
IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 1–8 (Aug. 2016)

Regular Paper

Performance Evaluation of Golub-Kahan-Lanczos
Algorithm with Reorthogonalization by Classical

Gram-Schmidt Algorithm and OpenMP

Masami Takata1,a) Hiroyuki Ishigami2,b) Kinji Kimura2,c) Yuki Fujii2 Hiroki Tanaka2

Yoshimasa Nakamura2,d)

Received: September 1, 2015, Revised: October 23, 2015/November 27, 2015,
Accepted: December 9, 2015

Abstract: The Golub-Kahan-Lanczos algorithm with reorthogonalization (GKLR algorithm) is an algorithm for com-
puting a subset of singular triplets of large-scale sparse matrices. The reorthogonalization tends to become a bottleneck
of the execution time, as the iteration number of the GKLR algorithm increases. In this paper, OpenMP-based parallel
implementation of the classical Gram-Schmidt algorithm with reorthogonalization (OMP-CGS2 algorithm) is intro-
duced. The OMP-CGS2 algorithm has the advantage of data reusability and is expected to achieve higher performance
of the reorthogonalization computations on shared-memory multi-core processors with large caches than the conven-
tional reorthogonalization algorithms. Numerical experiments on shared-memory multi-core processors show that the
OMP-CGS2 algorithm accelerates the GKLR algorithm more effectively for computing a subset of singular triplets of
some matrices than the conventional reorthogonalization algorithms. In addition, we discuss the cache utilization in
the OMP-CGS2 algorithm and a condition that the OMP-CGS2 algorithm achieves higher performance than the CGS2
algorithm.

Keywords: subset computation of singular pairs, Golub-Kahan-Lanczos algorithm with reorthogonalization, classical
Gram-Schmidt algorithm with reorthogonalization, OpenMP, sharedmemory multi-core processing

1. Introduction

Let A be a real m × n matrix and rank(A) = r (r ≤ min(m, n)).
Then A has singular values σ j ∈ R such that σ1 ≥ · · · ≥ σr > 0
and their corresponding left and right singular vectors u j ∈ Rm

and v j ∈ Rn (1 ≤ j ≤ r). A subset of singular triplets, i.e. the
� largest singular values σ1, . . . , σ� and their corresponding sin-
gular vectors, is often required in low-rank matrix approxima-
tion [16] and statistical processing such as principal component
analysis and the least-squares method. In such applications, the
target matrix is often large and sparse, and � is often much smaller
than both m and n. It is difficult to directly compute a subset of
singular triplets of a large-scale sparse matrix because of the com-
putational cost and need for large amounts of memory.

The Krylov subspace methods are better for such a computa-
tion. They transform the target matrix into a significantly smaller
matrix than the target matrix and the singular values of the gen-
erated matrix sufficiently approximate a subset of singular val-
ues of the target matrix. The Golub-Kahan-Lanczos (GKL) al-

1 Research Group of Information and Communication Technology for
Life, Nara Women’s University, Nara 630–8506, Japan

2 Graduate School of Informatics, Kyoto University, Kyoto 606–8501,
Japan

a) takata@ics.nara-wu.ac.jp
b) hishigami@amp.i.kyoto-u.ac.jp
c) kkimur@amp.i.kyoto-u.ac.jp
d) ynaka@i.kyoto-u.ac.jp

gorithm [5], [6] is one of the Krylov subspace methods and gen-
erates approximate bidiagonal matrices from the target matrix.
However, the GKL algorithm usually loses the orthogonality of
the Krylov subspace because of the computational error. To im-
prove the orthogonality, the GKL algorithm with reorthogonal-
ization (GKLR algorithm) [1] employs the reorthogonalization
process. Note that these algorithms are generally parallelized
in terms of the Basic Linear Algebra Subprograms (BLAS) [2],
such as the matrix multiplications and the matrix-vector multi-
plications, because they are iterative algorithms. In addition, we
implement the bisection algorithm and the inverse iteration algo-
rithm [12] for computing a subset of singular triplets of the ap-
proximate matrices generated by the GKLR algorithm.

Although the GKLR algorithm is stable because of the re-
orthogonalization, the reorthogonalization tends to become a bot-
tleneck in terms of the computational cost and the execution time
as the iteration number increases. However, since the reorthogo-
nalization of the GKLR algorithm is mainly implemented using
the matrix-vector multiplications, the reorthogonalization is not
effectively accelerated in parallel processing and then the overall
execution time of the GKLR algorithm is not effectively reduced.

In this paper, to accelerate the reorthogonalization of the
GKLR algorithm more effectively in parallel processing, we
present a parallel implementation of the classical Gram-Schmidt
algorithm with reorthogonalization (CGS2 algorithm) [4]. This
implementation of the CGS2 algorithm is parallelized by the

c© 2016 Information Processing Society of Japan 1

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 1–8 (Aug. 2016)

OpenMP [11], and hereafter is referred to as OMP-CGS2 algo-
rithm. The OMP-CGS2 algorithm enables to use effectively the
cache of processors. Thus, the OMP-CGS2 algorithm is expected
to achieve higher performance than the conventional reorthog-
onalization algorithms, which are parallelized in terms of the
BLAS routines.

The rest of this paper is organized as follows. In Section 2,
the GKLR algorithm and its implementation in this paper are
described. In Section 3, a BLAS-based parallel implementation
of reorthogonalization algorithms and the OMP-CGS2 algorithm
are presented. Section 4 provides performance evaluations of the
OMP-CGS2 algorithm on multi-core processors. In Section 5, we
discuss the cache utilization in the OMP-CGS2 algorithm and a
condition under which the OMP-CGS2 algorithm achieves higher
performance than the CGS2 algorithm. We end with conclusions
and future works in Section 6.

2. GKLR Algorithm and Its Implementation

In this section, we consider the GKLR algorithm and describe
its implementation in this paper.

2.1 GKLR Algorithm
The GKL [5], [6] algorithm generates new bases pk ∈ Rn and

qk ∈ Rm at the k-th iteration. The pk is an orthonormal basis of
the Krylov subspace K(A�A,p1, k) and the qk is an orthonormal
basis of the alternative Krylov subspace K(AA�, Ap1, k). Note
that the Krylov subspace K(S ,p1, k) is defined by

K(S ,p1, k) = span
{
p1, S p1, S

2p1, · · · , S k−1p1

}
, (1)

where S is a real n × n symmetric matrix. In the GKLR algo-
rithm [1], each time a new basis is added with the expansion of
the Krylov subspace, the existing orthonormal basis, and the new
basis are reorthogonalized.

Algorithm 1 shows the pseudocode of the GKLR algorithm,
whose lines 6 and 10 are for the reorthogonalization. At the be-
ginning of the k-th iteration for k = 1, 2, . . . in Algorithm 1, the
k × k approximate matrices

Bk =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1

α2 β2

. . .
. . .

αk−1 βk−1

αk

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

are obtained and the following equations hold

APk = QkBk, (3)

A�Qk = PkB�k + βkpk+1e
�
k , (4)

where ek is the k-th column vector of the k × k identity matrix.
Note that if the � largest singular values of Bk sufficiently approx-
imate those of A, we can stop the iterations of the GKLR algo-
rithm. In line 8 of Algorithm 1, we check whether the � largest
singular values of Bk sufficiently approximate those of A or not.
Criteria for this check are discussed in Section 2.2.1.

Let σ(k)
j , s(k)

j ∈ Rk, and t(k)
j ∈ Rk (j = 1, . . . , k) be a singular

Algorithm 1 GKLR algorithm
1: Set an unit vector p1 ∈ Rn

2: q := Ap1, α1 := ‖q‖2, q1 := q/α1

3: P1 := [p1],Q1 := [q1]

4: do k := 1, 2, . . .

5: p := A�qk

6: p̃ := Reorthogonalization(Pk , p)

7: βk := ±‖p̃‖2, pk+1 := p̃/βk

8: Check the singular values of Bk

9: q := Apk+1

10: q̃ := Reorthogonalization(Qk , q)

11: αk+1 := ±‖q̃‖2, qk+1 := q̃/αk+1

12: Pk+1 :=
[
Pk pk+1

]
, Qk+1 :=

[
Qk qk+1

]

13: end do

value of Bk, the left singular vector, and the right singular vector
corresponding to σ(k)

j , respectively. If σ(k)
j sufficiently approxi-

mates σ j, then u j and v j corresponds to u(k)
j and v(k)

j defined by
the following equations, respectively:

u(k)
j = Qks

(k)
j , v(k)

j = Pkt
(k)
j . (5)

In order to improve the accuracy of singular vectors, this com-
putation is implemented by combining with the QR factoriza-
tion [10].

As seen in Algorithm 1, the GKLR algorithm must be paral-
lelized in terms of the computations of each line. Since the com-
putation of each line can be implemented using the BLAS rou-
tines, we parallelize the GKLR algorithm in terms of the BLAS
routines.

2.2 Implementation of GKLR Algorithm
This section shows the implementation of the GKLR algo-

rithm. In particular, we discuss the methods to check whether
the singular values of Bk sufficiently approximate those of A or
not and a stopping strategy of the GKLR algorithm. Then we
present the implementation for computing a subset triplets of Bk

in this paper.
2.2.1 Stopping Strategy of GKLR Algorithm

At first, stopping criteria of the GKLR algorithm are designed
on the basis of the similar discussion to Section 13.2 in Ref. [12]
as follows:

Recalling (σ(k)
j , s(k)

j t(k)
j), the j-th singular triplets of Bk (j =

1, . . . , �), we then have the following equations:

Bkt
(k)
j = σ

(k)
j s(k)

j , B�k s(k)
j = σ

(k)
j t(k)

j . (6)

Using Eqs. (3), (4), (5), and (6), we obtain

A�u(k)
j − σ(k)

j v(k)
j = A�Qks

(k)
j − σ(k)

j Pkt
(k)
j

=
(
A�Qk − PkB�k

)
s(k)

j

= βkpk+1e
�
k s(k)

j

= βk s(k)
j (k)pk+1, (7)

where s(k)
j (k) is the k-th element of s(k)

j . Thus, the following in-
equality holds:
∥∥∥∥A�u(k)

j − σ(k)
j v(k)

j

∥∥∥∥
2
=
∣∣∣∣βk s(k)

j (k)
∣∣∣∣ . (8)

c© 2016 Information Processing Society of Japan 2

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 1–8 (Aug. 2016)

Algorithm 2 Stopping strategy of GKLR algorithm

1: Compute (σ(k)
�

, s(k)
�

, t(k)
�

)

2: if
∣∣∣βk s(k)

�
(k)
∣∣∣ ≤ δ, then

3: Compute (σ(k)
j , s(k)

j , t(k)
j) for j = 1, . . . , �

4: if
∣∣∣∣βk s(k)

j (k)
∣∣∣∣ ≤ δ for j = 1, . . . , �, then

5: Stop the iteration of GKLR algorithm

6: end if

7: end if

As the results, if the right-hand side of inequality (8) is suffi-
ciently small, then the singular value σ(k)

j of Bk can be regarded
to sufficiently approximate that of A. Hence, the following in-
equality is considered as one of the stopping criteria of the GKLR
algorithm:
∣∣∣∣βk s(k)

j (k)
∣∣∣∣ ≤ δ, j = 1, . . . , �, (9)

where δ is a threshold value for stopping the iteration of the
GKLR algorithm and determined arbitrarily by users. If we use
this criterion based on inequality (9), we have to compute the �
singular triplets of Bk, i.e. (σ(k)

j , s(k)
j , t(k)

j), j = 1, . . . , �, before
checking whether inequality (9) is satisfied or not. The computa-
tional cost of computing singular triplets of Bk is higher than that
of this check. In order to reduce the overall execution time for the
GKLR algorithm, the computational cost of computing singular
triplets of Bk has to be reduced. Hereafter, let kt be the number of
iterations where inequality (9) is satisfied for the first time.

Now let us consider the following inequality, which is one of
the necessary conditions for inequality (9):
∣∣∣βk s(k)

�
(k)
∣∣∣ ≤ δ. (10)

We have to compute only the �-th largest singular triplet of Bk in
order to check whether inequality (10) is satisfied. Hence, from
the viewpoint of the computational cost, inequality (10) is more
suitable for the stopping criterion of the GKLR algorithm than
inequality (9). In addition, for the iteration ordinal kn at which
inequality (10) is satisfied for the first time, it is observed that
kt = kn in many cases of numerical experiments. From these facts,
inequality (10) can be also considered as one of the stopping cri-
teria of the GKLR algorithm. However, since the theorems in
Ref. [13] imply that the value of kt depends on the distribution of
singular values for the target matrix, kt = kn is not always guar-
anteed. Thus, even if inequality (10) is satisfied, we must check
whether inequality (9) is also satisfied for all j.

Summarizing the discussions above, the stopping strategy for
the GKLR algorithm is shown by Algorithm 2. In the experi-
ments presented in Section 4, we set δ = 1.0 × 10−14 as the stop-
ping criterion. Note that Algorithm 2 is used in Algorithm 1 for
its line 8. After stopping the iteration of the GKLR algorithm, we
compute the � largest singular triplets of A, i.e. (σ j, u j, v j) for
j = 1, . . . , �, using Eq. (5).
2.2.2 Subset Computation for Singular Triplets of Approxi-

mate Matrices
As mentioned in Section 2.2.1, a subset of singular triplets of

the approximate matrices is required for stopping the GKLR al-
gorithm. In this subsection, we discuss the subset computations
of singular triplets of the approximate matrices in lines 1 and 3 of

Algorithm 2.
The approximate matrix Bk, generated by the GKLR algorithm,

is a lower bidiagonal matrix. As mentioned in Ref. [5], the singu-
lar value problem of the bidiagonal matrix can be transformed
into the eigenvalue problem of the symmetric tridiagonal ma-
trix without any computational cost. From this fact, the singular
triplets of the lower bidiagonal matrix can be obtained using the
bisection algorithm and the inverse iteration algorithm (BI algo-
rithm) for symmetric tridiagonal matrices [12]. The BI algorithm
enables us to compute only the desired eigenpairs and is suitable
for the subset computation of singular triplets in Algorithm 2.
While computing � singular triplets (line 3 in Algorithm 2), we
parallelize the subset computation of singular triplets as follows:
The bisection algorithm is parallelized in terms of each singular
value, and the inverse iteration algorithm is parallelized in terms
of the BLAS routines.

3. Reorthogonalization Algorithms

To improve the orthogonality of the Krylov subspace and the
accuracy of the resulting singular vectors, the reorthogonalization
is inevitable for the GKLR. However, the computational cost of
the reorthogonalization is higher than that of the other processes
in the GKLR, as the iteration number increases. Thus, it is im-
portant to accelerate the reorthogonalization in the GKLR.

In this section, at first, we consider three conventional re-
orthogonalization algorithms for the GKLR algorithm. The
classical Gram-Schmidt with reorthogonalization (CGS2) algo-
rithm [4], the modified Gram-Schmidt (MGS) algorithm [6], and
the reorthogonalization algorithm using the Householder trans-
formations in terms of the compact WY representation (cWY
algorithm) [18]. These algorithms are parallelized in terms of
the BLAS routines in recent days. Secondly, we present the
OpenMP-based parallel implementation of the CGS2 algorithm
for shared-memory multi-core processors and describe the advan-
tage of this implementation with respect to the data usability.

In the followings, we discuss the computation of x̃i ∈ Rm,
which is the orthogonalized vector of ai ∈ Rm (2 ≤ i ≤ n) and
satisfies 〈x̃i, x j〉 = 0 for j � i, where x j = x̃ j/‖x̃ j‖. In addition,
let Xi−1 be Xi−1 =

[
x1 · · ·xi−1

]
(2 ≤ i ≤ n). Note that Xi−1, x̃i,

and ai correspond to Pk, p̃, and p of line 6 in Algorithm 1, and
also correspond to Qk, q̃, and q of line 10 in Algorithm 1.

3.1 BLAS-based Parallel Implementation Algorithms
3.1.1 CGS2 Algorithm

The classical Gram-Schmidt (CGS) algorithm [6] is a well-
known reorthogonalization algorithm. The reorthogonalization
of ai using the CGS algorithm is formulated as follows:

x̃i = ai −
i−1∑

j=1

〈x j, ai〉x j. (11)

Equation (11) is composed of the level 1 BLAS routines, such
as inner-dot products and AXPY operations. The computational
cost of the CGS algorithm is about 2mk2 if the reorthogonaliza-
tion of ai for i = 1, . . . , k is performed. Using the matrix-vector
multiplications, Eq. (11) is also replaced as

c© 2016 Information Processing Society of Japan 3

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 1–8 (Aug. 2016)

Algorithm 3 CGS2 algorithm
1: function CGS2Xi−1(:= [x1, . . . , xi−1]), ai

2: do I := 1, 2

3: w := X�i−1ai

4: ai := ai − Xi−1w

5: end do

6: return x̃i := ai

7: end function

x̃i = ai − Xi−1X�i−1ai. (12)

In general, to achieve better performance, we reduce the num-
ber of data synchronizations on shared-memory multi-core pro-
cessors as much as possible. The level 2 BLAS routines, such as
the matrix-vector multiplications, have less data synchronization
than the level 1 BLAS routines. Thus, the level 2 BLAS routines
achieves better performance than the level 1 BLAS routines in
parallel processing. Given this property, the CGS is convention-
ally implemented using matrix-vector multiplications.

However, the orthogonality of the vectors computed by the
CGS algorithm deteriorates if the condition number of the origi-
nal vectors is large. To improve the orthogonality, the variants of
the CGS algorithm have been proposed.

One of the variants is the CGS algorithm with reorthogonal-
ization (CGS2 algorithm) [4], which repeats the CGS algorithm
twice. A pseudocode of the CGS2 is shown in Algorithm 3. Al-
though the orthogonality of computed vectors by the CGS2 algo-
rithm is theoretically better than that by the CGS algorithm [4],
the computational cost of the CGS2 is twice higher than that of
the CGS.
3.1.2 MGS Algorithm

Another variant of the CGS algorithm is the modified Gram-
Schmidt (MGS) algorithm [6]. The MGS algorithm is composed
of the level 1 BLAS routines such as inner-dot products and
AXPY operations. Thus, this reorthogonalization is difficult to
achieve a high performance in parallel processing. However, the
computational cost of the MGS algorithm is the same as that of
the CGS algorithm since they are algebraically equivalent.
3.1.3 Householder-based Reorthogonalization Algorithm

The Householder transformations [6] are also used for the re-
orthogonalization. The straightforward implementation of this re-
orthogonalization is composed of the level 1 BLAS routines. In
Ref. [18], the implementation of this reorthogonalization based
on the level 2 BLAS routines is proposed by introducing the com-
pact WY representation [15] into the product of the Householder
transformations, and thus is shown to achieve high scalability in
parallel processing. Hereafter, the algorithm in Ref. [18] is re-
ferred to as the cWY algorithm. In addition, the computational
cost of the cWY algorithm can be reduced from 4mk2 + k3 to
4mk2 − k3 [8].

3.2 OMP-CGS2 Algorithm
Recalling Eq. (11), the CGS and CGS2 algorithms can be par-

allelized in terms of the summation. Such parallel implementa-
tion is easily realized by adding OpenMP directives for shared-
memory multi-core processors. From these facts, an OpenMP-
based parallel implementation of the CGS2 algorithm can be rep-

Algorithm 4 OMP-CGS2 algorithm
1: function OMP-CGS2Xi−1(:= [x1, . . . , xi−1]), ai

2: #omp parallel private(I, s)

3: do I := 1, 2

4: #omp single

5: w := ai � Serially performed

6: #omp end single

7: #omp do reduction(+:ai)

8: do j := 1 to i − 1

9: s := −〈x j, w〉
10: ai := ai + sx j � Array reduction

11: end do

12: #omp end do

13: end do

14: #omp end parallel

15: return x̃i := ai

16: end function

Table 1 Comparison of reorthogonalization algorithms [18].

CGS2 MGS cWY OMP-CGS2

Computation 4mk2 2mk2 4mk2 − k3 4mk2

Orthogonality O(ε)† O(εκ(A)) O(ε) O(ε)†
BLAS Level 2 Level 1 Level 2 Level 1

†: Realized if the condition O(εκ(A)) < 1 is satisfied.

resented as shown in Algorithm 4. Hereafter, this implementation
of the CGS2 algorithm is referred to as the OMP-CGS2 algo-
rithm. It should be noted that the OMP-CGS2 algorithm is based
on the same idea as the parallel implementation of the CGS al-
gorithm proposed in Ref. [9], which is parallelized for distributed
memory systems by using the MPI (Message Passing Interface)
and is adopted to the reorthogonalization process of the inverse
iteration algorithm.

As shown in line 7, the parallelization of the summation is rep-
resented as that of do-loop by the OpenMP directive. In this case,
the inner-dot product (line 9) and the AXPY operations (line 10)
in terms of the different index j is performed serially on each
computing thread. In addition, the array reduction must be im-
plemented for the summation of ai on line 10. Note that the array
reduction in Fortran code is supported by using the reduction
clause of OpenMP.

The advantage of this implementation is the high reusability
of data. Since we compute ai := ai + sx j (line 10) as soon as
s := −〈x j, w〉 (line 9) is computed, the reusability of w, x j, and
ai becomes higher on each thread computation. Thus, the OMP-
CGS2 algorithm is expected to accelerate more effectively the
reorthogonalization computation on shared-memory multi-core
processors with large caches than other reorthogonalization al-
gorithms if the vectors w, x j, and ai are stored in the L3 cache
of each processor.

3.3 Comparison of Reorthogonalization Algorithms
As the summary of this section, the theoretical performance

of the reorthogonalization algorithms is shown in Table 1, where
Computation denotes the flops of the computational cost, Orthog-

onality indicates the bound of the norm ‖X�X − I‖, and BLAS de-
notes the level of the BLAS routines of which each algorithm is
mainly composed. In addition, ε is the machine epsilon and κ(A)

c© 2016 Information Processing Society of Japan 4

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 1–8 (Aug. 2016)

Table 2 Specifications of the experimental environment.

1 node of Appro 2548X at ACCMS, Kyoto University
CPU Intel Xeon E5-4650L@2.6 GHz, 32 cores (8 cores × 4)

L3 cache: 20 MB × 4
RAM DDR3-1066 1.5 TB, 136.4 GB/sec
Compiler Intel C++/Fortran Compiler 14.0.2
Options -O3 -xHOST -ipo -no-prec-div

-openmp -mcmodel=medium -shared-intel

Run Command numactl --localalloc

Software Intel Math Kernel Library 11.1.2

denotes the condition number of A =
[
a1 · · ·ak

]
.

4. Performance Evaluation

In this section, we report experimental results in order to eval-
uate the performance of the OpenMP-based parallel implementa-
tion of the CGS2 algorithm.

4.1 Configurations of Numerical Experiments
In the numerical experiments, we compare the execution time

for computing the � largest singular triplets of the same tar-
get matrix using a code of the GKLR algorithm with differ-
ent �. Here, � is the number of desired singular triplets; � =
100, 200, 400, 800.

We compare the numerical results for computing subsets of
singular triplets using four different codes of the GKLR algo-
rithm. Each GKLR code is implemented with the following
four reorthogonalization algorithms shown in Section 3. GKL
with MGS is implemented with the MGS algorithm. GKL with
CGS2 is implemented with the CGS2 algorithm shown in Algo-
rithm 3. GKL with cWY is implemented with the cWY algo-
rithm. The reorthogonalization algorithms of these three code are
parallelized in terms of the BLAS routines. GKL with OMP-
CGS2 is implemented with the OMP-CGS2 algorithm shown in
Algorithm 4.

In the experiments, we used four m × n real matrices A1, A2,
A3, and A4. All of A1, A2, and A3 are sparse matrices having in
each row 256 non-zero elements, which are set to be uniform ran-
dom numbers in the range (0, 1) and are randomly allocated. A1,
A2, and A3 are only different in both m and n from each other as
follows: m = 16, 000 and n = 8, 000 for A1. m = 32, 000 and
n = 16, 000 for A2. m = 64, 000 and n = 32, 000 for A3. Note
that the condition number is 4.803 × 101 for A1, 4.754 × 101 for
A2, and 4.757 × 101 for A3, respectively. In addition, the Frank
matrix with m = 32, 000, n = 32, 000, and the condition number
1.600 × 109 was used as A4.

All the experiments were performed with 32 threads on one
node of Appro 2548X at ACCMS, Kyoto University, whose spec-
ification is listed in Table 2. We used the Intel Math Kernel Li-
brary (MKL) [7] for parallelizing the BLAS routines. To con-
trol the memory allocation, all the experiments were run with
numactl --localalloc command.

4.2 Experimental Results
Figure 1 illustrates the experimental results showing the num-

ber of desired singular triplets and the execution time for com-
puting singular triplets of each target matrix using the four code
of the GKLR algorithm. Figure 1 (a), 1 (b), 1 (c), and 1 (d) cor-

Fig. 1 The number of desired singular triplets and the execution time for
computing the � largest singular triplets of the target matrix using
four GKLR codes where the GKL algorithms with different reorthog-
onalization process are implemented.

c© 2016 Information Processing Society of Japan 5

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 1–8 (Aug. 2016)

Table 4 The orthogonality of the singular vectors of the target matrix computed by four GKLR codes
where the GKL algorithms with different reorthogonalization process are implemented. “Left”
denotes the error of orthogonality of the left singular vectors: ‖U�� U� − I‖F/

√
�. “Right” denotes

the error of orthogonality of the right singular vectors: ‖V�V − I‖F/
√
�.

(a) Cases of A1

�: # of desired singular triplets 100 200 400 800
Left Right Left Right Left Right Left Right

GKL with MGS 1.40E-15 1.34E-15 1.53E-15 1.56E-15 1.81E-15 1.99E-15 2.39E-15 2.35E-15
GKL with CGS2 1.81E-15 1.47E-15 2.08E-15 1.84E-15 2.45E-15 2.15E-15 3.05E-15 2.66E-15
GKL with cWY 3.54E-15 2.59E-15 3.92E-15 2.93E-15 4.60E-15 3.67E-15 5.41E-15 4.61E-15
GKL with OMP-CGS2 1.75E-15 1.56E-15 2.13E-15 1.85E-15 2.38E-15 2.15E-15 2.95E-15 2.59E-15

(b) Cases of A2

�: # of desired singular triplets 100 200 400 800
Left Right Left Right Left Right Left Right

GKL with MGS 1.41E-15 1.60E-15 1.74E-15 1.64E-15 2.10E-15 2.03E-15 2.66E-15 2.61E-15
GKL with CGS2 2.13E-15 1.74E-15 2.31E-15 2.16E-15 2.78E-15 2.54E-15 3.43E-15 3.06E-15
GKL with cWY 4.24E-15 3.38E-15 4.74E-15 3.58E-15 5.40E-15 4.25E-15 6.33E-15 5.01E-15
GKL with OMP-CGS2 1.98E-15 1.81E-15 2.30E-15 2.20E-15 2.84E-15 2.54E-15 3.31E-15 2.92E-15

(c) Cases of A3

�: # of desired singular triplets 100 200 400 800
Left Right Left Right Left Right Left Right

GKL with MGS 1.89E-15 1.60E-15 2.24E-15 1.82E-15 2.50E-15 2.37E-15 3.05E-15 2.97E-15
GKL with CGS2 3.09E-15 1.98E-15 2.97E-15 2.37E-15 3.46E-15 2.84E-15 3.95E-15 3.47E-15
GKL with cWY 5.33E-15 3.95E-15 5.90E-15 4.31E-15 6.61E-15 4.94E-15 7.57E-15 5.92E-15
GKL with OMP-CGS2 2.89E-15 2.10E-15 3.08E-15 2.59E-15 3.60E-15 2.86E-15 3.99E-15 3.47E-15

(d) Cases of A4

�: # of desired singular triplets 100 200 400 800
Left Right Left Right Left Right Left Right

GKL with MGS 8.09E-15 3.95E-14 9.84E-15 3.97E-14 2.19E-14 4.16E-14 8.19E-14 4.40E-14
GKL with CGS2 4.24E-15 4.39E-15 4.68E-15 4.82E-15 4.87E-15 5.00E-15 4.94E-15 4.99E-15
GKL with cWY 1.08E-14 1.08E-14 1.12E-14 1.07E-14 1.10E-14 1.07E-14 1.11E-14 1.11E-14
GKL with OMP-CGS2 4.42E-15 4.69E-15 4.81E-15 4.36E-15 4.88E-15 4.63E-15 4.85E-15 4.66E-15

Table 3 The iteration number of the GKLR codes in each experiment.

�: # of desired singular triplets 100 200 400 800
Matrix A1 1,000 1,600 2,400 4,000
Matrix A2 1,300 2,000 3,200 4,800
Matrix A3 1,600 2,400 3,600 5,600
Matrix A4 200 400 800 1,600

responds to the cases of target matrices A1, A2, A3, and A4, re-
spectively. From these figures, GKL with OMP-CGS2 is faster
than the other codes in all the cases. Thus, the OMP-CGS2 accel-
erates the computation of the GKLR algorithm more effectively
than other reorthogonalization algorithms. The iteration number
of the GKLR codes in each experiment is shown in Table 3. Note
that the iteration number is not changed in Table 3 if we replace
the reorthogonalization algorithm, for example, from the MGS to
the CGS2 algorithm.

Table 4 show the orthogonality of the singular vectors com-
puted by each GKLR code. Table 4 (a), 4 (b), 4 (c), and 4 (d)
shows the cases of test matrices A1, A2, A3, and A4, respec-
tively. Note that “Left” denotes ‖U�� U� − I‖F/

√
�, where U� =[

u1 · · ·u�
]

and each of u j is the left singular vector computed by

each code. Similarly, “Right” denotes ‖V�� V� − I‖F/
√
�, where

V� =
[
v1 · · ·v�

]
and each of v j is the left singular vector com-

puted by each code. From Table 4, we can observe that GKL
with OMP-CGS2 achieves as high orthogonality as other GKLR
codes.

In addition, Table 5 (a), 5 (b), 5 (c), and 5 (d) shows the number
of desired singular triplets and the execution time spending for
the reorthogonalization process in computing the singular triplets

Table 5 The number of desired singular triplets (�) and the execution time
(sec.) spending for the reorthogonalization process in computing
the singular triplets of the target matrix using four GKLR codes.

(a) Cases of A1

�: # of desired singular triplets 100 200 400 800
GKL with MGS 46 158 272 780
GKL with CGS2 24 105 166 385
GKL with cWY 25 107 145 339
GKL with OMP-CGS2 11 32 74 168

(b) Cases of A2

�: # of desired singular triplets 100 200 400 800
GKL with MGS 106 219 622 1,490
GKL with CGS2 98 187 485 1,148
GKL with cWY 81 143 361 764
GKL with OMP-CGS2 37 89 215 379

(c) Cases of A3

�: # of desired singular triplets 100 200 400 800
GKL with MGS 205 469 1,177 2,668
GKL with CGS2 285 544 1,185 2,888
GKL with cWY 220 380 881 2,098
GKL with OMP-CGS2 106 256 514 1,143

(d) Cases of A4

�: # of desired singular triplets 100 200 400 800
GKL with MGS 4.9 19 64 245
GKL with CGS2 1.8 7.7 29 108
GKL with cWY 2.4 9.2 36 124
GKL with OMP-CGS2 2.3 5.4 17 50

of A1, A2, A3, and A4 using each GKLR code, respectively. The
tables show that, in the case of A4 with � = 100, the execution
time for the OMP-CGS2, the reorthogonalization in GKL with
OMP-CGS2, is almost the same as that for the CGS2 algorithm,
the reorthogonalization in GKL with CGS2, but the OMP-CGS2
is faster than the CGS2 algorithm in the other cases.

c© 2016 Information Processing Society of Japan 6

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 1–8 (Aug. 2016)

5. Cache utilization in OMP-CGS2

As mentioned in Section 3.2, the high performance of the
OMP-CGS2 algorithm arises from the high reusability of proces-
sors’ cache. However, the CGS2 algorithm may achieve higher
performance than that of the OMP-CGS2 algorithm if the capac-
ity of cache is not sufficient. Then, it is desirable that we know
which the CGS2 algorithm or the OMP-CGS2 algorithm achieves
a higher performance before adopting the GKLR code to actual
applications. In the followings, we discuss the cache utilization in
the OMP-CGS2 algorithm and a condition under which the OMP-
CGS2 algorithm achieves higher performance than the CGS2 al-
gorithm.

5.1 Discussion
Recalling Algorithm 4, the vectors w, ai, and x j appear at

each of do-loop in terms of j in lines 7–11. From this fact,
whether the OMP-CGS2 algorithm achieves higher performance
than the CGS2 algorithm depends on m, which is the size of all
these vectors, and let mcache be the maximum size of the vectors
at the time when the OMP-CGS2 algorithm achieves higher per-
formance than the CGS2 algorithm does.

If all these vectors are stored in the L3 cache of the proces-
sors within a computer, such superiority of the OMP-CGS2 over
the CGS2 is guaranteed. However, x j is not shared by different
threads while w is accessed by all computing threads. In addi-
tion, each thread should access the copy of ai before reducing
arrays. As a result, the number of the vectors which should be
stored in the cache is (T ×2+1) where T is the number of threads
in each processor.

From the discussion above, assuming that neither any other
software works nor any other data is stored in the cache, the fol-
lowing inequality must be satisfied:

m × (T × 2 + 1) × 8 ≤ C × 1024 × 1024, (13)

where C is the capacity of processor’s L3 cache in MB and a one
data of the elements needs 8 bytes when we use double-precision
floating-point numbers. If m satisfies inequality (13), the OMP-
CGS2 algorithm is theoretically guaranteed to achieve higher per-
formance than the CGS2 algorithm. Hereafter, let m(theory)

cache be the
maximum value of m at which inequality (13) is satisfied. Even
if m > m(theory)

cache , however, x j on each thread possibly be stored
in cache while the computation of line 10 in Algorithm 4 are
executed. Thus, the CGS2 algorithm is not always guaranteed
to achieve higher performance than the OMP-CGS2 algorithm
in such a case. From these discussions, numerical experiments
in the case when m > m(theory)

cache helps us to know a true value of
mcache.

5.2 Verification
According to inequality (13), m(theory)

cache for a machine in Table 2
is computed as follows: Since T = 8 and C = 20 from Table 2,

m(theory)
cache = 154202. (14)

In fact, GKL with OMP-CGS2 is faster than GKL with CGS2

Fig. 2 Comparison of the execution times for computing the desired singu-
lar triplets of the m × m target matrix using GKL with CGS2 and
GKL with OMP-CGS2.

in all the experiments shown in Section 4 because both m ≤
m(theory)

cache and n ≤ m(theory)
cache are satisfied.

To examine a true value of mcache for a machine shown in Ta-
ble 2, the numerical results is shown as follows: Fig. 2 shows the
execution times for computing 100 singular triplets of m × m tar-
get matrices by GKL with CGS2 and GKL with OMP-CGS2.
Note that the iteration number of both GKLR codes is 2, 500
for m = 160, 000, and m = 170, 000, 2, 600 for m = 180, 000
and m = 190, 000, 2, 700 for m = 200, 000, m = 210, 000
and m = 220, 000, 2, 800 for m = 230, 000, and 2, 900 for
m = 240, 000 and m = 250, 000, respectively. As can be seen
in Fig. 2, mcache for the experimental environment in this paper is
ranged from 200, 000 to 210, 000.

6. Conclusions and Future Work

In this paper, we first introduce the GKLR algorithm for com-
puting a subset of singular triplets of target matrices. To more
effectively accelerate the reorthogonalization of the GKLR algo-
rithm on shared-memory multi-core processors, we then present
the OMP-CGS2 algorithm, which is parallelized by the OpenMP
directives and moreover has the advantage of the data reusability.
We performed numerical experiments on shared-memory multi-
core processors to evaluate the performance of the GKL algo-
rithm with the OMP-CGS2 algorithm. The experimental results
show that the OMP-CGS2 algorithm accelerates more effectively
the subset computations of singular triplets of some target ma-
trices by the GKLR algorithm than other reorthogonalization al-
gorithms. In addition, the cache utilization in the OMP-CGS2
algorithm is discussed and the condition that the OMP-CGS2 al-
gorithm achieves higher performance than the CGS2 algorithm
is examined through both theoretical approach and numerical ex-
periments.

Future work is to apply the OMP-CGS2 algorithm to other al-
gorithms, such as the inverse iteration method, GMRES algo-
rithm [14], and implicitly restarted Arnoldi and Lanczos meth-
ods [3], [17] to accelerate their reorthogonalization processes.

Acknowledgments The authors would like to express their
gratitude to reviewers of this paper for their helpful comments.
This work was supported in part by JSPS KAKENHI Grant Num-
bers 13J02820 and 24360038. In this work, we used the super-
computer of ACCMS, Kyoto University.

c© 2016 Information Processing Society of Japan 7

IPSJ Transactions on Mathematical Modeling and Its Applications Vol.9 No.2 1–8 (Aug. 2016)

References

[1] Barlow, J.L.: Reorthogonalization for the Golub-Kahan-Lanczos bidi-
agonal reduction, Numer. Math., pp.1–42 (2013).

[2] Blackford, L.S., Demmel, J.W., Dongarra, J., Duff, I., Hammarling,
S., Henry, G., Heroux, M., Kaufman, L., Lumsdaine, A., Petitet, A.,
Pozo, R., Remington, K. and Whaley, R.C.: An updated set of basic
linear algebra subprograms (BLAS), ACM Trans. Math. Softw., Vol.28,
No.2, pp.135–151 (2002).

[3] Calvetti, D., Reichel, L. and Sorensen, D.C.: An implicitly restarted
Lanczos method for large symmetric eigenvalue problems, ETNA,
Vol.2, pp.1–21 (1994).

[4] Daniel, J.W., Gragg, W.B., Kaufman, L. and Stewart, G.W.: Reorthog-
onalization and stable algorithms for updating the Gram-Schmidt QR
factorization, Math. Comput., Vol.30, No.136, pp.772–795 (1976).

[5] Golub, G. and Kahan, W.: Calculating the singular values and pseudo-
inverse of a matrix, SIAM J. Numer. Anal., Vol.2, No.2, pp.205–224
(1965).

[6] Golub, G.H. and van Loan, C.F.: Matrix Computations, Johns Hop-
kins University Press, Baltimore, MD, USA (1996).

[7] Intel Math Kernel Library: available from 〈https://software.intel.com/
en-us/intel-mkl/〉 (2003).

[8] Ishigami, H., Kimura, K. and Nakamura, Y.: On implementation and
evaluation of inverse iteration algorithm with compact WY orthogo-
nalization, IPSJ Transactions on Mathematical Modeling and Its Ap-
plications, Vol.6, No.2, pp.25–35 (2013).

[9] Katagiri, T.: Performance evaluation of parallel Gram-Schmidt re-
orthogonalization methods, High Performance Computing for Com-
putational Science — VECPAR 2002, Lecture Notes in Computer Sci-
ence, Vol.2565, Springer Berlin Heidelberg, pp.302–314 (2003).

[10] Lehoucq, R.B., Sorensen, D.C. and Yang, C.: ARPACK Users’s Guide,
SIAM, Philadelphia, PA, USA (1998).

[11] OpenMP: available from 〈http://openmp.org/wp/〉 (1997).
[12] Parlett, B.N.: The Symmetric Eigenvalue Problem, SIAM, Philadel-

phia, PA, USA (1998).
[13] Saad, Y.: On the rates of convergence of the Lanczos and the block-

Lanczos methods, SIAM J Numer. Anal., Vol.17, No.5, pp.687–706
(1980).

[14] Saad, Y. and Schultz, M.: GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat.
Comput., Vol.7, No.3, pp.856–869 (1986).

[15] Schreiber, R. and van Loan, C.: A storage-efficient WY representa-
tion for products of Householder transformations, SIAM J. Sci. Stat.
Comput., Vol.10, No.1, pp.53–57 (1989).

[16] Simon, H.D. and Zha, H.: Low-Rank Matrix Approximation Using
the Lanczos Bidiagonalization Process with Applications, SIAM J Sci.
Comput., Vol.21, No.6, pp.2257–2274 (2000).

[17] Sorensen, D.C.: Implicit application of polynomial filters in a k-step
Arnoldi method, SIAM J. Matrix Anal. Appl., Vol.13, No.1, pp.357–
385 (1992).

[18] Yamamoto, Y. and Hirota, Y.: A parallel algorithm for incremental
orthogonalization based on the compact WY representation, JSIAM
Letters, Vol.3, pp.89–92 (2011).

Masami Takata is a lecturer of the Re-
search Group of Information and Com-
munication Technology for Life at Nara
Women’s University. She received her
Ph.D. degree from Nara Women’s Univer-
sity in 2004. Her research interests in-
clude parallel algorithms for distributed
memory systems and numerical algebra.

Hiroyuki Ishigami received his Ph.D.
degree from Kyoto University in 2016.
His research interests include parallel
algorithms for eigenvalue and singular
value decomposition. He is an IPSJ mem-
ber.

Kinji Kimura received his Ph.D. degree
from Kobe University in 2004. He be-
came a PRESTO, COE, and CREST re-
searcher in 2004 and 2005. He became
an assistant professor at Kyoto Univer-
sity in 2006, an assistant professor at Ni-
igata University in 2007, a lecturer at Ky-
oto University in 2008, and has been a

program-specific associate professor at Kyoto University since
2009. He is an IPSJ member.

Yuki Fujii received his B.E. and M.I. de-
grees from Kyoto University in 2013 and
2015. His research interests include the
parallel computation of the partial eigen-
value decomposition for sparse matrices.

Hiroki Tanaka received his B.E. and
M.I. degrees from Kyoto University in
2013 and 2015. Since 2015, he is an ap-
plication developer of a private enterprise.

Yoshimasa Nakamura has been a pro-
fessor of Graduate School of Informat-
ics, Kyoto University from 2001. His
research interests includes integrable dy-
namical systems which originally appear
in classical mechanics. But integrable sys-
tems have a rich mathematical structure.
His recent subject is to design new numer-

ical algorithms such as the mdLVs and I-SVD for singular value
decomposition by using discrete-time integrable systems. He is a
member of JSIAM, SIAM, MSJ and AMS.

c© 2016 Information Processing Society of Japan 8

