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Performance Modeling of Task Parallel Programs

Byambajav Namsraijav†1,a) Taura Kenjiro†1,b)

Abstract: Task parallel programming makes it easy for programmers to write parallel applications by removing the
burden of dealing with low-level details of thread management, task scheduling, and load balancing. Since task parallel
run-time systems employ dynamic work-stealing scheduler for running an application on multiple threads, the perfor-
mance modeling of a task parallel program, i.e. how the program performs as the number of cores increases or how
long it executes on a different input, is hard to predict. This paper proposes a method which combines profiling based
analytical performance modeling techniques with regression-based models. Our evaluation shows that predicting the
execution time of task parallel applications using the proposed two-step method is significantly more accurate than
predicting the execution time directly with regression models.
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1. Introduction
From 1985 to 2005 the performance of CPUs increased dra-

matically, on average 50% per year [1]. This fast growth meant
that users and programmers could often simply wait for the next
generation of processors to obtain increased performance from
an application program. However, this growth has flattened since
2005 due to physical difficulties such as power consumption and
heat dissipation. Since then, the development of computer hard-
ware has shifted from increasing the clock speed of a single-core
CPU to increasing the number of cores integrated into a multi-
core CPU.

Due to this recent trend in hardware, parallel programming is
becoming more and more ubiquitous. However, explicitly spec-
ifying all the details of a parallel application is complicated and
tedious work for a programmer. Conventional native threading li-
braries, such as POSIX Threads (pthreads) [2], require developers
to deal with low-level details of thread management, load balanc-
ing, and task scheduling. Task parallel programming models are
recently gaining interest to remove this burden from programmers
and make writing parallel applications easier.

The dynamic nature of task parallel run-time systems makes
it difficult to predict scalability behavior of task parallel appli-
cations. Therefore, performance modeling tools for task parallel
applications are in demand. One use case for such performance
model is that it enables to gauge the execution time of parallel
applications on large many-core systems. Because on big sys-
tems where full hardware availability is scarce, it is important to
know execution time without running to make hardware reserva-
tions appropriately or to notice performance bottlenecks of the
application before conducting an expensive execution.

Existing modeling techniques can be divided into two main
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types: regression based models and analytical models. Analytical
performance models use the information gained during its profil-
ing phase with analytical models to predict the execution time for
the target no. of workers. However, the prediction is only limited
for inputs seen in the profiling phase. Regression-based perfor-
mance models execute many training runs to train a regression
model. These models can estimate the execution time for unseen
inputs, but the estimation does not extrapolate well if the input
size or no. of workers is beyond the training range.

We present a novel task-parallel program performance model,
which can predict the execution times of task-parallel applica-
tions, even when the target problem size and no. of workers are
bigger than that used in the training. We build several intermedi-
ate models using regression, but at the same time, we also make
use of the logical relations between them.

1.1 Organization of the Paper
Section 2 introduces the basics of task parallel programming

with its directed acyclic graph (DAG) model, a widely used an-
alytical modeling method of task parallel programs. Section 3
introduces several representative works about performance mod-
eling of parallel programs. Section 4 presents the proposed DAG-
based task-parallel programming performance model which com-
bines regression models with analytical properties of the DAG.
Section 5 discusses the results of our performance modeling tech-
niques. The paper finishes with the summary and conclusion in
Section 6.

2. Task Parallel Programming
2.1 Overview

The central principle behind the design of task parallel pro-
gramming models is that the application developer should be re-
sponsible for recognizing elements that can safely be executed
synchronously and expressing the parallelism. Then it should be
left to the run-time environment, or the scheduler, to decide how
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Fig. 1: A DAG Representation of Multithreaded Application

actually to divide the tasks between underlying processors. In
task parallel programming, programmers ubiquitously use tasks
to express logical tasks and their order.

There are many languages, frameworks, and libraries that sup-
port task parallelism, such as OpenMP tasks [3], MassiveThreads
library [4], Intel Cilk Plus [5], Java fork/join framework [6],
Intel R⃝ threading building blocks [7], and Qthreads [8].

2.2 The Directed Acyclic Graph (DAG) Model
The directed acyclic graph (DAG) model [9] for multithread-

ing provides a general and precise quantification of parallelism.
The DAG model is the base of most analytical modeling formulas
of task parallel programs. The DAG model views the execution
of a multithreaded program as a graph of vertices called strands,
sequences of serially executed instructions containing no paral-
lel control, with graph edges indicating ordering dependencies
between strands. An example of DAG is shown in Fig. 1. This
DAG contains two spawns and nine strands in total. Graph edges
represent the dependencies between strands. If a strand x must
complete before a strand y can begin, we say that x precedes y
and write x ≺ y. If neither x ≺ y nor y ≺ x, we say that x and y are
parallel and write x ∥ y. For example, 2 ≺ 3, 2 ≺ 7 ≺ 8, 3 ∥ 7,
and 3 ∥ 8 in Fig. 1.

The DAG model provides two measures for describing pro-
gram’s parallelism quantitatively. These two measures are intro-
duced in the following sections.
2.2.1 The Work Law

The first measure for describing parallelism is work, which is
the total time spent in all the strands. The execution time of the
program on P workers is usually denoted as Tp. The work is equal
to the execution time of one worker; thus, we denote it as T1. The
work for the example DAG in Fig. 1 is nine if we assume that all
strands can be executed in unit time.

In a simple theoretical model of Work Law, P workers can exe-
cute at most P instructions at a time. Thus, the following inequal-
ity holds for Tp.

Tp ≥ T1/P (1)

The above inequality provides a lower bound for the parallel ex-
ecution time on P workers TP and is called work law.

Generally, the ratio T1/Tp is called the speedup of a pro-
gram. Work law implies that the speedup never exceeds P. When
T1/Tp = P, it is called linear speedup. Although it is rare, if lin-
ear speedup is achieved the program is perfectly scalable. Some-
times the speedup becomes bigger than P due to some practical
factors, such as caching, which is not accounted in the work law.
It is called super-linear speedup.
2.2.2 The Span Law

The other measure span is the maximum time to execute along
any path in the DAG. With the simplified assumption that it takes
exactly unit time to execute a strand, the span of the DAG in Fig. 1
is 6. It corresponds to the paths 1 ≺ 2 ≺ 3 ≺ 5 ≺ 6 ≺ 9 or
1 ≺ 2 ≺ 3 ≺ 4 ≺ 6 ≺ 9. This path is also called critical path of
the DAG.

Span is usually written as T∞ because it is the fastest possible
time the DAG could be executed on a machine with an infinite
number of processors. Apparently, a finite number of proces-
sors can not perform better than an infinite number of processors.
Thus, span provides the following lower bound for the P-worker
execution time.

Tp ≥ T∞ (2)

3. Related Works
We divide the related works into two parts: profiling based an-

alytical performance analysis tools specifically designed for task
parallel applications and general-purpose regression based per-
formance modeling techniques.

3.1 Profiling Based Performance Analysis Tools for Task
Parallel Applications

In this section, profiling based performance analysis tools are
introduced. These type of performance analysis tools predicts the
performance of an application on many cores using two steps. In
the first step profiling, the application is run on single core, dur-
ing which the necessary profiling information is collected. Then
in the prediction step, the obtained profiling information is used
by analytical models or emulation to predict performance on the
target number of cores.

Cilkview [10] presents a model to predict speedup of task par-
allel programs written in Cilk Plus. Parallel Prophet [11] aug-
ments Cilkview by introducing a memory performance model.
These two are described in detail below. Other related works of
literature include DraMon [12], which builds high accuracy mem-
ory bandwidth usage model by taking account of nuts and bolts of
memory hardware. Although DraMon cannot be directly used to
predict speedup, it can be combined to the with the former two or
other scalability prediction methods. Kismet [13] combined with
Kremlin [14] provides parallel speedup estimates for serial pro-
grams. They employ a technique called Hierarchical Critical Path
Analysis (HCPA) to compute dependency chains in the execution
of a program. Then that information is used by a parallelization
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planner to provide speedup estimates. All of these profiling based
tools are naturally affected by the same limitations that apply to
other profiling tools that make use of dynamic information that is
input-dependent and does not predict the application’s execution
with other inputs.
3.1.1 The Cilkview Scalability Analyzer

Cilkview [10] is a scalability analyzer tool for multithreaded
applications. Specifically, the input to Cilkview is restricted to
parallel programs written in Cilk Plus. It provides a lower and
upper bound estimation of how the program’s performance will
change as the number of cores increase. The upper bound esti-
mate of scalability is calculated using the DAG model described
in Section 2.2. On the other hand, the lower bound estimate
of scalability is calculated using their proposed burdened DAG
model.
Burdened DAG Model

The DAG model introduced in Section 2.2 does not consider
practical factors such as the performance of the scheduling al-
gorithms and the overhead of migrating tasks between threads.
Cilkview tries to account these factors by introducing a new
model called burdened DAGs, which incorporates the migration
overheads.

The Cilk Plus randomized work-stealing scheduler can execute
a program with T1 work and T∞ span on P workers in following
expected time:

Tp ≤ T1/P + δT∞ , (3)

where δ is a constant called span coefficient [15]. Intuitively in-
equality Eq. (3) means that, if the parallelism T1/T∞ exceeds the
number of workers P sufficiently, the bound warrants near-perfect
linear speedup. It comes from the fact that if T1/T∞ ≫ P we have
T∞ ≪ T1/P. Thus, from the inequality Eq. (3), T1/Tp ≈ P is de-
rived.

The burdened DAG model calls the overhead of migration,
such as a cost of setting up the context to run the migrated task
and the implicit costs of cache misses due to the migration, bur-
den. Then Cilkview assumes that this burden has a fixed value of
around 15,000 instructions. The burdened DAG model then in-
corporates the burden of each continuation and return edge of the
DAG into the standard DAG model. Also the burdened span is
defined as the longest path in the burdened DAG. Then, a work-
stealing scheduler running on P workers can execute the program
in expected time

Tp ≤ T1/P + 2δT̂∞, (4)

where T̂∞ is the burdened span. The proof of this equation can be
found in the original paper [10]. This can be further transformed
to the following equation to give a lower bound on the speedup.

T1

Tp
≥ T1

T1/P + 2δT̂∞
(5)

Cilkview employs this equation to compute an estimated lower
bound on speedup. It uses δ = 0.85 as the span coefficient. Thus,
the final equation is Tp ≤ T1/P + 1.7T̂∞.

Cilkview does not consider the limitations of memory band-
width on its calculation of program’s scalability. Therefore, it
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Fig. 2: Workflow of Parallel Prophet [11]

shows substantial inaccuracy in predicting memory intensive ap-
plications’ scalability.
3.1.2 Parallel Prophet

Parallel Prophet [11] predicts potential speedup of a serial ap-
plication from information gathered from profiling and emula-
tions. It answers the question of how much speedup could be
gained if the application is parallelized. Unlike Cilkview, the in-
put to Parallel Prophet is a serial application without any paral-
lelization. Instead, programmers are required to insert specific
annotations into the serial application to describe the applica-
tion’s parallelism. Another main difference with Cilkview is that
it tries to account memory limitations by introducing a memory
performance model.

The workflow of Parallel Prophet is illustrated in Fig. 2. First,
the annotated program is recompiled; then interval profiling and
memory profiling is performed using the recompiled executable.
It produces a program tree which contains all the necessary infor-
mation for running the memory performance model and the em-
ulators. The emulators calculate final estimates for the program’s
parallel speedup.
Memory Performance Model

Parallel Prophet introduces burden factors to model the parallel
speedup slowdown due to increased memory traffic. The burden
factor is calculated for each top-level parallel section of an appli-
cation. Then, when estimating the application’s execution time,
the burden factor is multiplied to each corresponding section.

Parallel Prophet makes following assumptions in their memory
performance model.
• Execution time of a program can be separated into two dis-

joint parts: computation cost and memory cost
• Work is equally divided among all threads.
• Memory system has following properties: only last-level

cache (LLC) is present, the latencies of memory read and
write are the same, hardware multithreading is not present,
and hardware prefetchers are disabled.

• The value of LLC misses per instruction does not vary sig-
nificantly between serial and parallel execution.

• Super-linear speedup is not considered.
Parallel Prophet calculates the burden factor βt using these as-

sumptions. The memory profiling uses the information obtained
from low overhead hardware performance counters by PAPI [16].
Building a Program Tree

The interval profiling in Parallel Prophet is performed by run-
ning the application under PIN [17], same as Cilkview. In the
recompilation phase, the annotations – C/C++ macros – insert
trigger functions for the PIN. Then it collects the lengths of all
annotation pairs in the interval profiling phase. The length of the
each annotation pair is measured in instruction count same as the

c⃝ 2016 Information Processing Society of Japan 3

Vol.2016-HPC-155 No.24
2016/8/9



IPSJ SIG Technical Report

Cilkview analyzer.
Parallel Prophet uses this information to build a program tree.

Each node in the tree contains information about its length and its
node type (section, task, computation without a lock, and compu-
tation with lock). Also, each node for a top-level section (the tree
root) has a value set for its burden factor β.
Emulation

Parallel prophet performs fast forwarding emulation of a par-
allel execution by traversing the program tree. To emulate the
execution of a parallel application accurately, it needs to consider
the scheduling policies of the real parallel run-time model. Also,
it means that each run-time model needs to be separately imple-
mented in Parallel Prophet. The paper only implements an emu-
lator for OpenMP.

Parallel prophet also has a program synthesis based emulator.
However, it is left out in this paper, because the merit of the pro-
gram synthesis based emulator is not clear.

3.2 Regression-based Performance Modeling for Parallel
Applications

Regression-based performance modeling techniques use re-
sults of many training runs of the program with statistical models
to create performance models which can predict execution times
for new inputs. Although, these can predict the performance for
new inputs, the prediction parameter domain range is limited to
that of the training phase. Therefore, to predict the performance
of an application for big inputs on a large system, training mea-
surements have to be as resource intensive as prediction target
execution. As described in detail below, Barnes et al. [18] tries
to use fewer cores in the training phase than the prediction target
cores by modeling computation and communication separately.
However, their technique is specific to MPI applications only and
not directly effective for task parallel applications.
3.2.1 Methods of inference and learning for performance

modeling of parallel applications
[19] introduces performance modeling of parallel applications

using two different techniques: piecewise polynomial regression
and artificial neural networks. Their performance modeling tech-
niques are very general and not limited to a specific programming
paradigm. The applications used as evaluation in the paper are all
implemented using MPI.

Lee et al. employ hierarchical clustering, association analy-
sis, and correlation analysis to assist their piecewise polynomial
regression model. Hierarchical clustering is used to find simi-
larity between predictors which in turn used to ensure redundant
predictors are not included in the model. Pruning the number of
predictors also helps in controlling the number of potential inter-
actions between predictors. Association analysis examines each
predictor’s association with the response. Correlation analysis
quantifies the association relationship results. It helps to find pre-
dictors with higher rankings, which may require non-linear trans-
formations. Arguing that polynomials have undesirable peaks and
valleys, their paper divides the predictor domain into knots with
different polynomial fits. Since the piecewise polynomial regres-
sion model only models the parameter domain range of training
data, it cannot predict performance for inputs and number of cores

outside its training range.
Their other model, artificial neural networks, is more automatic

and does not require statistical analysis and application specific
configuration which were necessary for the linear model. Median
error rates range from 2.2 to 9.4 percent in the linear regression
model and 3.6 to 10.5 percent in the ANN model.
3.2.2 A regression-based approach to scalability prediction

Barnes et al. introduced regression based technique [18] to
predict the scaling behavior of parallel programs written in MPI.
They model the execution time of a parallel application as

log2(T ) = β1log2(x1) + β2log2(x2) + . . .

+βnlog2(xn) + g(q) + error (6)

where,

g(q) = γ0 + γ1log2(q)org(q) = γ0 + γ1log2(q) + γ2(log2(q))2

(7)

They employ three different techniques. The most straightfor-
ward technique uses the total execution time for T in equation
Eq. (6). The second approach uses the maximum computation
time across all workers and the communication time from that
same worker. The last technique uses the parallel execution’s crit-
ical path. It helps avoiding blocking time since any communica-
tion on the critical path is pure communication. The last two tech-
niques model computation and communication separately, then
combine the modeled computation and communication time to
determine the final execution time.

Their goal is similar to ours in a sense that the target number
of cores for prediction is bigger than the number of cores used
training. However, the application parameter domain is same in
the training experiments and prediction (strong scaling), which
makes it unable to predict performance for inputs outside the
training application parameter domain. They also assume that
the computational load is well balanced, which is true in some
MPI applications they evaluated, but rarely holds for task parallel
applications. Also unlike MPI applications, task parallel appli-
cations have to consider many more factors besides just com-
putation and communication, such as scheduler behavior, task
migration overhead, and effects of non-uniform memory access
(NUMA).

4. DAG-based Performance Model
We propose a DAG-based performance model, which can pre-

dict the execution times of task-parallel applications, even when
the target problem size and no. of workers are bigger than that
used in the training.

4.1 DAG Recorder
DAG Recorder is a tracing tool to analyze the execution of task

parallel programs. It is included as a part of MassiveThreads li-
brary [4]. It records all relevant events in an execution of a task-
parallel program, such as task start, task creation, and task syn-
chronization and stores them in a manner that can reconstruct the
computational DAG of the execution. The generated DAG file
can be viewed using DAGViz visualization tool [20]. Besides
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MassiveThreads applications, DAG Recorder can be used to ana-
lyze applications using other task-parallel runtimes such as TBB,
OpenMP, CilkPlus, and QThreads.

Along with the DAG file, DAG Recorder also generates a stats
text file that summarizes various pieces of information of the ex-
ecution. The following list explains some of the properties that
are relevant to our performance model.
• create task: The number of times tasks are created, not

including the main task.
• wait tasks: The number of times wait operations are is-

sued. Each wait may wait for multiple tasks, so this number
may not match create task.

• work (T1): The cumulative time (clock cycles) spent in ex-
ecuting the application code. Total across all cores. This
does not include time spent in the runtime system (e.g., task
creation overhead). If the application perfectly scales, this
number should be constant no matter how many cores you
used for execution. It is same as the work introduced in Sec-
tion 2.2.1.

• delay: The cumulative time available tasks are not executed
despite there are“ spare”cores not executing any task. This
value would be zero under a hypothetical greedy scheduler,
a scheduler which immediately dispatches any available task
to if any available core, without any delay.

• no work: The cumulative time cores spent without available
tasks.

At any moment, a core either execute meaningful work, do
overhead, or waits without any work to do. Therefore, by defi-
nition,

T1 + delay + no work = p · elapsedtime, (8)

where p is the number of workers. Perfectly scalable executions
have T1 approximately the same as that of serial execution and
have both delay and no work nearly zero. On the other hand, if
the application does not have enough intrinsic parallelism com-
pared to the number of available cores, no work will be large.
Applications that have enough parallelism that cannot be utilized
by the runtime system will show a large delay value and those
that have their work time increased (presumably due to cache
misses due to inter-core communication, false sharing, or capac-
ity overflows on shared caches) will show a T1 value significantly
larger than that of serial execution: T1’.

4.2 Model Overview
The overall prediction process of our DAG-based performance

model is shown in Fig. 3. It involves three main steps:
( 1 ) Execute the target application on measurement configu-

rations with DAG Recorder. It records five properties
from the recorded DAG: T1 (work), delay, create task,
wait tasks, and no work; and the T1’ (serial execution
work) of each execution.

( 2 ) Next, using the measured data, it trains the six intermedi-
ate models: T1 (work), delay, create task, wait tasks,
no work, and T1’ (Fig. 5).

( 3 ) Finally, by feeding the prediction target values (problem size:
n, no. of workers: p) to the intermediate prediction models,

Measurement	executions	
with	DAG	Recorder

Intermediate	models	
training

Training	data	from	DAG:
(T1,	T1’,	delay,	create_task,	

wait_tasks,	no_work)

Intermediate	models

Execution	 time	prediction Prediction	 target:
(problem_size,	#workers)	

predicted	execution	 time

Fig. 3: Prediction process overview

it will predict the target execution time. Specifically, the exe-
cution time is determined from T1 (work), delay, no work,
and Eq. (8).

4.3 Model Details
We can further write Eq. (8) as following

time(n, p) =
1
p

(T1(n, p) + delay(n, p) + no work((n, p))) (9)

where we denote the input problem size by n.
Our model predicts T1(n, p), delay(n, p), and no work((n, p))

separately, then applies Eq. (9) to determine the final execution
time.
Work (T1)

We model work (T1) using following equation

T1(n, p) = T1(T ′1(n), p) (10)

= T ′1(n) + a1 · T ′1(n) · p − 1
p
+ a2 · T ′1(n) · (p − 1)

where ai are some non-negative constant values.
The reasoning behind this model is that, when p workers par-

ticipate in the execution, some part of the serial execution work
proportional to p−1 or p−1

p will be moved around different cores.
Therefore, the work time inflation will be proportional to p − 1
and (p − 1)/p.

On the other hand, the work of the serial execution is modeled
as follows,

T ′1(n) = b1 + b2n + b3nlog(n) + b4n2 + b5n2log(n) (11)

+b6n3 + b7nlog(log(n))

where bi are non-negative constants. This representation is, of
course, not exhaustive, but is sufficient in most practical applica-
tions since it is a consequence of how most computer algorithms
are designed.
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Delay

In order to model delay, we utilize another two: DAG prop-
erties create task and wait tasks. Because delay is the
overhead caused by task creation and synchronization. Also, we
imagine that inter-core task movement is proportional to some
combination of p − 1 and (p − 1)/p. Consequently, we model
delay as follows, where ci are application & platform specific
constants.

delay(n, p) = delay(create task, wait tasks, p) (12)

= create task(n) · (c1 + c2(p − 1) + c3
p − 1

p
)

+wait tasks(n) · (c4 + c5(p − 1) + c6
p − 1

p
)

On the other hand, create task and wait tasks are mod-
eled using following general equations.

create task(n) = d1n + d2n · log(n) + d3n2 (13)

+d4n3 + d5n · log(log(n))

wait tasks(n) = e1n + e2n · log(n) + e3n2 (14)

+e4n3 + e5n · log(log(n))

No work

Lets assume that the gray area in Fig. 4 shows the available
parallelism of an application with time as x-axis. In this case,
no work is the sum of the area of the green rectangles when no.
of workers is p1, that of red rectangles when no. of workers is
p2. Thus, we can see that no work is somewhat proportional to
(p − 1)2.

Therefore, no work is modeled as follows.

no work(n, p) = (p − 1)2( f1 + f2n + f3n · log(n) + f4n2) (15)

By combining above models, when the target n and p is given,
we can predict time(n, p) as shown in the prediction flow Fig. 5.

4.4 Implementation
The models are implemented using Python’s
scikit-learn machine learning library. Specifically,
sklearn.linear model.LassoLarsCV model is used to
find coefficients of the above models. It is a cross-validated
version of an L1-regularized linear model using LARS algorithm
[21]. L1-regularized models are more robust than the common

inputs

wait_tasks(n)create_task(n)T1’(n)

T1(n,	p) delay(n,	p)

n p

no_work(n,	 p)

time(n,	p)

intermediate
models

prediction	
target

Fig. 5: Time Prediction Flow

least-squares linear model if only some of the coefficients should
be non-zero. This is useful in our case, since, for example, we
do not expect all seven bi coefficients to be non-zero in the T ′1(n)
model.

5. Evaluation
5.1 Overview

We run experiments on six applications included in Barcelona
OpenMP tasks suite (BOTS) [22]: fft, fib, nqueens, sort,
sparseLU, and, strassen. These applications are modified to use
MassiveThreads [4] as a task parallel library instead of OpenMP.
FFT computes the one-dimensional Fast Fourier Transform of a
vector of n complex values using the Cooley-Tukey [23] algo-
rithm. This is a divide-and-conquer algorithm that recursively
breaks down a Discrete Fourier Transform (DFT) into many
smaller DFTs. In each of the divisions, multiple tasks are gen-
erated. We only used twos powers as n, since the algorithm is
optimized for such values. Fib computes the n-th Fibonacci num-
ber using a recursive parallelization. It is not a good example of
an efficient Fibonacci computation but is still considered mean-
ingful because it is a simple test case of a deep tree composed of
very fine-grained tasks. It employs a depth-based cut-off (i.e., af-
ter a certain level in the task tree it will not generate more tasks)
to avoid the creation of too fine-grained tasks. Sort sorts a random
permutation of n 32-bit numbers with a fast parallel sorting vari-
ation of the ordinary mergesort. As the divided array partition
becomes smaller than certain thresholds (configuration parame-
ters), the sorting algorithm is changed in following way: par-
allel mergesort → serial mergesort → serial quicksort → serial
insertion sort. NQueens computes all solutions of the nqueens
problem. Its objective is to find a placement for n queens on an
n × n chessboard such that none of the queens attack any other.
The algorithm uses a backtracking search with pruning. A task
is created for each step of the solution. SparseLU computes an
LU matrix factorization over sparse matrices of size n. A first
level matrix is composed by pointers to small submatrices whose
size is also a configuration parameter. In each of the sparseLU
phases, a task is created for each block of the matrix that is not
empty. Strassen algorithm uses the hierarchical decomposition of
a matrix for multiplication of large dense matrices with a size of
n. A task is created for each decomposition. Creation of too many
small tasks is avoided by using a depth based cutoff value (also
a configuration parameter). The BOTS suite also includes other
four applications: alignment, floorplan, health, and uts. Those are
not used in our evaluation since there is no easy way to change
the input problem size of these applications.
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Table 1: Training & Test Measurements Description
(a) Training (1 to 8 workers)

problem size range
no. of data points
per worker choice

FFT 210 ≤ n ≤ 227 18
Fib 22 ≤ n ≤ 45 24

NQueens 8 ≤ n ≤ 14 7
Sort 213 ≤ n ≤ 227 63

SparseLU 60 ≤ n ≤ 200 29
Strassen 210 ≤ n ≤ 213 4

(b) Test (30 to 36 workers)

problem size range
no. of data points
per worker choice

FFT 227 ≤ n ≤ 230 4
Fib 45 ≤ n ≤ 47 3

NQueens 14 ≤ n ≤ 17 4
Sort 227 ≤ n ≤ 231 63

SparseLU 200 ≤ n ≤ 600 17
Strassen 213 ≤ n ≤ 215 3

The training & test measurements description for each appli-
cation is shown in Table 1. The input parameters are chosen uni-
formly at log scale for fft, sort, and strassen, in linear scale for fib,
nqueens, and sparseLU. Our models are not expecting an expo-
nential work compared to the input variable n. Therefore, when
applying our prediction model for fib and nqueens, we execute
n→ 2n transformation.

The configuration parameters used for both training and test
executions are listed in Table 2. The experiments run on a ma-
chine with 36 physical cores (two sockets, Xeon E5-2699 v3) and
768GB memory (PC4-17000). In future, we plan to experiment
on a bigger machine with multiple nodes.

Table 2: Configuration Parameters
config params explanation

FFT None
Fib -x 19 runtime task cut-off value

NQueens -x 7 runtime task cut-off value
Sort -a 512 -y 512 -b 20 algorithm change thresholds

SparseLU -m 30 submatrix size
Strassen -x 7 -y 32 runtime & app task cut-off values

5.2 Results
We train the models using the training measurements data.

Then the model is evaluated on the test measurements. Fig. 6
shows the error percentage distribution of the model on the
test measurements data. The error is defined as |actual −
predicted|/actual. As seen from the graph, prediction error for
fft, nqueens, and sparselu are very small. However, the prediction
error is significant for fib and strassen.

Actual vs prediction plots of intermediate models and the final
execution time prediction for sparselu is shown in Fig. 7. Fig-
ures 7a to 7c and 7e shows that the intermediate models almost
perfectly predicts create task, wait tasks, delay, and work.
However, Fig. 7f shows that there is a tendency to underestimate
execution time as the actual time increases. As seen from Fig. 7d,
the prediction error is wholly caused by the no work intermedi-
ate model. The main prediction error cause in the other evaluated
applications was the no work intermediate model too.

fft fib nqueens sort sparselu strassen
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Fig. 6: Scatter plots overlayed with box-and whisker plots show-
ing the error percentage of execution time prediction. The red
line represents the mean, while the bottom and top of the blue
box are the first and third quartiles. The whiskers represent the
lowest datum still within 1.5 IQR (1st quartile subtracted from
the 3rd quartile) of the lower quartile, and the highest datum still
within 1.5 IQR of the upper quartile. Points outside the whiskers
are considered stastical outliers.

6. Conclusion
We presented a novel DAG-based performance model for

predicting the execution time of task-parallel applications. To
achieve that, our model uses intermediate models on various
DAG-properties: work, no. tasks created, no. of task waits, de-
lay, and no work. Those intermediate models are combined to
determine the final execution time. Our model is general enough
that it can be applied to any task-parallel application.

Our performance model produces accurate predictions, as con-
veyed by our evaluation. Despite the prediction target being much
larger than the training runs regarding both no. of workers and in-
put problem size, the median errors were lower than 10% for two
out of six applications and were less than 45% for all the applica-
tions.

That being said, there is still much improvement room for our
performance model. Currently, our model does not account for
any limitations which may be caused by memory bottlenecks on
large problem sizes not seen during the training measurements.
In most applications, the accuracy of the intermediate model for
no work was bad. Our current DAG-based performance model
does not make use of some important DAG properties such as
critical path which is explained in Section 2.2.2. Future works
may include incorporating such DAG properties to build better
intermediate models, especially for no work.
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Fig. 7: Actual vs prediction plot for sparseLU/BOTS application
on the test dataset. For each data point, its x-axis value represents
the actual measured value, whereas y-axis is the predicted value.
The red line is the ideal prediction line, meaning that points close
to the line represent high-accuracy predictions.
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[3] Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Mas-
saioli, F., Teruel, X., Unnikrishnan, P. and Zhang, G.: The design of
OpenMP tasks, Parallel and Distributed Systems, IEEE Transactions
on, Vol. 20, No. 3, pp. 404–418 (2009).

[4] Nakashima, J. and Taura, K.: MassiveThreads: A thread library
for high productivity languages, Concurrent Objects and Beyond,
Springer, pp. 222–238 (2014).

[5] : Intel Cilk Plus, https://www.cilkplus.org/.
[6] Lea, D.: A Java fork/join framework, Proceedings of the ACM 2000

conference on Java Grande, ACM, pp. 36–43 (2000).
[7] Pheatt, C.: Intel R⃝ threading building blocks, Journal of Computing

Sciences in Colleges, Vol. 23, No. 4, pp. 298–298 (2008).
[8] Wheeler, K. B., Murphy, R. C. and Thain, D.: Qthreads: An API for

programming with millions of lightweight threads, Parallel and Dis-
tributed Processing, 2008. IPDPS 2008. IEEE International Sympo-
sium on, IEEE, pp. 1–8 (2008).

[9] Blumofe, R. D. and Leiserson, C. E.: Scheduling multithreaded com-
putations by work stealing, Journal of the ACM (JACM), Vol. 46,
No. 5, pp. 720–748 (1999).

[10] He, Y., Leiserson, C. E. and Leiserson, W. M.: The Cilkview scalabil-
ity analyzer, Proceedings of the twenty-second annual ACM sympo-
sium on Parallelism in algorithms and architectures, ACM, pp. 145–
156 (2010).

[11] Kim, M., Kumar, P., Kim, H. and Brett, B.: Predicting potential
speedup of serial code via lightweight profiling and emulations with
memory performance model, Parallel & Distributed Processing Sym-
posium (IPDPS), 2012 IEEE 26th International, IEEE, pp. 1318–1329
(2012).

[12] Wang, W., Dey, T., Davidson, J. W. and Soffa, M. L.: DraMon: Pre-
dicting memory bandwidth usage of multi-threaded programs with
high accuracy and low overhead, High Performance Computer Archi-
tecture (HPCA), 2014 IEEE 20th International Symposium on, IEEE,
pp. 380–391 (2014).

[13] Jeon, D., Garcia, S., Louie, C. and Taylor, M. B.: Kismet: parallel
speedup estimates for serial programs, OOPSLA, ACM (2011).

[14] Garcia, S., Jeon, D., Louie, C. M. and Taylor, M. B.: Kremlin: rethink-
ing and rebooting gprof for the multicore age, PLDI, ACM (2011).

[15] Frigo, M., Leiserson, C. E. and Randall, K. H.: The implementation
of the Cilk-5 multithreaded language, ACM Sigplan Notices, Vol. 33,
No. 5, ACM, pp. 212–223 (1998).

[16] Mucci, P. J., Browne, S., Deane, C. and Ho, G.: PAPI: A portable in-
terface to hardware performance counters, Proceedings of the Depart-
ment of Defense HPCMP Users Group Conference, pp. 7–10 (1999).

[17] Luk, C.-K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G.,
Wallace, S., Reddi, V. J. and Hazelwood, K.: Pin: building customized
program analysis tools with dynamic instrumentation, ACM Sigplan
Notices, Vol. 40, No. 6, ACM, pp. 190–200 (2005).

[18] Barnes, B. J., Rountree, B., Lowenthal, D. K., Reeves, J., De Supin-
ski, B. and Schulz, M.: A regression-based approach to scalability
prediction, Proceedings of the 22nd annual international conference
on Supercomputing, ACM, pp. 368–377 (2008).

[19] Lee, B. C., Brooks, D. M., de Supinski, B. R., Schulz, M., Singh,
K. and McKee, S. A.: Methods of inference and learning for perfor-
mance modeling of parallel applications, Proceedings of the 12th ACM
SIGPLAN symposium on Principles and practice of parallel program-
ming, ACM, pp. 249–258 (2007).

[20] Huynh, A., Thain, D., Pericàs, M. and Taura, K.: DAGViz: A
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