
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Regular Paper

A Semi-Supervised Data Screening for Network Traffic
Data Using Graph Min-Cuts

Takayoshi Shoudai1,2,a) HikaruMurai2,3 Atsushi Okamoto2

Received: February 9, 2016, Revised: March 30, 2016,
Accepted: May 16, 2016

Abstract: There are currently many projects aimed at devising efficient countermeasures against critical incidents
occurring on the Internet through early detection. A nasty problem is hard-to-find accesses by well-analyzed malware
whose packets make anomaly detection harder. In this paper, in order to find such accesses from raw data obtained
by network monitoring, we propose an automatic data screening method using graph-based semi-supervised learning
(Blum and Chawla, 2001) and show its effectiveness in experiments on darknet traffic.

Keywords: semi-supervised learning, minimum cut, data screening, incident detection, darknet monitoring.

1. Introduction

Incidents caused by malicious users on the Internet, e.g., dis-
closure of personal information caused through computer viruses,
have become nasty problems. In particular, malicious users called
bot herders are causing serious problems. A bot herder scans spe-
cific network ranges and infects ordinary users’ computers in or-
der to control a large number of them remotely. A group of com-
puters controlled in this manner is called a botnet and can be used
to launch denial-of-service (DoS) attacks or spam e-mail. Many
researchers have been developing technologies aimed at early de-
tection and extermination of botnets.

Recently a number of Internet organizations have built obser-
vation networks for continuous monitoring to detect sudden net-
work incidents. Here, darknet observation is a way of contin-
uously monitoring for new attacks. A darknet is an IP address
space that is available on the Internet but is not used, i.e., not as-
signed to any computer. As such, correct packets rarely reach a
darknet. Nevertheless, many packets do indeed reach darknets;
for example, in 2013, about 12.88 billion packets reached the
darknet set up by National Institute of Information and Commu-
nications Technology (NICT), Japan [6]. (The data are accessed
as a part of MWS Dataset 2015 [4], [5].) It is considered that the
amount will only increase in the future. Moreover, at present,
it is very difficult and takes time to determine whether a packet
reaching a darknet is part of a new malicious attack or not.

Many studies aim to detect new attacks by using statistics
and/or visualization technology, but most of the measures pro-
posed so far have a common problem. Network traffic contains

1 Faculty of International Studies, Kyushu International University,
Kitakyushu 805–8512, Japan

2 Institute of Systems, Information Technologies and Nanotechnologies
(ISIT), Fukuoka 814–0001, Japan

3 Department of Informatics, Kyushu University, Fukuoka 819–0395,
Japan

a) shoudai@isb.kiu.ac.jp

huge amounts of simple malicious packets such as scans of IP ad-
dress spaces and ports, as well as backscatter caused by old mal-
ware. In addition, there is a relatively small amount of hard-to-
find packets from well-analyzed malware. Such packets obscure
new attacks and potentially hide them from monitoring. So be-
fore trying to detect a new attack, we need to execute screenings
to delete such malicious packets thereby make it easier to ana-
lyze the traffic. In fact, as the amount of traffic has been increas-
ing rapidly, screening has become an important preprocessing for
early detection of new attacks. In particular, for helping traffic
analysis, screening methods need to have a high noise reduction
capability and a short computational time for quick screening.

In this paper, we propose a screening method using semi-
supervised learning (see Ref. [13] for a survey) and experimen-
tally examine it operating on actual darknet traffic data. Here,
an ordinary screening would be one that deletes all packets that
have a certain port number or specified TCP flags, e.g., SYN,
ACK, and RST. Such a method works well when there is no need
to check a certain port number or TCP flag. However, packets
should not be deleted if there is a chance to get clues from the
number or flag; that means deleting all of the packets may be go-
ing too far and a more selective method should be used instead.
Another method, called filtering, checks packets against a reg-
istry containing the characteristics of known worms or malware
and deletes the packets matching them. This method of filtering
is also problematic. For example, its registers may not include all
subspecies of a virus and the amount of data in the registry can
become too large. Because anyone can make subspecies easily,
attempting to register them all is a dubious way to catch a quickly
evolving subspecies.

As screenings that take advantage of machine learning, the
ones devised by Tsuruta et al. [11] and Okamoto and Shoudai [9]
use frequent patterns. These methods delete packets by consid-
ering the discovered pattern’s coverage or size. Such screening

c© 2016 Information Processing Society of Japan 49

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

methods enable us to automatically delete groups in which huge
amounts of packets arrive in a short time. Such a group is called
a spike. However, it is difficult to use these methods to detect and
delete less frequent attacks such as slow scanning ones that con-
sist of one attack every ten or so minutes. Summarizing the above
points, the conventional screenings have problems as regards (a)
the quality of expression with increasing usable data, (b) accuracy
of deleting only traffic of unrelated attacks, and (c) adaptability
to new attacks or subspecies.

To solve these problems, we propose a traffic screening method
using semi-supervised learning with using graph minimum cut
(or min-cut, for short) methods [1]. Learning with min-cut is a
semi-supervised method based on graphs (see [10] for a review of
recent results). In this study, packets are considered to be vertices
that are partitioned into three labels, i.e. positive, negative, and
unlabeled. We construct a weighted directed graph and apply the
semi-supervised learning with min-cut to the weighted directed
graph. As a result, we obtain new labels so that almost all vertices
are labeled as either positive or negative. The labeled packets are
checked and some of them are deleted. We show the effectiveness
of this method in experiments on actual darknet traffic.

2. Preliminaries

2.1 Darknet and Its Traffic
A darknet is a space of IP addresses that are not used by active

computers but are available on the Internet. As such, most packets
sent to darknets are not proper accesses, but the result of some of
hacking activity. Some legitimate organizations have attempted
to catch a tendency of a hacking by monitoring packets sent to
darknets. Packets sent to darknets are considered to contain scans
made by malware, rebounding packets, called backscatter, from
hosts that are targets of distributed denial of service (DDoS) at-
tack, configuration error, preparatory action for reflection attacks,
and so on.

Each packet of darknet traffic contains the following informa-
tion: Source IP address and port, Destination port, TTL (Time To
Live), Identification, Sequence number, and Acknowledge (ACK)
number. By analyzing such information, we can clarify the past
situation of incidents, as well as detect attacks early that may
cause serious damage. The amount of traffic data reaching a dark-
net may be huge, and ordinarily, it is impossible to analyze all of
the data manually. Thus, many researchers have developed sys-
tems and techniques to analyze darknet traffic.

2.2 Semi-supervised learning
Semi-supervised learning is expected to output better results

than supervised or unsupervised learning. Semi-supervised learn-
ing uses relatively small amounts of labeled data together with
large amounts of unlabeled data. The labeled data is classi-
fied into the two classes (positive and negative). In Section 4,
we obtain labeled data by executing another learning algorithm
based on non-negative matrix factorization (NMF) proposed by
Yamauchi et al. [12] and Kawamura et al. [7]. NMF is a method to
decompose a non-negative vector valued time series data into lin-
early independent non-negative components. Yamauchi et al. [12]
proposed a method not only to decompose traffic data into some

patterns by NMF but also to detect malware activities in those
patterns. Their algorithm is an unsupervised learning method for
early detection of network incidents. In this paper, we call it the
NMF-engine.

We propose a screening method based on a semi-supervised
learning on a weighted directed graph constructed from data pro-
cessed using the method of Blum and Chawla [1]. Their method
uses the maximum flow/minimum cut algorithm to find the mini-
mum cut in a weighted directed graph. It classifies the unlabeled
data into two classes according to the discovered minimum cut.
Here, let us briefly explain semi-supervised learning. Let X be
the whole data, and let Y be a set of labels, i.e., Y = {+,−}. The
elements + and − in Y represent positive and negative, respec-
tively. The inputs of a semi-supervised method are two subsets
of X, say L and U. Every element in L is labeled with + or −.
That is, a function fL : L→ Y is given in advance. Every element
of the set U is unlabeled. The output of the method is a function
f : L ∪ U → Y , i.e., a mapping the elements in Y to the elements
in L ∪ U, such that f (x) = fL(x) for all x ∈ L.

There are several kinds of semi-supervised learning. Meth-
ods based on classification start from an initial classification and
repeatedly update (refines) it. Self-training and co-training [13]
are examples of this kind. The most important point about this
method is how to compute or choose the initial classification. If
the initial classification is not good enough, the updates might in-
crease the number of errors. This means that the reliability of the
labeled data might determine the overall reliability. Subspecies
of various viruses are possibly included in traffic data, and new
subspecies are frequently generated. Therefore, if the identity of
the malware does not reflect these changes, it would not be ad-
visable to use it to label unlabeled data. For this reason, a label-
ing method that repeatedly uses a particular classification may be
considered inaccurate. On the other hand, in this paper, we con-
struct a labeling function f by using the maximum flow/minimum
cut algorithm, assuming that similar data tend to have the same
label. At first, we define the similarity between two packets in
detail. Next, we define the concept of similarity and construct a
weighted directed graph using similarity. After that, we describe
the screening method using the semi-supervised learning of Blum
and Chawla [1].

3. Graph-based Screening

First let us explain how to construct a weighted directed graph
for graph-based learning. One packet in traffic data is represented
by one vertex of a weighted directed graph. In order to create
weighted directed edges, we define the similarity between two
vertices (see in Section 3.1). The similarity is a distance that is
calculated from traffic data described in Section 2.1. For any two
vertices, we decide on whether or not to create a weighted di-
rected edge between the vertices according to the similarity be-
tween them and the similarities among the k-nearest neighbors
(k ≥ 1) of them, where k is a constant positive integer that is
given in advance. The details on how to create a weighted di-
rected graph are described in Section 3.2.

c© 2016 Information Processing Society of Japan 50

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Table 1 Number of pairs of packets in NICT darknet data collected in the 13th period of 11th July 2011
(see the detail in Section 4.1).

(1) (2) (3) (4U) (4L) (EQ)

Source IP address (X = a) Number of pairs of packets
286,139,041 10,348,698 503,606 14,041 2,017 131,549,323

66.768% 2.415% 0.118% 0.003% 0.000% 30.696%

Destination IP address (X = b) Number of pairs of packets
0 0 421,288,443 6,799,411 439,673 29,199

0.000% 0.000% 98.304% 1.587% 0.103% 0.007%

3.1 Distance on Traffic Data Space
In this section, we give the definition of distance on traffic data

in order to classify a given unlabeled data into positive and nega-
tive classes. The distance measure is defined based on our exper-
iment (in Section 4.1) and common knowledge on the Internet.
3.1.1 IP header

The IP header is a prefix to an IP packet, and it determines the
destinations and routes. It contains a source IP address, destina-
tion IP address, TTL (Time To Live), and so on, which is common
information among all protocols. Below, we define distances in
terms of the source IP address, TTL, and identification of the IP
header.
• Distance determined by source and destination IP addresses

Here, we divide the source IP address of packet x1 into
octets. Let a1,1, a1,2, a1,3, and a1,4 be the 1st, 2nd, 3rd, and
4th octets of the source IP address of x1. Similarly, let
a2,1, a2,2, a2,3, and a2,4 be the octets of the source IP address
of packet x2. We can use the standard of allocating IP ad-
dresses to define a source address distance dsadr(x1, x2) be-
tween x1 and x2 such that the upper octet is weighted more
heavily than the lower octet.

dsadr(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if a1,1 � a2,1,

3 if (a1,1 = a2,1) ∧ (a1,2 � a2,2),

2 if (a1,1 = a2,1) ∧ (a1,2 = a2,2)
∧(a1,3 � a2,3),

1 (a1,1 = a2,1) ∧ (a2,1 = a2,2)
∧(a1,3 = a2,3)
∧(a1,4 & 0xf0 � a2,4 & 0xf0),

0 otherwise,

where “&” is the bitwise AND operator.
In a similar way, let b1,1, b1,2, b1,3, and b1,4 be the 1st, 2nd,
3rd, and 4th octets of the destination IP address of x1, and let
b2,1, b2,2, b2,3, and b2,4 be the octets of the destination IP ad-
dress of packet x2. We define a destination address distance
ddadr(x1, x2) between x1 and x2 as follows:

ddadr(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 if b1,1 � b2,1,

3 if (b1,1 = b2,1) ∧ (b1,2 � b2,2),

2 if (b1,1 = b2,1) ∧ (b1,2 = b2,2)
∧(b1,3 � b2,3),

1 (b1,1 = b2,1) ∧ (b2,1 = b2,2)
∧(b1,3 = b2,3)
∧(b1,4 & 0xf0 � b2,4 & 0xf0),

0 otherwise.

In Section 4.1, we conducted the experiment on NICT dark-
net data collected in the 13th period of 11th July 2011.
The number of packets contained in the data was 29,277.

Table 2 The initial values of typical operating systems.

OS initial value of TTL
Windows 95 32
Mac OS 2.0.x 60
Mac OS X 64
Windows 98 128
Windows XP 128
MPE/IX (HP) 200
OpenBSD 255

Table 3 Initial TTL estimated from received value (Eto et al. [3]).

receiving value of TTL d estimated initial value of TTL
0 ≤ d ≤ 21

22 ≤ d ≤ 39

40 ≤ d ≤ 59

60 ≤ d ≤ 89

90 ≤ d ≤ 120

120 ≤ d ≤ 159

160 ≤ d ≤ 189

190 ≤ d ≤ 255

32

48

64

100

128

168

200

255

Thus, we had totally 428,556,726 pairs of packets in the
data. The detail of the data and the experiment are stated
in Section 4.1. In the experiment, we implicitly catego-
rized all pairs of packets according to the octets of source
and destination IP addresses. We give the result of the cat-
egorization in Table 1. In the table, for source IP address
(X = a) and destination IP address (X = b), we divided
all pairs of packets into six categories: (1) X1,1 � X2,1, (2)
(X1,1 = X2,1) ∧ (X1,2 � X2,2), (3)

∧2
i=1(X1,i = X2,i) ∧ (X1,3 �

X2,3), (4U)
∧3

i=1(X1,i = X2,i) ∧ (X1,4 & 0xf0 � X2,4 & 0xf0),
(4L)

∧3
i=1(X1,i = X2,i) ∧ (X1,4 & 0xf0 = X2,4 & 0xf0) ∧

(X1,4 & 0x0f � X2,4 & 0x0f), (EQ)
∧4

i=1(X1,i = X2,i). The
NICT darknet uses a class B IP address space [8]. Therefore,
no pair of destination IP address (X = b) exists in (1) and (2).
Except for the case, the distribution of the numbers in each
category seems to follow standard rules for allocating an IP
address to an individual computer. Especially, we consider
that two distinct source IP addresses in (4U) worked together
to perform a task.

• Distance determined by TTL
TTL (Time to Live) describes how long a packet survives,
i.e., the maximum number of times that a packet can go
through routers. The initial TTL value depend on the OS
and its version. The initial values of typical OSs are given
in Table 2. Eto et al. [3] described a way of estimating the
initial TTL value of a received packet. We give a brief sum-
mary in Table 3. The numbers attl(x1) and attl(x2) denote
the initial TTL values estimated from the received ones. The
TTL distance dttl(x1, x2) is defined as follows:

c© 2016 Information Processing Society of Japan 51

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

dttl(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if attl(x1) � attl(x2),

0 otherwise.

Most malware tends to attack to a specific operating system.
We can know the operating system on which a packet was
sent by checking the TTL value. In this observation, we
consider that the difference of the receiving values of TTL
is important.

• Distance determined by identification
In order to send and receive huge amount of data completely,
that data has to be divided into packets. Identifications, i.e.,
IDs, are used to identify to which data a packet belongs.
Packets belonging to the same data will have the same iden-
tifications. Let aid(x1) and aid(x2) be the identifications of x1

and x2. The identification distance did(x1, x2) is defined as
follows:

did(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if aid(x1) � aid(x2),

0 otherwise.

• From the above, the distance dip(x1, x2) as determined by the
IP header between x1 and x2 is defined as follows:

dip(x1, x2) = dsadr(x1, x2) + ddadr(x1, x2)

+dttl(x1, x2) + did(x1, x2).

3.1.2 TCP Header
A TCP (Transmission Control Protocol) packet contains in-

formation identifying the source port, destination port, sequence
number, and acknowledgment number in its header.
• Distance determined by source and destination ports

It is well known that there are a number of ports that have
security vulnerabilities. Many worms use them to propagate
themselves from an Internet device to another device. For
example, one piece of malware called “Morto” spreads by
misusing a remote desktop connection in Windows, and it
aims for the destination port number 3389. If two packets
had distinct destination ports, it is probable that the pack-
ets were not sent by the same malware. In view of this, a
difference in destination port number is regarded as more
important than one in source port number.
Let spi and dpi (i = 1, 2) be the source and destination ports
of packets xi (i = 1, 2). The distances dsport(x1, x2) and
ddport(x1, x2) between x1 and x2 as determined by the source
ports and destination ports are

dsport(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if sp1 � sp2,

0 otherwise.

ddport(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4 if dp1 � dp2,

0 otherwise.

• Distance determined by sequence numbers
The sequence number is a serial number for TCP communi-
cations. It is used for verifying lists of orders and detecting
midstream losses of a packets. This number determines how
much data is sent. It increases by 1 every time 1 byte is sent.

Its initial value must not be 0 and is chosen randomly. Let
seq1 and seq2 be the sequence numbers of x1 and x2. The
distance dseq(x1, x2) between x1 and x2 as determined by the
sequence number is defined as follows:

dseq(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 if |seq1 − seq2| > 4,

0 otherwise.

• Distance determined by acknowledge numbers
The acknowledge number indicates how much data is re-
ceived. It is observable at the receiving side. It corresponds
to a sequence number. The receiving side adds 1 to a se-
quence number and returns its value to the sending side. Let
ack1 and ack2 be the acknowledged numbers of x1 and x2.
The distance dack(x1, x2) between x1 and x2 as determined
by the acknowledge number is defined as follows:

dack(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if ack1 � ack2,

0 otherwise.

• From the above, the distance dtcp(x1, x2) between x1 and x2

as determined by TCP is defined as follows:

dtcp(x1, x2) = dsport(x1, x2) + ddport(x1, x2)

+dseq(x1, x2) + dack(x1, x2).

3.1.3 UDP Header
UDP (User Datagram Protocol) only has information on the

source and destination ports, and the length of UDP data. The
length of UDP data is the value in bytes of the whole datagram
including its header and data.
• Distance determined by the length of UDP data

Let len1 and len2 be the lengths of UDP data of x1 and x2.
The distance dudp len(x1, x2) by the length of UDP data is de-
fined as follows:

dudp len(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if len1 � len2,

0 otherwise.

• The distance dudp(x1, x2) between x1 and x2 as determined
by UDP is defined as follows:

dudp(x1, x2) = dsport(x1, x2) + ddport(x1, x2)

+dudp len(x1, x2).

3.1.4 ICMP Header
ICMP (Internet Control Message Protocol) handles error noti-

fication and transports control messages. ICMP is used to diag-
nose communication lines connecting computers. ICMP packets
contain type and code information.
• Distance determined by the code of ICMP data

Let code1 and code2 be the codes of the ICMP data of x1

and x2, and the distance dicmp code(x1, x2) as determined by
the code of the UDP data is defined as follows:

dicmp code(x1, x2) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if code1 � code2,

0 otherwise.

• The distance dicmp(x1, x2) between x1 and x2 as determined

c© 2016 Information Processing Society of Japan 52

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Fig. 1 Distribution of distances between all pairs of two packets in NICT darknet data collected in the
13th period on 11th July 2011 (TCP packets only, see the detail in Section 4.1).

Algorithm MSSL

Input: a set L of packets each of which is labeled with + or −, and a set U of

packets with no label.

Output: a partition {U+,U−,U0} of U.

begin

(1) For any 2 packets x1, x2 ∈ L ∪ U, compute the distance d(x1, x2).

(2) Construct a weighted directed graph G = (V, E) as follows:

(a) Let V = L ∪ U ∪ {v+, v−} be a set of vertices, where v+ and v− are

new vertices.

(b) For any vertex x ∈ L∪U, find the k nearest vertices in the ascend-

ing order of the distances. Let the distances be D1, . . . ,Dk . For

each y ∈ L ∪ U that has distances Dj (1 ≤ j ≤ k) from x, make

the weighted directed edges (x, y) and assign the integer k − j + 1

as their weights.

(c) For any positive labeled vertex x ∈ L, make directed edges (v+, x)

and (x, v+), and assign infinity as their weights.

(d) For any negative labeled vertex x ∈ L, make directed edges (v−, x)

and (x, v−), and assign infinity as their weights.

(e) For two vertices having the same label if they have no edge be-

tween them, make weighted directed edges and assign infinity as

their weights.

(3) For the weighted directed graph constructed in the above way, execute

the maximum flow/minimum cut algorithm to compute the maximum

flow from v+ to v−.

(4) By removing the minimum cut-set obtained from the maximum flow,

divide V into the following three sets.

• V+ : the set of vertices that are reachable from v+,

• V− : the set of vertices reachable to v−,

• V0 : the set of vertices that are not reachable from v+ or to v−.

(5) Label the vertices in V+ with + and the vertices in V− with −.

(6) Let U+ = U ∩ V+, U− = U ∩ V−, and U0 = U ∩ V0.

end.

Fig. 2 Algorithm MSSL (Min-cut Semi-Supervised Learner for Data
Screening): Semi-supervised screening algorithm using minimum
cut on graph.

by ICMP is defined as follows:

dicmp(x1, x2) = dsport(x1, x2) + ddport(x1, x2)

+dicmp code(x1, x2).

3.1.5 Distance between Two Packets
Finally the distance d(x1, x2) between two packets x1 and x2 is

defined as follows:

d(x1, x2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dip(x1, x2) + dtcp(x1, x2)

if both x1 and x2 are TCPs,

dip(x1, x2) + dudp(x1, x2)

if both x1 and x2 are UDPs,

dip(x1, x2) + dicmp(x1, x2)

if both x1 and x2 are ICMPs,

∞ otherwise.

In Fig. 1, we give the distribution of the distances calculated
on NICT darknet data collected in the 13th period on 11th July
2011 (TCP packets only). The data has 29,277 packets and thus
428,556,726 pairs of packets. As stated before, a NICT darknet
exists in a class B network. Therefore the maximum distance
between two packets in the data is 18, although the maximum
distance in the definition is 20.

3.2 Semi-supervised Screening Algorithm Using Minimum
Cut on Graph

Figure 2 shows the formal description of our algorithm, called
Algorithm MSSL (Min-cut Semi-Supervised Learner for Data
Screening), which creates a weighted directed graph and labels
the vertices with either positive or negative labels. The algorithm
is based on the semi-supervised algorithm proposed by Blum and
Chawla [1]. Let k be a constant positive number that is given in
advance. Blum and Chawla showed that when k = 1, minimiz-
ing the value of the minimum cut corresponds to minimizing the
LOOCV (leave-one-out cross-validation) error.

4. Experiment on Real Darknet Data

Many researchers are engaged in developing early detection
systems for network incidents. Their main purpose is to detect
new cyber attack patterns and to issue early warnings, not to de-
tect known patterns. It can be said that known patterns have been
dealt with. So when we search for new patterns of attacks, the
known ones make it difficult to detect new patterns. Our purpose
is to remove these known malware patterns from packets in order
to detect new patterns of malicious attacks.

The screening experiment needs data labeled with positive or

c© 2016 Information Processing Society of Japan 53

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Table 4 The contents of the positive and negative data at the 13th period of 11th July 2011: These
data were randomly chosen from the data detected by NMF-engine and the data not detected by
NMF-engine, respectively.

Number of packets
Numbers of packets to ports

22 23 3389
L+ : whole data detected by NMF-engine 12,252 3,565 6,309 14
P : positive data (randomly chosen from L+) 130 37 62 0
L− : whole data not detected by NMF-engine 17,025 25 286 4
N : negative data (randomly chosen from L−) 137 0 3 0

Table 5 The contents of the unlabeled and new positive data at the 14–48th periods of 11th July 2011:
The new positive data was obtained from the unlabeled data by Algorithm MSSL.

Number of packets
Numbers of packets to ports

22 23 3389
U : unlabeled data 355,495 35,242 8,657 16,893
U+ : new positive data 222,327 29,013 8,513 777
Remaining rate (%) 37.46 17.64 1.66 95.40

negative. The labels indicate whether the packet is already known
to be an attack or not. We used data labeled using the NMF-
engine [7], [12]. We applied Algorithm MSSL to the labeled and
unlabeled darknet traffic data. We screened out darknet traffic
data that had initially no labels other than new positive ones,
which would then be sent for further tests; i.e., for a given set
U of unlabeled packets, we computed a partition {U+,U−,U0} of
U by Algorithm MSSL and left U \ U+, i.e., U− ∪ U0. Two ex-
periments are discussed below.

4.1 NICT Darknet Data Collected in July 2011
The National Institute of Information and Communications

Technology, Japan (NICT) has set up a darknet and monitors it in
order to examine and understand the behavior of Internet traffic
data. First, we have experimented on NICT darknet data collected
in July 2011. As preprocessing, packets with the TCP flag RST
were deleted because they are unrelated to any malware attacks.
After that, we divided the 24 hour data in amounts received in the
corresponding 30 minutes; i.e. we divided up the 24 hours worth
of data into 48 periods of which there were tens of thousands
packets in each.

The “Morto” malware was first recognized on 11th July 2011
(JST), when it attacked destination port number 3389. There are
12,252 packets identified to be malicious by the NMF-engine in
the 13th period (06:00–06:29) on 11th July, where the 13th period
includes 29,277 packets. During this period, the NMF-engine de-
tected packets bound for destination port numbers 22 and 23 and
issued alerts on them. We considered the malicious data detected
by the NMF-engine to be positive data, which contained 12,252
packets. This whole positive data is denoted by L+. We randomly
chose 130 packets from L+. This randomly chosen positive data
is denoted by P. The second row of Table 4 shows the contents
of L+ and P. P contained 37 and 62 packets bound for destina-
tion port number 22 and 23, respectively. However, P contained
no packet bound for destination port number 3389, although L+
contained 14 packets bound for 3389. We denote by L− the set
of all packets that were received during the 13th period of 11th
July and not identified to be malicious by the NMF-engine. We
randomly chose 137 packets from L−. We set it to be N. The third
row of Table 4 shows the contents of L− and N. N contained 0,
3, and 0 packets bound for destination port number 22, 23, and

3389, respectively.
The purpose of this experiment was to remove only packets

of known malware found by existing malware detection systems.
We expected to obtain new data that contained attacks to destina-
tion port number 3389, like “Morto”, at a higher rate.

Let U(i) be the unlabeled data consisting of packets received
on the i-th period of the same day (i = 14, 15, . . . , 48). Let U be
the union of all the set U(i) for i = 14, 15, . . . , 48. We applied Al-
gorithm MSSL to labeled data P ∪ N and unlabeled data U(i) for
every i = 14, 15, . . . , 48. Let U+ be the union of all the new pos-
itive data obtained from input (P ∪ N,U(i)) by Algorithm MSSL
(i = 14, 15, . . . , 48). To evaluate how many packets were still left
in U \ U+, we calculated the remaining rate of packets attacking
destination port numbers 22, 23, and 3389. More precisely, let N

be the number of packets sent to destination port number A before
screening, and n the number of packets sent to the same port after
screening. The remaining rate of A is defined as n/N.

The object of screening is to reduce the size of data that should
be analyzed by early detection systems for network incidents. We
consider that the smaller the size of remaining data after screen-
ing, the better the performance of early detections for network
incidents. Therefore the rate of remaining packets considered to
be part of known attacks should be smaller than that of packets
considered to be unrelated to any other attack. These “remaining
rates” after screening are shown in Table 5. We can see that the
remaining rate for destination port number 3389 is much bigger
than the others. Therefore, it can be said that Algorithm MSSL
successfully reduced the number of packets of each data. How-
ever, the remaining rate of the whole unlabeled data was small.
This is because the positive labeled data contains packets des-
tined not only to destination port numbers 22 and 23 but also to
the other ports. The remaining rates of packets sent to each port
tend to depend on the original labeled data.

4.2 International Data Collected in January 2014
Next, we ran Algorithm MSSL on data obtained by monitoring

a darknet in the Maldives on 29th January 2014 (JST). Packets
with SYN and ACK, or RST TCP flags were all removed be-
cause we decided that those packets were unrelated to any attack.
We divided up the 24 hours worth of data into 48 periods. For
i = 3, 4, . . . , 18, let U(i) be the set of packets in the i-th period

c© 2016 Information Processing Society of Japan 54

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Table 6 Summary of experiments.

Experiment
Input

Iteration
Labeled data Unlabeled data (X minutes’ worth of data)

1 P(2) ∪ N(2) fixed U(i) 30 minutes for i = 3 to 18.
2 P(i−1) ∪ N(i−1) updated every iteration U(i) 30 minutes for i = 3 to 18.

3 (a) P(2) ∪ N(2) fixed U(i−1,i) = U(i−1) ∪ U(i) 60 minutes for i = 5 to 18.
3 (b) P(2) ∪ N(2) fixed U(i−2,i−1,i) = U(i−2) ∪ U(i−1) ∪ U(i) 90 minutes for i = 5 to 18.

Fig. 3 International data collected in a darknet of the Maldives on 29th Jan-
uary 2014 (JST).

collected in this day. For example, U(3) is the set of packets col-
lected in 01:00–01:29 of 29th January 2014. We used these sets
as unlabeled data. We describe the detail of the numbers of un-
labeled packets in the 3rd–18th periods in Fig. 3. These numbers
are shown by blue bars in each bar graph. For example, 1,018
packets reached the darknet in the 3rd period. The total number
of packets in all unlabeled data was 13,059. The maximum and
minimum numbers of packets in each period were 1,197 and 204,
respectively. We note that the 11th and the 12th period’s data have
the maximum and the minimum numbers of packets, respectively.

On 29th January 2014 (JST), the NMF-engine found malicious
packets in all of the 2nd to 18th periods. For i = 2, 3, . . . , 18, let
L(i)
+ be the set of packets in the i-th period of this day that were

identified to be positive, i.e., malicious, by the NMF-engine, and
let L(i)

− be the set of packets in the i-th period that were not iden-
tified to be malicious by the NMF-engine. We describe the detail
of the numbers of those malicious packets in the 3rd–18th peri-
ods in Fig. 3. These numbers are shown by orange bars in the bar
graph. For example, 582 packets in the 3rd period were identi-
fied to be malicious by the NMF-engine. The NMF-engine is an
unsupervised method to decompose darknet traffic data into inde-
pendent components for detecting malicious packets. That is, the
target malware pattern of the NMF-engine is not fixed in advance.
Thus any two labeled data L(i)

+ and L(j)
+ (2 ≤ i < j ≤ 18) possibly

consist of different kinds of malicious packets.
4.2.1 Experimental Details

We conducted the following three experiments 1–3.
Experiment 1 (Fixed labeled data):

At first, 149 positive labeled packets were selected randomly at
a 25% rate from L(2)

+ . Let P(2) be the set of those packets. More-
over, 170 negative labeled packets were selected randomly at a
25% rate from packets of the same period that were not identi-
fied to be malicious by the NMF-engine. Let N(2) be the set of
those packets. In this experiment, the labeled data were fixed on
P(2) and N(2) all the time. We applied Algorithm MSSL to the

following 16 pairs of labeled and unlabeled data:
(P(2) ∪ N(2),U(i))

for i = 3, 4, . . . , 18, where P(2) ⊂ L(2)
+ and N(2) ⊂ L(2)

− .

Experiment 2 (Successively updated labeled data):
Let P(i−1) be a subset of the positive labeled packets selected

randomly at a 25% rate from L(i−1)
+ , and let N(i−1) be a subset of

the negative labeled packets selected randomly at a 25% rate from
L(i−1)
− . We applied Algorithm MSSL to the following 16 pairs of

labeled and unlabeled data:
(P(i−1) ∪ N(i−1),U(i))

where P(i−1) ⊂ L(i−1)
+ and N(i−1) ⊂ L(i−1)

− for i = 3, 4, . . . , 18. The
labeled data were updated every period.

Experiment 3 (Unlabeled data collected in plural periods):
For any two positive integers i, j (3 ≤ i < j ≤ 18), let

U(i,i+1,..., j) = U(i) ∪ U(i+1) ∪ · · · ∪ U(j). Let P(2) be a subset of 149
positive labeled packets selected randomly at a 25% rate from
L(2)
+ , and let N(2) be a subset of 170 negative labeled packets se-

lected randomly at a 25% rate from L(2)
− . These were the same

positive and negative labeled data as the ones in Experiment 1. In
this experiment, the labeled data were fixed on P(2) and N(2). We
conducted the two experiments:
(a) Two period’s worth of unlabeled data

We applied Algorithm MSSL to the following 14 pairs:
(P(2) ∪ N(2),U(i−1,i)) for i = 5, 6, . . . , 18.

(b) Three period’s worth of unlabeled data
We applied Algorithm MSSL to the following 14 pairs:

(P(2) ∪ N(2),U(i−2,i−1,i)) for i = 5, 6, . . . , 18.
We summarize these experiments in Table 6. There is a sig-

nificant difference between Experiment 2 and the other experi-
ments in the point of view of target malware pattern data, i.e.,
positive labeled data. The main object of our screening method
is to search the unlabeled data for packets that are near to given
malware pattern data. In Experiment 2, the malware pattern data
are not fixed. Therefore, it is probable that the new positive data
output in Experiment 2 did not follow the target malware pattern
detected in the 2nd period.
4.2.2 Evaluations
Experiment 1 (Fixed labeled data):

For a set S , we denote by |S | the number of elements in S . We
evaluated the precision, recall, and F-measure between the two
kinds of the positive packets identified by the NMF-engine and
Algorithm MSSL. Let U(i)

+ be the set of packets that were identi-
fied to be positive by Algorithm MSSL on input (P(2)∪N(2),U(i)).
For i = 3, 4, . . . , 18, the precision p(i), recall r(i), and F-measure
f (i) are defined as follows:

p(i) = |L(i)
+ ∩ U(i)

+ |/|U(i)
+ |,

r(i) = |L(i)
+ ∩ U(i)

+ |/|L(i)
+ |,

f (i) = 2 · p(i) · r(i)/(p(i) + r(i)).

c© 2016 Information Processing Society of Japan 55

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Fig. 4 Results of Experiments 1 and 2: This bar graph shows the numbers of unlabeled packets before
and after screening.

In addition, we define the precision and recall of the whole un-
labeled data:

p = |
18⋃

i=3

(L(i)
+ ∩ U(i)

+)|/|
18⋃

i=3

U(i)
+ |,

r = |
18⋃

i=3

(L(i)
+ ∩ U(i)

+)|/|
18⋃

i=3

L(i)
+ |.

Experiment 2 (Successively updated labeled data):
Let W (i)

+ be the set of new labeled packets that were identified
to be positive by Algorithm MSSL on input (P(i−1) ∪ N(i−1),U(i))
for i = 3, 4, . . . , 18. For i = 3, 4, . . . , 18, the precision p(i)

1 , recall
r(i)

1 , F-measure f (i)
1 are defined as follows:

p(i)
1 = |L(i)

+ ∩W (i)
+ |/|W (i)

+ |,
r(i)

1 = |L(i)
+ ∩W (i)

+ |/|L(i)
+ |,

f (i)
1 = 2 · p(i)

1 · r(i)
1 /(p(i)

1 + r(i)
1).

In order to compare this experiment with Experiment 1, we use
the precision and recall of the whole unlabeled data:

p1 = |
18⋃

i=3

(L(i)
+ ∩W (i)

+)|/|
18⋃

i=3

W (i)
+ |,

r1 = |
18⋃

i=3

(L(i)
+ ∩W (i)

+)|/|
18⋃

i=3

L(i)
+ |.

Experiment 3 (Unlabeled data collected in plural periods):
Let U(i−1,i)

+ (resp. U(i−2,i−1,i)
+) be the set of new labeled pack-

ets that were identified to be positive by Algorithm MSSL on
input (P(2) ∪ N(2),U(i−1,i)) (resp. (P(2) ∪ N(2),U(i−2,i−1,i))) for i =

5, 6, . . . , 18. Let L(i,i+1,..., j)
+ = L(i)

+ ∪ L(i+1)
+ ∪ · · · ∪ L(j)

+ .
(a) Two period’s worth of unlabeled data

For i = 5, . . . , 18, the precision p(i)
2 , recall r(i)

2 , and F-measure
f (i)
2 of two period’s worth of unlabeled data are defined as

follows:

p(i)
2 = |L(i−1,i)

+ ∩ U(i−1,i)
+ |/|U(i−1,i)

+ |,
r(i)

2 = |L(i−1,i)
+ ∩ U(i−1,i)

+ |/|L(i−1,i)
+ |,

f (i)
2 = 2 · p(i)

2 · r(i)
2 /(p(i)

2 + r(i)
2).

(b) Three period’s worth of unlabeled data
For i = 5, . . . , 18, the precision p(i)

3 , recall r(i)
3 , and F-measure

f (i)
3 of three period’s worth of unlabeled data are defined as

follows:

p(i)
3 = |L(i−2,i−1,i)

+ ∩ U(i−2,i−1,i)
+ |/|U(i−2,i−1,i)

+ |,
r(i)

3 = |L(i−2,i−1,i)
+ ∩ U(i−2,i−1,i)

+ |/|L(i−2,i−1,i)
+ |,

f (i)
3 = 2 · p(i)

3 · r(i)
3 /(p(i)

3 + r(i)
3).

4.2.3 Results and Discussion
Figure 4 shows the numbers of unlabeled packets before and

after screening in Experiments 1 and 2. The bar graph shows
the number of unlabeled packets before screening (blue bars) and
the number of unlabeled packets after Experiment 1 (orange bars)
and Experiment 2 (gray bars). From this figure, we can observe
that after the 11th period, every remaining rate of Experiment 2
is better than that of Experiment 1. In Experiment 2, we updated
labeled data successively. Therefore, we consider that after the
11th period, the packets in U(i) (i = 11, 12, . . . , 18) are closer to
the packets in L(11)

+ than L(2)
+ with respect to the distance defined

in Section 3.1.
Figure 5 shows the transitions of precision, recall, and F-

measure in Experiments 1 and 2. In the top line graph in Fig. 5,
the blue line represents the precision p(i), and the orange repre-
sents the precision p(i)

1 (i = 3, 4, . . . , 18). We also give the two
line graphs in the middle and bottom of Fig. 5 that represent the
recall r(i), r(i)

1 and F-measure f (i), f (i)
1 (i = 3, 4, . . . , 18). The de-

tailed values of the precision, recall, and F-measure are indicated
in the data table of each line graph. The precision and recall of
the whole unlabeled data in Experiment 1, i.e., p and r, can be
calculated in the following way:

p = |
18⋃

i=3

(L(i)
+ ∩ U(i)

+)|/|
18⋃

i=3

U(i)
+ | =

18∑

i=3

|L(i)
+ ∩ U(i)

+ |/
18∑

i=3

|U(i)
+ |

=

18∑

i=3

(|U(i)
+ | · p(i))/

18∑

i=3

|U(i)
+ |.

The values |U(i)
+ | and p(i) (i = 3, 4, . . . , 18) can be found in Fig. 3

c© 2016 Information Processing Society of Japan 56

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Fig. 5 Results of Experiments 1 and 2: In the line graphs, we use notations p(i), p1(i), r(i), r1(i), f (i),
f 1(i) instead of p(i), p(i)

1 , r(i), r(i)
1 , f (i), f (i)

1 , respectively.

and the top data table of Fig. 6. Finally we have p = 83.4% as a
result of this expression. In a similar way, we have r = 50.8%.

Generally speaking, a screening traffic data method will not re-
move packets originating from unknown malware. Therefore, we
organized the parameters so as to keep the precision high. As
a result of Experiment 1, we consider that the precision is good
enough. However, the recall is far worse than the precision. We
note that the the number of packets contained in U(12) radically
decreased from the number of packets in U(11). This large de-
crease was not unrelated to the change of property (information
on packets, e.g., source IP address, TTL, etc) of the data. We ob-

serve that the change of property of the data affects the recall of
unlabeled data (shown by the blue line in the middle line graph in
Fig. 5). Actually, the recall of unlabeled data decreases extremely
along the 10–12th periods. The following two reasons are con-
sidered as the cause that the recall decreased:
(1) We used the same labeled data L+ ⊆ L(2)

+ all the time.
(2) The semi-supervised learning has less efficiency on small

unlabeled data.
Since malware attacks are being replaced at faster rates, accu-

racy with fixed labeled data is considered bad.
In Experiment 2, we updated the labeled data every period.

c© 2016 Information Processing Society of Japan 57

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Fig. 6 Results of Experiments 1, 3(a) and 3(b): Transitions of precision, recall, and F-measure using data
labeled by MSSL in plural periods. (In these line graphs, we use notations p(i), p2(i), p3(i), r(i),
r2(i), r3(i), f (i), f 2(i), f 3(i) instead of p(i), p(i)

2 , p(i)
3 , r(i), r(i)

2 , r(i)
3 , f (i), f (i)

2 , f (i)
3 , respectively.)

The precision of the whole unlabeled data in Experiment 2 was
p1 = 86.8%. This rate is better than the precision of whole un-
labeled data in Experiment 1 (p = 83.4%). According to Fig. 5,
in the latter half of the periods, the recall of Experiment 2 were
better than that of Experiment 1. Actually, the recall of the whole
unlabeled data was r1 = 55.7%. That is, the recall of the whole
unlabeled data improved from that of Experiment 1. Thus we
conclude that updating the labeled data improved learning accu-
racy. Particularly, at the 11th and 12th periods of the graph of the
recall (the middle graph) in Fig. 5, we see that r(11)

1 and r(12)
1 are

better than r(11) and r(12), respectively. This fact shows that the

distribution of the distances between any two packets in L(11)
+ and

U(12) was different from that of L(2)
+ and U(12). We consider that

most of the packets in U(12) are closer to the packets in L(11)
+ than

L(2)
+ .
As a result of Experiment 3, we give a line graph in the

top of Fig. 6, which represents the precision p(i), p(i)
2 , and p(i)

3

(i = 5, . . . , 18). We also give two line graphs in the middle and
bottom of Fig. 6, which represent the recall r(i), r(i)

2 , and r(i)
3 , and

F-measure f (i), f (i)
2 , and f (i)

3 (i = 5, . . . , 18). We also give the de-
tailed values of the precision, recall, and F-measure in the data

c© 2016 Information Processing Society of Japan 58

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Fig. 7 Distribution of the execution time (in elapsed CPU seconds) for Al-
gorithm MSSL with respect to 120 unlabeled data obtained from 5
international darknets on 1st June 2015 (GMT).

table of each line graph in Fig. 6. We see that r(11)
2 and r(11)

3 are
better than r(11). We also see that r(12)

3 is improved well comparing
with r(12). In order to observe it more precisely, we calculate the
recall of the union of the unlabeled data in the 10th–12th periods
that were processed in every period independently by Algorithm
MSSL, which is represented by the following expression:

|
12⋃

i=10

(L(i)
+ ∩ U(i)

+)|/|
12⋃

i=10

L(i)
+ | =

12∑

i=10

|L(i)
+ ∩ U(i)

+ |/
12∑

i=10

|L(i)
+ |

=

12∑

i=10

(|L(i)
+ | · r(i))/

12∑

i=10

|L(i)
+ |.

Since the values |L(i)
+ | and r(i) (i = 10, 11, 12) can be found in

Fig. 3 and the middle data table of Fig. 6, we have 52.4% as the
value of this expression. The recall of the 12th period of Exper-
iment 3 (b), i.e., r(12)

3 = 64.7%, is really better than the value
52.4%. Thus, we consider that Algorithm MSSL utilizes well the
distances between two packets in the 10–12th periods so as to
connect 10th period’s packets with 12th ones.

We conclude that if we can successively update positive labeled
data that have the same (or similar) malware pattern, we can ob-
tain new labeled data with good precision and recall. However, in
a real situation like darknet traffic data, it is often hard to obtain
new labeled data of the same malware pattern constantly. Even
in such a case, Algorithm MSSL utilizes well the information of
unlabeled data if it uses unlabeled data that is larger than labeled
data.

4.3 Computational Time
In this section, we show the execution time (in elapsed CPU

seconds) for Algorithm MSSL. We implemented Algorithm
MSSL with Dinic’s O(n2m) algorithm [2], where n and m are the
numbers of vertices and edges in a given graph, respectively. Al-
gorithm MSSL also runs in cubic time with respect to the number
of packets. In Section 4.2, we carried out Experiments 1, 2, 3(a),
and 3(b) and in them, we suggested three methods how to oper-
ate Algorithm MSSL on real darknet data. From the theoretical
viewpoint, the asymptotic complexities of the three methods are
the same.

We ran our algorithm on unlabeled data obtained by monitor-
ing darknets in 5 countries all over the world on 1st June 2015
(GMT). The experiments were run on the following computer
environment: CPU: Intel Xeon E5-2407 2.20 GHz (4 cores 4
threads) × 2, Memory: 64 GB, HDD: 1.7 TB, OS: CentOS 6.5.
We used 120 unlabeled data, each of which had 1 hour’s worth of
packets. The scatter plot in Fig. 7 shows the relationship between
the number of packets contained in unlabeled data and its execu-
tion time. In Fig. 7, we give the cubic curve that approximates the
points in the scatter plot. We consider that the performance of this
implementation is fast enough, because the algorithm processed 1
hour’s worth of packets within 1 hour (maximum execution time:
2,212.25 s).

5. Conclusion

We proposed a screening method using semi-supervised learn-
ing based on graphs proposed by Blum and Chawla [1]. Screen-
ing experiments were conducted on real darknet traffic data us-
ing positive and negative data labeled by the NMF-engine. We
mainly ran Algorithm MSSL on the following three cases: (1) We
fixed labeled data all the time (Experiment 1). (2) We updated la-
beled data successively (Experiment 2). (3) We fixed labeled data
and used unlabeled data that was relatively large (Experiments 3
(a) and (b)).

If we can successively update positive labeled data that have
the same (or similar) malware pattern, we can obtain new labeled
data with good precision and recall from unlabeled data. How-
ever, in a real situation like darknet traffic data, it is often hard to
obtain new labeled data of the same malware pattern constantly.
Even in such a case, Algorithm MSSL utilizes well the informa-
tion of unlabeled data if it uses unlabeled data that is larger than
labeled data.

At this moment, we consider that the performance of our im-
plementation is fast enough. However, in order to process huge
amount of data fast and efficiently, we are now planing to im-
plement Algorithm MSSL again with a practically efficient max-
imum flow/minimum cut algorithm. We are also developing an
efficient and effective screening method for darknet traffic data
by using the other semi-supervised learning algorithms.

Acknowledgments This work was partially supported by
Proactive Response Against Cyber-Attacks Through Interna-
tional Collaborative Exchange (PRACTICE), Ministry of Inter-
nal Affairs and Communications, Japan, and partially supported
by Grant-in-Aid for Scientific Research (B) (Grant Numbers
26280087) from Japan Society for the Promotion of Science
(JSPS), and Grant-in-Aid for Scientific Research on Innovative
Areas (Grant Number 24106010) from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan.

References

[1] Blum, A. and Chawla, S.: Learning from Labeled and Unlabeled Data
using Graph Mincuts, Proc. 18th International Conference on Ma-
chine Learning (ICML2001), pp.19–26 (2001).

[2] Dinitz, Y.: Algorithm for solution of a problem of maximum flow in a
network with power estimation, Soviet Mathematics Doklady, Vol.11,
pp.1277–1280 (1970).

[3] Eto, M., Inoue, D., Suzuki, M. and Nakao, K.: A Statistical Packet
Inspection for Extraction of Spoofed IP Packets on Darknet, Proc. 4th

c© 2016 Information Processing Society of Japan 59

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 49–60 (Aug. 2016)

Joint Workshop on Information Security (JWIS 2009) (2009).
[4] Hatada, M., Akiyama, M., Matsuki, T. and Kasama, T.: Empowering

Anti-malware Research in Japan by Sharing the MWS Datasets, IPSJ
Journal of Information Processing, Vol.23, No.5, pp.579–588 (2015).

[5] Kamizono, M., Akiyama, M., Kasama, T., Murakami, J., Hatada, M.
and Terada, M.: Datasets for Anti-Malware Research – MWS Datasets
2015– (in Japanese), The Information Processing Society of Japan,
IPSJ SIG Technical Report, Vol.2015-CSEC-70, No.6, pp.1–8 (2015).

[6] Kasama, T. and Kamizono, M.: NICTER Darknet Dataset 2014/
NONSTOP, anti Malware engineering WorkShop 2014 (MWS 2014)
(2014), available from 〈http://www.iwsec.org/mws/2014/files/
NICTER Darknet Dataset 2014.pdf〉 (in Japanese).

[7] Kawamura, Y., Shimamura, J., Nakazato, J., Yoshioka, K., Eto, M.,
Inoue, D., Takeuchi, J. and Nakao, K.: Experimental Evaluation of A
Botnet Detection Method based on Non-negative Matrix Factorization
(in Japanese), The Institute of Electronics, Information and Commu-
nication Engineers, Japan, IEICE Technical Report, Vol.113, No.288,
ICSS2013-61, pp.23–28 (2013).

[8] Nakazato, J. and Ohtaka, K.: nicter Report – Transition Analysis
of Cyber Attacks Based on Long-term Observation, Journal of the
National Institute of Information and Communications Technology,
Vol.58, No.3/4, pp.27–34 (2011).

[9] Okamoto, A. and Shoudai, T.: Mining First-Come-First-Served Fre-
quent Time Sequence Patterns in Streaming Data, Proc. IADIS Inter-
national Conference on e-Society (ES2013), pp.283–290 (2013).

[10] Subramanya, A. and Talukdar, P.P.: Graph-Based Semi-Supervised
Learning, Synthesis Lectures on Artificial Intelligence and Machine
Learning, Morgan & Claypool Publishers (2014).

[11] Tsuruta, H., Shoudai, T. and Takeuchi, J.: Network Traffic Screen-
ing Using Frequent Sequential Patterns, Intelligent Control and Inno-
vative Computing, Springer, Lecture Notes in Electrical Engineering,
Vol.110, pp.363–375 (2012).

[12] Yamauchi, S., Kawakita, K. and Takeuchi, J.: Botnet detection
based on non-negative matrix factorization and the MDL principle,
Proc. 19th International Conference on Neural Information Process-
ing (ICONIP2012), Part V, Springer, Lecture Notes in Computer Sci-
ence, Vol.7667, pp.400–409 (2012).

[13] Zhu, X. and Goldberg, A.B.: Introduction to Semi-Supervised Learn-
ing, Synthesis Lectures on Artificial Intelligence and Machine Learn-
ing, Morgan & Claypool Publishers (2009).

Takayoshi Shoudai received his B.S. in
1986, M.S. degrees in 1988 in Mathemat-
ics and Dr. Sci. in 1993 in Information
Science from Kyushu University. Cur-
rently, he is a professor in the Faculty
of International Studies, Kyushu Inter-
national University. His research inter-
ests include algorithmic learning theory,

knowledge discovery, and machine learning. He is a member of
the IEICE, ACM, JSIAM, and MSJ.

Hikaru Murai received his B.S. degree
in Physics and M.S. degree in Informat-
ics from Kyushu University in 2013 and
2015. He is currently with Treasury &
Capital Markets System Solutions Divi-
sion, Financial System Solutions Bureau,
NS Solutions Corporation.

Atsushi Okamoto received his B.S. de-
gree in Physics and M.S. degree in Infor-
matics from Kyushu University in 2011
and 2013. He was a research assistant
of Information Security Laboratory, In-
stitute of Systems, Information Technolo-
gies and Nanotechnologies (ISIT), Japan
until March 2016.

c© 2016 Information Processing Society of Japan 60

