptions may not be
available and may not apply for part-matching
or similarity-based matching. In recent years,
several content-based 3D shape retrieval algo-
rithms have been proposed 6),8),10),15),19).

For the purpose of content-based 3D object
retrieval, various features of 3D object have
been proposed 2),6),11),15),19) . However, these
features are global features. That is, they de-
scribe the geometry or topology information of
a 3D object using one feature only. In addition,
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it is difficult to effectively implement these fea-
tures on relational databases because they in-
clude topologic information. An efficient fea-
ture is proposed in Ref. 13) that can also be
used in partial similarity matching of shapes.
However, an efficient method by which to re-
trieve complex shapes by their partial similar-
ity is not described in Ref. 13). A shock graph
comparison based retrieval method is described
in a previous paper 18). However, that retrieval
method is based only on the topologic infor-
mation of the shape. An approach based on a
new geometric index structure is suggested in
Ref. 8). The basic idea of this solution is to
use the concept of hierarchical approximations
of 3D objects to speed up the search process.
However, it is still only based on global fea-
tures. A method based on an efficient geomet-
rical and partial similarity is needed to retrieve
3D objects. The objective of this paper is to
propose such a method. by which 3D similarity
objects can be effectively retrieved according to
their partial thickness distribution and the ratio
of the size of parts.

In this paper, we propose a novel feature vec-
tor of a 3D object, and we also proposed a
novel method to search similar objects from
a 3D object database using the proposed fea-
ture vector. In addition, our feature vector is
based on geometrical information rather than
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on topological information alone. The vector is
herein referred to as the Segment Weight Vector
(SWV ). The SWV is more effective and flexible
than the Curve-Skeleton Thickness Histogram
(CSTH ) 13) on partially based object match-
ing. Furthermore, we refine the result with a
filter using the Segment Thickness Histograms
(STH s) of curve-skeleton. In our proposal, a
number of similar 3D objects will be retrieved
from a 3D model database if the volume feature
of each part of the query object is similar to a
part of the potential candidate 3D objects. The
similar objects are inserted into the candidate
pool. As an accuracy improvement step, the
3D objects will be removed from the candidate
pool if the STH of the processing part of the
query object is not similar to any STH s of the
potential candidate object.

Since the proposed method is based on the
curve-skeleton of shape, the object model of this
paper is the 3D model that can be extracted
a curve-skeleton using the skeletonization al-
gorithm 3) without losing any necessary topo-
logical information. In this paper, we define
this requirement as the skeleton requirement.
In our experiments, almost all of the solid data
models can meet the skeleton requirement. The
polygon soup cannot be skeletonized to a curve-
skeleton with existing skeletonization algorithm
because that a polygon soup is just a list of tri-
angles and it has no inherent structure. Conse-
quently, the 3D models repressed by polygon
soups are out of the range of the discussion
in this paper. In addition, when a object is
skeletonized to a curve-skeleton, if the curve-
skeleton has lost the main topological informa-
tion of the original object, the object is also
out of the scope of the discussion in this paper.
For example, the skeleton of a sphere object is
only a point and the skeleton of a rectangular
solid object is several segments. Therefore, our
method can also be easily implemented on other
multi-branch complex graph matching applica-
tions if there are different heavy values on seg-
ments.

The remainder of this paper is organized
as follows. Section 2 provides an overview
of research related to skeleton generation and
content-based retrieval. In Section 3, we de-
scribe a feature vector (SWV ) of a 3D object
based on the topology of its curve-skeletons and
partial geometries. In addition, we describe
the Segment Thickness Histogram (STH ) of a
curve-skeleton. In Section 4, we describe the

novel algorithm and a similar 3D object re-
trieval method based on the SWV s and STH s,
of a 3D object. The performance test results of
different strategies and a discussion thereof are
presented in Section 5. Finally, in Section 6, we
conclude the paper and present ideas for future
study.

2. Related Work

Researches on skeleton detection and 3D ob-
ject matching are related to this paper.

A number of different approaches have been
proposed for the matching problem. Using
a simplified description of a 3D model, usu-
ally in one or two dimensions (also known as
a shape signature), the 3D matching can be
implemented by comparing these different sig-
natures. The dimensional reduction and the
simple nature of these shape descriptors make
them ideal for applications involving searching
in large databases of 3D models. Osada, et
al. in Ref. 15) proposed the use of a shape
distribution, sampled from one of many shape
functions, as the shape signature. Among the
shape functions, the distance between two ran-
dom points on the surface proved to be the
most effective for retrieving similar shapes. In
Ref. 1), a shape descriptor based on 2D views
(images rendered from uniformly sampled po-
sitions on the viewing sphere), called the Light
Field Descriptor, performed better than the de-
scriptors using the 3D properties of the ob-
jects. In Ref. 7), Kazhdan, et al. propose
a shape description based on a spherical har-
monic representation. Kriegel, et al. 11) present
an approach for describing voxelized objects.
The cover sequence model approximates a vox-
elized 3D object using a sequence of grid prim-
itives (called covers), which are basically large
parallelepipeds. Lau, et al. 12) surveyed some
representative research on 3D model retrieval,
focusing their analysis on feature matching.
The existing methods are divided into three
groups: geometry-based, frequency-based, and
topology-based. Unfortunately, these previous
methods cannot deal with partial matching.
Another popular approach to shape analysis
and matching is based on comparing graph rep-
resentations of shape. Nicu, et al. 2) developed a
many-to-many matching algorithm to compute
shape similarity on the topologic information of
the curve-skeleton. Sundar, et al. 19) developed
a shape retrieval system based on the skele-
ton graph of the shape. These previous meth-
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ods focus only on the topologic information of
the shape. Unfortunately, the most important
shape information (i.e., geometric information)
is neglected. Moreover, to match shapes using
graph is more costly. Lu, et al. 13) proposed a
novel shape feature of a 3D model, called the
Curve-Skeleton Thickness Histogram (CSTH ).
The CSTH is based on the geometric informa-
tion of the shape but only describes the match-
ing algorithm of one segment on the curve-
skeleton of a shape model. However, there was
no discussion as to how to match two 3D mod-
els having multiple segments on their curve-
skeletons.

In Ref. 2), 19), curve-skeletons are a 1D sub-
set of the medial surface of a 3D object and have
recently been used in shape similarity match-
ing. A number of algorithms and applications
based on curve-skeletons have been developed
in the last decade. Topological thinning meth-
ods 16) can directly produce a curve-skeleton
that stores the topologic information of objects.
Unfortunately, these algorithms are resolution-
dependent and lose the geometric information
of objects. Distance transform methods 4) use
the distance field of volume data to extract the
skeleton. Unfortunately, these methods do not
produce a 1D representation directly. Using
these methods requires some significant post-
processing. However, some geometric informa-
tion on the extracted voxel is maintained.

Various types of fields generated by functions
are used to extract curve-skeletons. They can
produce nice curves on medial sheets. A poten-
tial field function in which the potential at a
point interior to the object is determined as a
sum of potentials generated by point charges on
the boundary of the object. Such functions in-
clude the electrostatic field function 5) and the
visible repulsive force function 14). The skeleton
points are found by determining the “sinks” of
the field and connecting them using a force fol-
lowing algorithm 3) or minimizing the energy of
an active contour 20), which are used to gener-
ate an initial skeleton in this paper.

3. Feature Extraction

Extracting features to represent a part of a
3D model for similarity measurement is a sig-
nificant challenge. In this section, we briefly
describe the method that is used to build the
thickness of a curve-skeleton from 3D polygonal
models. Please refer to the reference Ref. 13) for
details. We herein propose the SWV which is

Fig. 1 A 3D shape model used to extract the
skeleton.

Fig. 2 The curve-skeleton with thickness of the 3D
model in Fig. 1.

a novel feature of 3D object. We also introduce
a novel method to break a curve-skeleton into
independent parts, called segments, based on
its topology. In addition, we describe in detail
the normalization of the curve-skeleton thick-
ness histogram of a single segment.

3.1 Skeleton Extraction
A number of methods of skeleton extraction

have been reported 3),4). The electrostatic field
function 3) can extract well-behaved curves on
medial sheets. Even though the result is con-
nected, the extracted curve-skeleton is divided
into a number of segments based on electro-
static concentration. However, we need to split
the curve-skeleton into parts according to its
topology rather than according to its electro-
static concentration in this paper. In Ref. 13),
the initial curve-skeleton based on the method
in Ref. 3) is first extracted. The distance trans-
form (DT) algorithm 4) was then used to com-
pute the DT of all voxels on the extracted
curve-skeleton (Fig. 2). In Ref. 13), all of the
curve-skeletons of the objects were assumed to
be connected and to have no branches. Finally,
a similarity computation method of 3D objects
based on the CSTH of the entire object model
was introduced.

Generally, there are often several branches on
the curve-skeleton of a complex object (Fig. 1).
Firstly, we merge all of the parts separated from
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Fig. 3 The segments of curve-skeleton after splitting
the curve-skeleton in Figure Fig. 2.

the curve-skeleton into a continuous curve. The
continuous curve is then broken into parts ac-
cording to its topology (Fig. 3). We use Micro
AVS for generating the curve-skeleton figures in
this paper.

3.2 Segment Thickness Histogram
We computed the distance transform (DT)

of all voxels on the segments mentioned in Sec-
tion 3.1. We generated the thickness distribu-
tion histogram (Fig. 6) from all of the segments
of the curve-skeleton that were joined together
based on the topological and curvature infor-
mation. As a partial feature of 3D object, the
thickness distribution histogram is used for par-
tial similarity matching.

3.3 Segment Weight Vector
The SWV proposed in this paper is defined

by the volume size of its segment thickness his-
togram. We compute the weight values of all of
the parts, which correspond to the segments of
the curve-skeleton of a 3D object. Furthermore,
we use these weight values to assemble a vector,
called the SWV (as mentioned in Section 1), to
represent the global feature of the 3D model.

In order to generate the SWV, we first com-
pute the volume size of each part of a 3D object
in the database using the formula 1:

wi =
∫

x

Tx (1)

where wi is the weight of the i-th (i ∈ [1, n−1])
segment of the curve-skeleton, which represents
a geometrical feature of the part of the corre-
sponding 3D object to which the segment be-
longs, and Tx represents the thickness of the
segment at the position x, which indicates the
position of a voxel on the segment.

Second, in order to obtain a SWV represen-
tation that is invariant with the order of the
3D model parts for similarity matching, a sort-
ing step is needed. We sort the weight values
of all parts of a 3D object in decreasing order.
The sorted values make up the SWV of the
3D object. SWV = (w0, w1, · · · , wn−1), where
w0 ≥ w1 ≥ · · · ≥ wn−1.

Therefore, in order to obtain an SWV that is
invariant with the scale of a 3D model for simi-
larity matching, a normalization step is needed.
We normalize the vector by its maximum value,
as the formula 2:

wi = wi/w0 (2)
where i represents the index of wi in a SWV.

The normalized SWV is denoted as SWV (for-
mula 3).

SWV = (1, w1, w2, · · · , wn−1) (3)
3.4 Normalize the STH
In order to obtain the STH representations, a

normalization step is necessary. The horizontal
axis of the distribution should be normalized
with a fixed value. Moreover, the vertical axis
should be zoomed by a ratio that is equal to the
zoom ratio of horizontal normalization. Using
the normalization strategy, we use the variation
of each STH of the object as a feature of the ob-
ject. Furthermore, in this method, we treat the
proportion of the length of a segment and the
thickness distribution along with the segment
as a component of the feature.

3.5 Invariance on Topology Changes
and Scale

Obviously, since our features of 3D model are
not including any topological information, the
index is invariant to changes of the topology,
including, translation, rotation and reflection.
Since our features are not including any topo-
logical information of parts, our feature vector
is also invariant to part architecture. Further-
more, since we normalized of features in the
previous subsections (SWV in Section 3.3 and
STH in Section 3.4), our features are invariant
to the scale of 3D object. Therefore, our sim-
ilarity retrieval method is invariant to changes
in the orientation (translation, rotation and re-
flection) and scale of 3D objects.

4. Searching Algorithm

After the SWV s of the 3D models are con-
structed, we need a similarity measure in order
to compare two 3D models. In this section, we
describe how to compare two SWV s and how
to retrieve 3D objects from a database by their
partial geometrical features.

In order to make the bin-to-bin comparison
flexible, the Warp Distance (WD) 9) is proposed
for comparing time series, and the WD is then
adapted to compare metric histograms. If two
3D objects are similar, each of their correspon-
dent part must be similar. Therefore, the num-
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bers of elements of their SWV s must be the
same. However, the WD is obtained by a pro-
cedure in which each point from a sequence
is compared not only with its correspondent.
Therefore, in our solution, we cannot use the
WD to compare different SWV s that belong to
different 3D objects.

In our implementation, we have performed an
experiment using a simple dissimilarity measure
based on the LN norms function with n = 2.
The dissimilarity measure is shown as formula
4.

Dissimilarity =
∑

i

(Xi − Yi)2. (4)

where Xi and Yi represent the i-th elements in
two different SWV s.

Our main idea is based on the fact that two
objects are similar if all of their corresponding
parts are geometrically similar. Thus, if the
volumes and thicknesses of the histograms of
two 3D objects are similar for each segment of
their curve-skeletons, then the two 3D objects
may be similar.

However, the similar STH s retrieval is a mul-
tidimensional database problem. We developed
a new algorithm to improve the retrieval per-
formance. First, we find 3D models from the
database by matching the SWV s. Then, we
need to use a similar object retrieval strategy
that uses STH s to improve the retrieval accu-
racy.

In order to retrieve the most similar objects,
we first sort the 3D objects by their SWV sim-
ilarity. In our implementation, we retrieve only
the 3D objects of which the total numbers of
segments (number of elements in their SWV s)
are the same. We then sort the retrieved result
set based on the similarity of their SWV s and
select only the top m objects for the next step.

Second, we use STH s of the selected 3D ob-
jects to improve the accuracy of the retrievals.
We retrieve the most similar n segments from
the selected 3D object set. This 3D object
set includes only the m objects output in the
first step. In addition, each of the n retrieved
segments belongs to different 3D objects. The
retrieved result is shown in Table 1. In the
table, KS indicates the query object with an
m-segment curve-skeleton, and KS.SG1 is the
segment that has the largest STH volume. In
addition, CS21.SGx indicates that the segment
SGx is on the curve-skeleton of the CS21 ob-
ject. Finally, the most similar 3D objects are
found from Table 1 using SQL. The 3D objects

Table 1 The candidate pool of a key shape.

Key Candidate pool
KS.SG1 CS11.SGx · · · CS1n.SGx

KS.SG2 CS21.SGx · · · CS2n.SGx

...
...

...
...

KS.SGm CSm1.SGx · · · CSmn.SGx

having the largest number of similar segments
are reported as the result of 3D object retrieval.
In addition, the final step is to find the 3D ob-
jects having the most amounts in the candidate
pool of Table 1.

5. Experiment and Discussion

In order to test the feasibility of the pro-
posed strategy of similar object retrieval, we
implement the above mentioned algorithms on
a Linux system by C + + and PostgreSQL.
We set the resolution of the volume data as
200× 200× 200 in the volume voxelization pro-
cedure. In our experiments, we defined the
threshold of the STH similarity as 1000. If
the Euclidean distance between the STH s of
the query object and an object in database is
less than 1000, then the object from database
is selected as a candidate. Otherwise our pro-
gram will filter out this STH in the similarity
retrieval process. Of course, the users can ad-
just it by themselves to get the best results.

We used the Princeton shape database 17) as
the test data in our study. Firstly, we trans-
form the polygonal models in the database into
a volumetric object with size 200 × 200 × 200.
The rough data is normalized inhere. Sec-
ondly, we extract the curve-skeleton from the
volumetric object and compute the thickness of
the curve-skeleton graph. Finally, we use our
filtering algorithm to retrieve similar 3D ob-
ject from database. We found that the pro-
posed method works well for similar object re-
trieval based on the geometrical feature of par-
tial bodies. Although there are 1,814 3D models
that are collected from the web in the Prince-
ton shape database, we can only generate the
curve-skeletons for 1,453 3D models because
the skeletonizing algorithm cannot generate a
curve-skeleton from some 3D models and some
3D models cannot be expressed with curve-
skeleton. For example, since the model illus-
trated in Fig. 4 is a surface, we cannot use any
curve-skeleton to represent it exactly. In ad-
dition, the generated 1,453 curve-skeletons in-
clude 51,952 segments in our test database.

The query object (Fig. 5 (a)) of the test has
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Fig. 4 Two views from different directions of a model
no curve-skeleton.

(a) Model (b) Segments (c) Thickness

Fig. 5 Query object used to search the 3D model
database.

Fig. 6 Thickness distribution graph on the segments
of the curve-skeleton of the query object.

six segments on its curve-skeleton (Fig. 5 (b)).
These segments include a head (number of seg-
ments: 4), a trunk of a body (number of seg-
ments: 5), and four limbs (numbers of seg-
ments: 0, 1, 2, and 3). Since each segment
has its own thickness histogram, the query ob-
ject has six independent thickness histograms
(Fig. 6). The segment numbers of thickness
histograms in Fig. 6 have the same order with
the segment numbers in Fig. 5 (b).

In order to test the feasibility of the proposed
retrieval strategy, we implement the proposed
algorithms in two ways. Each query object of
experiments is illustrated in the top-left of the
result Fig. 7, Fig. 8, Fig. 9. The other objects
illustrated in the result Figs is the retrieval re-

Fig. 7 Results of retrieval by the dissimilarity of
Segment Weight Vector initially.

Fig. 8 Results of retrieval by the dissimilarity of
Segment Weight Vector initially.

Fig. 9 Results of retrieval by the dissimilarity of
Segment Weight Vector initially.

sult of the corresponding query object.
First, we test the retrieval strategy using

STH s only. The results are shown in Fig. 7.
In addition, in order to find no more than
30 objects using a segment of a query object
(Fig. 5 (a), also be illustrated in the top-left of
Fig. 7), we set the parameter n (the number of
maximum retrieval results) as 30 for the exper-
iments. Our filtering program retrieves 30 ob-
jects by each STH of the query object and then
inserts these objects into the temporary table.
In order to find the objects of which the STH s
match the query object for the head, the trunk
of the body, and the four limbs, we need to find
the best objects from each result set of the six
parts. We obtain eighteen objects in which each
of the six key parts has a matching part. The
retrieved result objects shown in Fig. 7 indicates
that the proposed method can find similar ob-
jects and retrieve the models having parts that
are similar to the query object (e.g., result 7 in
Fig. 7). The tail in the result 7 does not have
a corresponding part in the query object, and



130 IPSJ Transactions on Databases Sep. 2007

Fig. 10 Retrieval performance comparison of the two
methods mentioned above.

therefore it cannot be reported based on global
features.

Second, we test the similar object retrieval
by partial geometry. In addition, we retrieve
3D objects from the database using their SWV
similarities. Furthermore, we use the STH sim-
ilarity to improve the retrieval accuracy. The
results retrieved by different keys are shown in
Fig. 8 and Fig. 9. The query objects is illus-
trated respectively in the top-left of Fig. 8 and
Fig. 9.

Finally, we also compare the performance of
the two methods mentioned above. The second
method performs better. See the result illus-
trated in Fig. 10. In this experiment, we test
the retrieval performance by the different query
objects (m221, m202, m213, m224, m233, m258
in the Princeton shape database). Fig. 10 shows
the average response time of different query ob-
jects. The horizontal axis represents the query
objects, and, the vertical axis is the average re-
sponse time. In addition, the average response
time of second method include the preprocess-
ing of the 3D models. The result shown in
Fig. 10 indicates that the second method can
obtain the result more quickly. In addition, the
second method has better accuracy.

6. Conclusions and Future Studies

The 3D object retrieval method proposed in
this paper is based on partial geometry sim-
ilarity between 3D objects. Firstly, the pro-
posed method extracts a curve-skeleton with
thickness. Secondly, the dissimilarity of the
SWV (mentioned in Section 1) was computed
and proposed a novel 3D object retrieval strat-
egy using the computed dissimilarity. Thirdly,
the dissimilarity of the Segment Thickness His-
tograms (STH s) of each part was computed
with respect to the objects. Finally, we use
the dissimilarity of STH s to improve the ac-
curacy of the retrieval. The discussion and ex-
periments show that it is possible to effectively

retrieve 3D models by partial similarity.
Since these SWV s and STH s are extracted

from 3D objects using the geometrical informa-
tion of a 3D object, the 3D objects can be com-
pared based on geometrical information rather
than on topologic information only. Since the
STH and each of the elements of the SWV are
a partial feature of a 3D object, both the SWV
and the STH can be used to compare two 3D
objects based on their partial features, rather
than on their global features only. Better ef-
ficiency and better matching were obtained in
our experiments using the proposed method.

In the future, we intend to add the thick-
ness ratio on the connected parts as a feature
of objects to filter out models, as shown by re-
sults 7, 16, 17, and 18 in Fig. 7 and result 5
in Fig. 8. In addition, we intend to develop an
algorithm that efficiently searches 3D models
from 2D drawings.
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