
IPSJ SIG Technical Report

Performance assessment of highly concurrent sorted linked
list with good spatial locality

(Unrefereed Workshop Manuscript)

Mohamed Amin Jabri1 Osamu Tatebe2

Abstract: In this paper, we present a highly concurrent sorted linked list using a lock-free approach. To achieve a
good spatial locality in our design, the list is arranged into linked chunks of memory with pre-allocated fixed number of
entry slots. Entries within a chunk are kept logically sorted and an inter-chunk procedure keeps them from becoming
too sparse or too dense. The performance of our design under stress workloads is also presented.

1. Introduction
In this work, we present a highly concurrent, lock-free based

sorted linked list optimized for cache spatial locality, by split-
ting the list into a linked contiguous chunks of memory holding
logically sorted sub-list. A higher-level representation of such
linked list is depicted in figure 1. This figures shows three linked
chunks of memory each holding a contiguous logical sub-list for
increased spatial locality. Initially, the list contained two linked
chunks of memory, but due to a balancing operation (chunk split
in this case), the dense chunk was replaced with two chunks.

Fig. 1 Architecture of a linked list with improved spatial locality arranged
as linked sub-lists of logically sorted lists allocated over fixed sized
contiguous chunks of memory.

The benchmarked scheme in this paper, is based on the work of
T. Harris [1], which present a simple yet a fast lock-free concur-
rent linked-list implementation with a linearizable data insertion
and deletion. The latter operation is done in two-steps. First, the
entrys next field containing a pointer to the next entry is marked.
Second, the marked entry is disconnected from the list. All op-
erations, including insertion, deletion and retrieval, relies on a
Search procedure which given a search key returns a left entry

1 Center for Computational Sciences, University of Tsukuba
2 Faculty of Engineering, Information and Systems, University of Tsukuba

holding the greatest key which less than the search key and a right
entry holding the search key or the smallest key greater than the
search key. The Search procedure unlinks from the list all the
logically deleted but not yet unlinked entries from the list and en-
sures that the returned right entry is the immediate entry after the
returned left entries.

For chunk management and inter-chunks balancing operation,
the benchmarked scheme in this paper is based on the work of A.
Braginsky [2, 3], but instead of using hazard pointers for mem-
ory management and reclamation (for instance when recycling
deleted entries), we avoid it altogether until chunks are discon-
nected from the list in a first implementation and with automatic
entry reference counting in a second implementation.

2. Evaluation
In this section, we provide a performance evaluation of our pro-

posed lock-free sorted linked list under a stress micro-benchmark.
The stress micro-benchmark used in our evaluation is based on
Google benchmark [4], a micro-benchmarking support library
which lets developers write time-based (as opposed to iterations-
based) benchmarking stress test in a similar fashion to unit-
testing. In a time-based benchmark, the number of iterations in-
voking a given test method is dynamically computed at run-time
and ensures that the benchmarked test-case or function call keeps
running such that its Wall time is not below a specified minimum
time value (benchmark min time) or its CPU time is at least five
times the value of benchmark min time. In our experiments, the
minimum time benchmark min time is set to a one millisecond.

We conducted our benchmarks on a Linux server with the char-
acteristics shown in table 1. Also, we constrained all benchmark
threads to a one NUMA domain using the numactl Linux com-
mand. For each benchmark (Put, Get, Delete and Mixed-load),
the performance results for both the lock-free linked list with and
without the Automatic Reference Counting are measured, in or-
der to assess the impact of reference counting as a memory man-

ⓒ 2016 Information Processing Society of Japan 1

Vol.2016-HPC-155 No.35
2016/8/10



IPSJ SIG Technical Report

agement strategy.

Operating System Centos 7 (kernel 3.10.0)
Compiler llvm 3.8.0 (std=c++14)
CPU Intel Xeon E5-2665

(2 sockets, 16 cores, 2.39 Ghz)
Memory 64 GB

Table 1 Benchmarking server environment.

Figure 2 depicts the number of Put operations per seconds for
different concurrent thread counts (ranging from 1 to 32 threads)
and data sizes, which is the total number of key-value pairs (rang-
ing from 16 to 4096) to be inserted in the initially empty list. Data
is distributed evenly among all the spawned threads. The aggre-
gated wall time and number of Put operations executed by the
benchmark are reported, in order to compute the number of oper-
ations per seconds shown in figure 2.

Figure 3 depicts the number of Get operations per seconds for
different concurrent thread counts (ranging from 1 to 32 threads)
and data sizes ranging from 16 to 4096 key-value pairs retrieved
from a prepopulated list containing 4096 entries. The data re-
trieval workload is distributed evenly among all the spawned
threads. The aggregated wall time and number of Get operations
executed by the benchmark are reported, in order to compute the
number of operations per seconds shown in figure 3.

The performance overhead of the Delete operation in our
benchmark in terms of deleted entries per unit of time with re-
spect to different configurations: number of concurrent thread
(ranging from 1 to 32 threads) and number of deleted data (rang-
ing from 16 to 4096 entries), from an initially prepopulated list
containing 4096 entries, is shown in figure 4. The deletion work-
load is distributed evenly among all the spawned threads. The
aggregated wall time and number of Delete operations executed
by the benchmark are reported, in order to compute the number
of operations per seconds depicted in figure 4.

Figure 5 shows the behavior of our lock-free sorted linked list,
in terms od operations per unit of time with respect to different
settings of concurrent thread count ranging from 1 to 32 threads
and data sizes (from 16 to 4096 key-value pair entries), under
a mixed workload composed of: 60 percent of Put operations,
30 percent of Get operations and 10 percent of Delete operations.
Initially, the list was prepopulated with 1024 key-value pairs. The
reported operations per unit of time correspond to the aggregated
performance across all the spawned threads.

In all our benchmarks (Put, Get and Delete operations),
only the non-reference-counted version of our lock-free linked

list scales well with the number of threads even with over-
subscription (case with 16 and 32 threads). For the mixed-load
benchmark, multithreading introduce a small performance in-
crease compared to the single threaded version of the automatic
reference counting based version of our lock-free linked list.
Also, for all benchmarks we see a performance decrease when
the data size increases for both versions of our lock-free linked
list.

Our stress benchmarks shows that reference counting as a strat-
egy for memory management and reclamation, in our imple-
mentation, hugely impacts performance compared to the non-

reference-counted version. Also, our non-reference-counted
lock-free linked list exhibits a good performance (millions of op-
erations per unit of time with small data sizes) and scales well
with threading.

3. Conclusion
In this paper, we presented a highly concurrent lock-free sorted

linked list based on the work of T. Harris [1] and A. Bragin-
sky [2,3], which leverage data spatial locality. This is achieved by
arranging the linked list into linked sub-lists of contiguous fixed
sized chunks of memory. Each sub-list is logically sorted and its
size (number of entries) is kept within a minimum and maximum
thresholds (using an inter-chunks balancing operations). Also,
in our implementation we consider memory reclamation and re-
cycling using systematic entries reference counting. The perfor-
mance evaluation of our implementation under a stress bench-
mark shows a good scalability with thread count increase for the
non-reference counted version of our implementation. Addition-
ally, our results show how memory reclamation and management
through automatic reference counting degrades considerably per-
formance.

References
[1] Harris, T. L.: A Pragmatic Implementation of Non-blocking

Linked-Lists, Proceedings of the 15th International Confer-
ence on Distributed Computing, DISC ’01, London, UK,
UK, Springer-Verlag, pp. 300–314 (online), available from
〈http://dl.acm.org/citation.cfm?id=645958.676105〉 (2001).

[2] Braginsky, A. and Petrank, E.: Locality-conscious Lock-free Linked
Lists, Proceedings of the 12th International Conference on Distributed
Computing and Networking, ICDCN’11, Berlin, Heidelberg, Springer-
Verlag, pp. 107–118 (2011).

[3] Braginsky, A. and Petrank, E.: Locality-conscious Lock-free Linked
Lists, Online full paper version: http://www.cs.technion.ac.il/
˜erez/Papers/lf-linked-list-full.pdf (2010).

[4] Benchmark: A microbenchmark support library, Google (online), avail-
able from 〈https://github.com/google/benchmark〉 (accessed 2016-7-6).

ⓒ 2016 Information Processing Society of Japan 2

Vol.2016-HPC-155 No.35
2016/8/10



IPSJ SIG Technical Report

Fig. 2 Put operations under stress test with different configurations of concurrent threads number and
data size (number of key-value pairs). Shown Operation per seconds are the aggregated measure-
ment across all threads for both the lock-free linked list with and without Automatic Reference
Counting (ARC suffix).

Fig. 3 Get operation under stress test with different configurations of concurrent threads number and data
size (number of key-value pairs). Shown operation per seconds are the aggregated measurement
across all threads for both the lock-free linked list with and without automatic reference counting
(ARC suffix).

ⓒ 2016 Information Processing Society of Japan 3

Vol.2016-HPC-155 No.35
2016/8/10



IPSJ SIG Technical Report

Fig. 4 Delete operation under stress test with different configurations of concurrent threads number and
data size (number of key-value pairs). Shown operation per seconds are the aggregated measure-
ment across all threads for both the lock-free linked list with and without automatic reference
counting (ARC suffix).

Fig. 5 Mixed operations set (Put 60%/Get 30%/Delete 10%) under stress test with different configura-
tions of concurrent threads number and data size (number of key-value pairs). Shown operation
per seconds are the aggregated measurement across all threads for both the lock-free linked list
with and without automatic reference counting (ARC suffix).

ⓒ 2016 Information Processing Society of Japan 4

Vol.2016-HPC-155 No.35
2016/8/10


