
IPSJ SIG Technical Report

Critical Path Analysis for Characterizing Parallel
Runtime Systems∗

An Huynh1,a) Kenjiro Taura1,b)

Abstract: Parallel programming models are increasingly relying on runtime systems to map logical paral-
lelism onto available physical cores at runtime. In order to characterize runtime systems in doing this dynamic
scheduling job, we analyze how they progress computation along the critical path of serially dependent tasks
along which there is always a task ready or running. Hence, the entire execution time can be classified into
three parts: work, during which a task was running; busy delay, during which no task on the path was run-
ning but all cores were busy; and scheduler delay, during which no task on the path was running and there
was at least one available (idle) core. A large scheduler delay is likely to be an artifact of an implementation
of the runtime system. Furthermore, we classify scheduler delays by the types of dependencies (e.g., end of
a task, creation of a task, continuation of parent tasks) which can highlight differences in the design and
implementation of the runtime systems.

Keywords: task parallel; critical path; runtime system; computation DAG; profiler

1. Introduction

Computer systems have been becoming increasingly par-

allel with more nodes, more cores, and more threads. The

memory hierarchy has also been developed deeper and more

complex. They all have made parallel programming tech-

niques difficult and hard to use. In order to achieve both

targets of programmability and good performance, system

developers need to first present easy-to-use, generic APIs to

users, and on the other hand, provide good supporting tools

such as compilers and runtime systems that can extract the

best performance out of the program algorithms and target

hardware systems while avoiding involving users into intri-

cate mechanisms in parallel processing as much as possible.

As the underlying hardware systems are developing large

and diversely, many parallel programming models have

made use of a more capable runtime system which can do

the scheduling of logically parallel tasks dynamically at run-

time. This approach is promising because it is more likely

to figure out the best scheduling strategy for the target sys-

tem and environment configuration at runtime. Because the

hardware settings taking part in a program execution is not

known until runtime, dynamic scheduling is considered more

scalable and portable compared with a static one determined

at compile time. These more capable runtime systems gen-

erally provide a task parallel scheduler that schedules and

1 University of Tokyo, Japan
a) huynh@eidos.ic.i.u-tokyo.ac.jp
b) tau@eidos.ic.i.u-tokyo.ac.jp
*1 This manuscript appears in the unrefereed Japanese Summer

United Workshops on Parallel, Distributed and Cooperative
Processing (SWoPP) and is not a published paper.

delivers logical tasks to available processing elements auto-

matically. Only one common interface - task parallel primi-

tives are exposed to the users, and they have only one mis-

sion that is to create many enough tasks which can be exe-

cuted in parallel. All low-level mechanisms are handled by

the runtime systems (and hopefully compilers, etc.). Other

easier-to-use, commonly seen interfaces like parallel for loop,

parallel for loop with reduce can be built upon task paral-

lelism.

It can be said that runtime systems are becoming more

responsible, and account more for the performance loss. It

matters much to understand them and improve them. How-

ever, they have one drawback which is that every mechanism

at runtime is invisible from user perspective, making it dif-

ficult for them to understand performance and reason when

it is bad. There are various choices in doing the scheduling

of parallel tasks, and each system has made its own choices

in its design and implementation. Clearly clarifying sub-

tle performance differences and trade-offs between them is

important for improving task parallel models. As an effort

towards solving their drawbacks and improving task paral-

lel runtimes, we have been working on the development of a

performance tool that is applicable to all task parallel pro-

gramming models that can pinpoint performance differences

between them.

There are many existing task parallel runtime systems

such as widely-used OpenMP [1], Cilk Plus [2], Intel Thread-

ing Building Blocks (Intel TBB) [3], and research-based

Qthreads [4], and MassiveThreads [5] [6]. Beside higher-level

interfaces to parallel processing, they all expose a basic task

parallel interface which essentially consists of two primitives,

ⓒ 2016 Information Processing Society of Japan 1

Vol.2016-HPC-155 No.23
2016/8/9

IPSJ SIG Technical Report

one to spawn a task, and another to synchronize tasks. We

have built a basic performance model according to this basic

interface, it is called computation DAG, and it is applicable

to all systems that support task-spawning and task-joining

operations. The computation DAG is unique for a program,

and is consistent among different executions by different task

parallel systems. Because of that computation DAG enables

us to compare different systems’ performances.

We have developed a critical path analysis method based

on the computation DAG model that helps us characterize

the runtime systems. A critical path is a serial sequence of

tasks from the start of the execution to the end during which

there is always a task running or ready. That critical path’s

length can be decomposed into three components of work,

busy delay and scheduler delay. The scheduler delay is fur-

ther decomposed into four sub-components of end, create,

create continue (create cont.) and wait continue (wait cont.)

based on four kinds of edges in the computation DAG. More-

over, the total execution time of a program (elapsed time ×
#cores) can be broken down into three categories of work,

delay (scheduler delay), and nowork (core idleness). These

decomposition analyses have exposed differences in the ex-

ecutions of different systems, helping us understand more

their behaviors and get to know where to put effort on to

improve further performance of the benchmarks and task

schedulers.

2. Task Parallel Runtime Systems

Cilk Plus has a pure work-stealing task scheduler [7]. It

uses two new keywords for creating a task (cilk spawn) and

joining a task (cilk sync). Qthreads and MassiveThreads are

both libraries, providing operations for user-level lightweight

threads (so-called tasks). They expose a POSIX Threads-

like interface: one function call to create a task and another

function call to synchronize a task of choice.

OpenMP and Intel TBB are widely-used implementations.

Task parallel programming model has been introduced from

OpenMP 3.0. Since then, many other OpenMP interfaces

have been changed to be built upon task parallelism, for ex-

ample, parallel-for primitive has been based on tasks from

OpenMP 4.0, data-flow programming model has been built

on tasks from OpenMP 4.5. It can be said that the task

parallel model and task runtime scheduler are becoming the

central component of OpenMP.

Intel TBB has a large set of parallel programming in-

terfaces which are all built around a central task parallel

runtime system. We can write parallel programs using easy-

to-use high-level API, or we can also specify low-level details

such as where a task should be executed or how it should be

synchronized with Intel TBB.

3. Computation DAG Performance

Model

A computation DAG is a model (also a trace file for-

mat) that represents an execution of a task parallel pro-

gram. Each node of a DAG represents a serial computation

E
C

create

wait

end

B

E
C

B

D()

A() {

 for(i=0;i<2;i++) {

 CreateTask(B);

 CreateTask(C);

 D();

 WaitTasks();

 }

}

D() {

 CreateTask(E);

 WaitTasks();

}

D()
create create cont.

end wait cont.

Node kinds Edge kinds

Fig. 1: An example task parallel program and its DAG. The

DAG consists of two similar consecutive sub-graphs which

correspond to two iterations of the loop. There are three

kinds of leaf nodes, and four kinds of edges.

involving no task-related operations inside. An edge repre-

sents a dependence between two nodes. The DAG structure

is not flatly stretched out, but hierarchically grouped tasks

and sections. Nodes are grouped hierarchically such that a

collective node (task or section) contains in it a sub-graph of

other collective nodes and leaf nodes which contain no sub-

graph. Thus, a DAG always starts with a single initial task

node representing the whole execution. That root node can

then get expanded step by step into sub-graphs of increasing

depths and finally become the full graph of only leaf nodes.

An example computation DAG is shown in Fig. 1.

Computation DAG captures task creation and joining,

along with performance information such as timing, CPU

cores, hardware events. Computation DAG separates the

program code’s execution (work) from the runtime schedul-

ing mechanisms happening inside task parallel primitives

(delay). This approach allows us to analyze the common

phenomenon of work stretch when the program is run on

many cores compared with its serial run on one core. The

computation DAG is a dynamic instance of the program’s

static logical task structure, which is augmented with actual

performance information (e.g., time, cache misses). This

persistent task structure allows us to compare different runs

of the same program by different runtime systems so that

we can understand differences between them and pinpoint

root causes behind those performance variations.

How a computation DAG is captured is described in

our previous work [8]. This technique is not only appli-

cable to task parallel systems which automatically schedule

implicitly-dependent tasks, but also able to be applied to

systems like PaRSEC which executes explicitly dependent

DAG-based tasks.

ⓒ 2016 Information Processing Society of Japan 2

Vol.2016-HPC-155 No.23
2016/8/9

IPSJ SIG Technical Report

4. Critical Path Analysis

Our analysis takes as an input the computation DAG rep-

resenting an execution of a task parallel program. Each node

of a DAG represents a serial computation involving no task-

related operations inside. An edge represents a dependence

between two nodes. A critical path is a serial chain of de-

pendent tasks from the start of the entire computation to

the end. Of many such paths, our analysis is focusing on the

particular path along which there is always a task ready or

running. It is easy to see there is always such a path; from

the end of the computation, we trace the dependence graph

backwards, choosing the last finished one when a node has

multiple predecessors.

Our tool analyzes how the computation progressed along

this path. To this end, we classify the entire execution time

into the following three parts: work, during which a task

was running and thus is making a progress along the path;

busy delay, during which no task on the path was running

but all cores are busy working on other tasks (not on the

path); and scheduler delay, during which no task on the

path was running and there is at least one available (idle)

core. Busy delay is a period in which the computation does

not progress. Yet, there is little or nothing to blame the

runtime system about it, as such delays are caused just by a

decision to work on other tasks at that point. A large busy

delay does not indicate an issue of the runtime system but

just an ample parallelism in the execution. On the other

hand, having a large scheduler delay is likely to be an ar-

tifact of an implementation of the runtime system; as there

is at least one core available to pick up the ready task of

that point, a better runtime system could have picked up it

sooner. To further characterize implementations, we classify

scheduler delays by the types of the dependencies. If that

delay follows the completion of a task, it is called end de-

lay. If that delay follows the creation of a task and precedes

its first execution, it is called create delay. If that delay

follows the creation of a task and precedes the parent task’s

continuation, it is called create cont. delay. If that delay

is for the parent to wait for the completion of its children

after issuing a synchronization instruction, it is called wait

cont. delay.

A runtime system might have a large overhead for partic-

ular operations (task creation, work stealing, task joining,

and so on) that makes scheduler delays constantly large for

a specific type of scheduler delays; another runtime system

might have a restriction in migrating tasks among cores so

some ready tasks might not be able to run on the cores idle

at that point; another system might deliberately delay the

execution of a particular task in favor of other criterion,

such as a better locality. We envision scheduler delay will

highlight how such factors affected the execution time of the

program.

The results of the critical path decompositions of

SparseLU program executed by five systems are shown in

Fig. 2 which consists of two sub-figures which are corre-

work delay no work
work

busy delay
end

create
create cont.

wait cont.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(a) critical path breakdown

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) scheduler delay breakdown

Fig. 2: SparseLU: critical path breakdown

App stack cut off other args
Alignment 220 - -f prot.100.aa

FFT 215 - -n 224

Fib 215 manual -n 47 -x 19

Floorplan 217 manual -f input.20 -x 7

Nqueens 214 manual -n 14 -x 7

Sort 215 manual -n 227 -a 512 -y 512

Sparse LU 214 - -n 120 -m 40

Strassen 214 manual -n 4096 -x 7 -y 32

Table 1: BOTS benchmark arguments

sponding to two subsequent decompositions. Because of dif-

ferences in scheduling policy (to prioritize child tasks or to

prioritize continuation of the parent task), MassiveThreads

and Cilk Plus systems have the create cont. delay domi-

nant; on the other hand, Intel TBB and Qthreads systems

have the create delay dominant. While OpenMP sometimes

has create cont. dominant, sometimes oppositely has create

dominant. This is because OpenMP prioritizes parent task

only until the number of ready tasks on queue reaches a

predefined threshold after which it may switch to prioritize

child tasks.

We have implemented this critical path analysis as an ad-

ditional analysis pass in our computation DAG-based per-

formance profiler/visualizer - DAGViz [8].

5. Case Studies

We have run our analysis with 8 benchmarks from

Barcelona OpenMP benchmark suite (BOTS) [9] together

with 5 different runtime systems of MassiveThreads, Cilk

Plus, Intel TBB, OpenMP, and Qthreads. The arguments

passing to each benchmark are summarized in Table 1 in-

cluding stack sizes, manual cut-off values, input files or prob-

lem sizes. The experiment machine is a 2.30GHz 36-core

Haswell server with two 18-core Xeon E5-2699 v3 chips. We

analyze the executions on full 36 cores with 36 threads, a

serial version of each benchmark which runs on 1 core and

replaces task spawns by normal function calls is taken as the

base performance.

5.1 SparseLU

SparseLU is an LU matrix factorizing computation for

sparse matrices. With problem size of n = 120, it has 120

phases at each of which a large amount of tasks (up to 3600

tasks) are created by a for loop. Each task does leaf com-

putation which does not recursively spawn any further child

tasks. Because only one task is created at an iteration of the

loop, the computation’s parallelism increments along with

the progress of the loop.

ⓒ 2016 Information Processing Society of Japan 3

Vol.2016-HPC-155 No.23
2016/8/9

IPSJ SIG Technical Report

In work-first runtime systems like MassiveThreads and

Cilk Plus which switch to execute the child task whenever a

new task is spawned, the parent task which executes task-

spawning loops is left back on ready queue after every loop

iteration. When a free worker steals the parent task and ex-

ecute the loop’s next iteration, the execution’s actual par-

allelism increments one unit. The program’s computation

progress depends heavily on how fast the worker threads can

do work-stealing. This situation is reflected on the sched-

uler delay of type create cont. for MassiveThreads and Cilk

Plus (Fig. 3). Moreover, because Cilk Plus has higher work-

stealing costs, it takes more time to find and migrate the

ready parent task from its previous core to a free core, and

its scheduler delay is much longer than MassiveThreads’.

The penalty of longer scheduler delay that Cilk Plus bears

is its larger nowork factor in its total execution time as free

cores waits longer for available parallelism to increase.

In help-first runtime systems like Intel TBB and Qthreads

which keep running the parent task after a child task is cre-

ated, the program’s available parallelism grows fast because

the loop is executed continuously on one worker without

interruption and it keeps spawning child tasks into ready

queue. As multiple child tasks can be stolen and distributed

to multiple workers faster, these help-first systems do not

suffer from larger nowork factor. Because of the nature of

help-first, Intel TBB, OpenMP and Qthreads are supposed

to have large scheduler delay of type create. But only Intel

TBB and Qthreads do, OpenMP reversely has large amount

of create cont. delay. This is because OpenMP automati-

cally stops the execution of the parent task when the num-

ber of ready tasks waiting on run queue reaches a predefined

number (around six times of the number of cores), which can

be observed in Fig. 6.

Qthreads scheduler’s one noticeable point is that it does

not schedule child tasks for execution until they are be-

ing waited. As we can see from Fig. 5, the executions of

child tasks are shifted far to the right and started at almost

the same time. This characteristic explains the reason why

Qthreads has so much total delay factor in its execution

time breakdown. However, in compensation of this sched-

uler delay Qthreads somehow achieves better locality so that

their tasks can execute faster than those of Intel TBB do,

resulting in quite low work factor (without work stretch)

compared with Intel TBB.

5.2 Sort

Sort benchmark sorts a random permutation of 227 32-bit

numbers with a parallel variation of mergesort. The algo-

rithm divides the input array into four quarters, sorts them

separately and then merges together to form the sorted ar-

ray. The division is conducted recursively until the array

gets small enough for serial sorting by quicksort.

As observed from timeline visualizations of Sort’s execu-

tions by MassiveThreads and Intel TBB in Fig. 8. In the

latter half of the executions (merging phase) there is a lack of

parallelism happening due to a fairly large amount of long-

work delay no work

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

perf. loss percentage

13.3%

36.5% 40.2%

18.7%

33.2%

(a) performance losses

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) critical path breakdown
work

busy delay
end

create
create cont.

wait cont.

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

nowork cp percentage

47.2%

67.2%

11.4%

23.7%
18.8%

(c) nowork caused by scheduler
delay on critical path

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(d) scheduler delay breakdown

Fig. 3: SparseLU: breakdown of total execution times of all

threads (run by mth, clkp, tbb, omp & qth)

Fig. 4: SparseLU’s parallelism profiles by mth vs. cilkplus

Fig. 5: SparseLU’s parallelism profiles by tbb vs. omp vs.

qth

Fig. 6: SparseLU’s parallelism profiles by omp

running tasks (long boxes). In the algorithm, the second

phase of recursive parallel merge will turn to simple sequen-

ⓒ 2016 Information Processing Society of Japan 4

Vol.2016-HPC-155 No.23
2016/8/9

IPSJ SIG Technical Report

work delay no work

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

mth cilkplus tbb omp qth
 0

 50

 100

 150

 200

 250

 300

 350

 400

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

perf. loss percentage

298.3% 308.5%
340.5% 326.9%

382.1%

(a) performance losses

 0
 2e+08
 4e+08
 6e+08
 8e+08
 1e+09

 1.2e+09
 1.4e+09
 1.6e+09
 1.8e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) critical path breakdown
work

busy delay
end

create
create cont.

wait cont.

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

 5e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

nowork cp percentage

0.0% 0.0%

10.4%

0.1% 0.0%

(c) nowork caused by scheduler
delay on critical path

 0
 2e+08
 4e+08
 6e+08
 8e+08
 1e+09

 1.2e+09
 1.4e+09
 1.6e+09
 1.8e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(d) scheduler delay breakdown

Fig. 7: Sort: breakdown of total execution times of all

threads (run by mth, clkp, tbb, omp & qth)

tial memory copy whenever the smaller array in the two ar-

rays of the merge is empty. This condition (the smaller array

is empty) does not always guarantee that the larger array is

sufficiently small; but contrarily, the larger array might be

very large, making the sequential memory copy operation

costly. This trivial condition itself causes the lack of avail-

able parallelism accompanied with many long-running tasks

at the stage near the end of the execution. Only by seeing

the timelines we can somehow realize that Intel TBB causes

a larger amount of core idleness than MassiveThreads does

during this insufficient parallelism period. Our critical path

analysis method can quantify exactly Intel TBB’s surplus

amount of nowork as shown in Fig. 7c.

In Intel TBB, tasks are tied to cores where they were first

executed. When two child tasks merging four sub-arrays

have already finished, their parent task can only be resumed

on its tied core. However, if the core happens to be busy

executing a long-running task at that time, the resume of

the parent task needs to wait, and this wait can be very

long, causing long scheduler delay on the critical path. That

scheduler delay is of type end, fit with the result shown in

Fig. 7d that Intel TBB has a large scheduler delay of type

end. On the contrary, tasks are untied in MassiveThreads

so the parent task can be resumed immediately on the core

that has just finished the last child task.

When the nodes that reside on the critical path are high-

lighted with green color on DAG as seen in Fig. 8, Mas-

siveThreads’ critical path tends to be long and continuous.

On the other hand, Intel TBB’s critical path contains many

end nodes which are often scattered far from each other due

to the wait of the tied cores to finish its long nodes.

5.3 Alignment

Alignment program aligns all 100 protein sequences from

an input file against every each other sequence. The align-

ment are scored and the best score for each pair is provided

as a result. The parallelization pattern is simple, it consists

of a single for loop which has around 100× 100 = 10, 000 it-

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

Fig. 8: Sort’s parallelism profiles by MassiveThreads & Intel

TBB

erations, at each iteration a serial child task which does not

spawn any more task recursively and computes the align-

ment score of a sequence pair is created. Although there is

a degree of load imbalance in each task, the number of tasks

is abundant so there should not be any lack of parallelism

in the program.

However, our critical path analysis has detected the re-

verse happening with OpenMP. As shown in Fig. 9c, the

amount of nowork caused by scheduler delay on the criti-

cal path accounted for up to 76% the performance loss of

OpenMP’s alignment execution. This nowork factor indi-

cates a lack of parallelism during the execution because of

the scheduler’s delay in delivering the ready task to a large

number of free cores. A quick look into OpenMP version’s

parallelism profile in Fig. 10 gives us a sense of the pres-

ence of a quite long idle period in the middle of the ex-

ecution. This nowork period is caused by scheduler delay,

which means that there is a ready task during the period but

it is not scheduled for execution fast enough to proceed the

computation’s progress. Another look inside the execution’s

DAG visualization (Fig. 11 tells us that the delayed ready

task is the root parent task which executes the main serial

for loop. This parent task has been tied to the core 34 and

cannot be migrated to another core. Therefore, when this

core 34 happens to execute a long running child task while

all created child tasks have already been executed, the pro-

gram gets out of available parallelism making cores other

than 34 idle.

5.4 FFT

For FFT benchmark, our automatic detection of nowork

factor caused by the scheduler delay on critical path has in-

dicated it contributes a little in the total performance loss

(4.6%) in the Qthreads version (less than 1% for other ver-

sions) (Fig. 12). In our experiments, FFT computes the

one-dimensional Fast Fourier Transform of a vector of 224

complex values. It is using a divide-and-conquer algorithm

which creates many tasks recursively for smaller problem

sizes.

As we have known (from the SparseLU case study),

Qthreads delays executions of all child tasks until the parent

task has issued a join instruction. Although this character-

istic causes a severe performance bottleneck in parallel pat-

ⓒ 2016 Information Processing Society of Japan 5

Vol.2016-HPC-155 No.23
2016/8/9

IPSJ SIG Technical Report

work delay no work

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 5e+09

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

perf. loss percentage

1.5%
5.8%

13.6%
6.1% 3.8%

(a) performance losses

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) critical path breakdown
work

busy delay
end

create
create cont.

wait cont.

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

 3e+09

 3.5e+09

 4e+09

 4.5e+09

 5e+09

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

nowork cp percentage

18.6%

8.0%
1.6%

75.9%

8.2%

(c) nowork caused by scheduler
delay on critical path

 0

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(d) scheduler delay breakdown

Fig. 9: Alignment: breakdown of total execution times of

all threads (run by mth, clkp, tbb, omp & qth)

Worker 0

Worker 1

Worker 2

Worker 3

Worker 4

Worker 5

Worker 6

Worker 7

Worker 8

Worker 9

Worker 10

Worker 11

Worker 12

Worker 13

Worker 14

Worker 15

Worker 16

Worker 17

Worker 18

Worker 19

Worker 20

Worker 21

Worker 22

Worker 23

Worker 24

Worker 25

Worker 26

Worker 27

Worker 28

Worker 29

Worker 30

Worker 31

Worker 32

Worker 33

Worker 34

Worker 35

Fig. 10: Alignment’s parallelism profile by OpenMP: nowork

factor is significant.

Fig. 11: Alignment’s DAG by OpenMP: the long task causes

a long (create cont.) scheduler delay.

terns in which all available parallelism is created by a serial

for loop, in recursive parallelism it is usually not the case as

many available logical execution paths existing at the same

time have compensated for the scheduler’s delay. That ex-

plains its relatively low accountability of 4.6% in this case.

It is noticeable just because it is much higher than other

versions. And our tool DAGViz can automatically bring us

directly to that area of high nowork, long scheduler delay in

the DAG which is shown in Fig. 13.

work delay no work

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

 120

 140

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

perf. loss percentage

75.5% 75.7%

100.5% 100.2%

124.6%

(a) performance losses

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) critical path breakdown
work

busy delay
end

create
create cont.

wait cont.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

nowork cp percentage

0.2% 1.6% 0.7% 0.7%
4.6%

(c) nowork caused by scheduler
delay on critical path

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(d) scheduler delay breakdown

Fig. 12: FFT: breakdown of total execution times of all

threads (run by mth, clkp, tbb, omp & qth)

(a) power scale (b) linear scale

Fig. 13: FFT’s DAG by Qthreads: delayed scheduling of

child tasks has caused a lot of idleness in free cores which is

concretized as “nowork” and “delay” factors.

work delay no work

-5e+09

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

mth cilkplus tbb omp qth
-20

 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

perf. loss percentage

-3.2%

45.3%

5.4%

47.8%

4.8%

(a) performance losses

 0
 2e+08
 4e+08
 6e+08
 8e+08
 1e+09

 1.2e+09
 1.4e+09
 1.6e+09
 1.8e+09

 2e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) critical path breakdown
work

busy delay
end

create
create cont.

wait cont.

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

nowork cp percentage

0.0% 0.0% 0.1% 0.2% 0.3%

(c) nowork caused by scheduler
delay on critical path

 0
 2e+08
 4e+08
 6e+08
 8e+08
 1e+09

 1.2e+09
 1.4e+09
 1.6e+09
 1.8e+09

 2e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(d) scheduler delay breakdown

Fig. 14: Fib: breakdown of total execution times of all

threads (run by mth, clkp, tbb, omp & qth)

5.5 Others

Fibonacci Fig. 14, Floorplan Fig. 15, NQueens Fig. 16,

and Strassen Fig. 17 seem not to be bottlenecked by the

nowork factor caused by scheduler delay. Their perfor-

mances are affected by other factors which will be addressed

in our other papers.

ⓒ 2016 Information Processing Society of Japan 6

Vol.2016-HPC-155 No.23
2016/8/9

IPSJ SIG Technical Report

work delay no work

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

perf. loss percentage

5.8%
10.1%

33.8%

14.6%
18.5%

(a) performance losses

 0
 1e+08
 2e+08
 3e+08
 4e+08
 5e+08
 6e+08
 7e+08
 8e+08
 9e+08

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) critical path breakdown
work

busy delay
end

create
create cont.

wait cont.

 0

 1e+09

 2e+09

 3e+09

 4e+09

 5e+09

 6e+09

 7e+09

 8e+09

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

nowork cp percentage

0.6% 0.6% 0.1% 0.3% 0.2%

(c) nowork caused by scheduler
delay on critical path

 0
 1e+08
 2e+08
 3e+08
 4e+08
 5e+08
 6e+08
 7e+08
 8e+08
 9e+08

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(d) scheduler delay breakdown

Fig. 15: Floorplan: breakdown of total execution times of

all threads (run by mth, clkp, tbb, omp & qth)

work delay no work

-2e+09

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

mth cilkplus tbb omp qth
-20

 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

perf. loss percentage

3.3% 6.4%

18.7%

-0.1% 3.5%

(a) performance losses

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) critical path breakdown
work

busy delay
end

create
create cont.

wait cont.

 0

 2e+09

 4e+09

 6e+09

 8e+09

 1e+10

 1.2e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

nowork cp percentage

0.1% 0.1% 0.0% 0.0% 0.1%

(c) nowork caused by scheduler
delay on critical path

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(d) scheduler delay breakdown

Fig. 16: NQueens: breakdown of total execution times of all

threads (run by mth, clkp, tbb, omp & qth)

work delay no work

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

 120

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

perf. loss percentage

54.8%

78.4%

100.9%

61.4% 59.8%

(a) performance losses

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(b) critical path breakdown
work

busy delay
end

create
create cont.

wait cont.

 0

 5e+09

 1e+10

 1.5e+10

 2e+10

 2.5e+10

 3e+10

 3.5e+10

 4e+10

 4.5e+10

mth cilkplus tbb omp qth
 0

 20

 40

 60

 80

 100

cu
m

ul
. c

lo
ck

s

pe
rc

en
t

nowork cp percentage

0.0% 0.0% 0.8% 0.0% 0.0%

(c) nowork caused by scheduler
delay on critical path

 0

 5e+08

 1e+09

 1.5e+09

 2e+09

 2.5e+09

mth cilkplus tbb omp qth

cu
m

ul
. c

lo
ck

s

(d) scheduler delay breakdown

Fig. 17: Strassen: breakdown of total execution times of all

threads (run by mth, clkp, tbb, omp & qth)

6. Related Work

Tallent et al. [10] have broken down execution time into

three components of work, overhead, and idleness, which is

similar to our work - delay - nowork decomposition. They

have used these overhead and idleness measures to identify

which code regions to increase parallelism and which code

regions to decrease parallelism.

Olivier et al. [11] have taken a step further that they iden-

tified work inflation (the increase in work when changing

from serial execution to multithreaded execution) as a crit-

ical parallel performance bottleneck which sometimes sur-

passes parallel overhead and idleness. Because work infla-

tion occurs due to the increased overhead in getting data

from remote module in NUMA architecture. They have de-

veloped a locality-aware scheduler which places tasks near to

their data, and demonstrated that this scheduler had miti-

gated the work inflation of two benchmarks health and heat.

DAG has been used broadly in literature to model

a static parallel program. However, we leverage it to

model a dynamic parallel execution. Our measurement is

instrumentation-based so it might seem to have large over-

head. But we have implemented a mechanism to collapse

DAG dynamically on-the-fly to keep both time overhead and

memory overhead under reasonable limit. In actual experi-

ments with BOTS, our tool’s overhead is less than 10%.

7. Conclusion

We aim to build a performance tool to discover automat-

ically performance differences between systems. We have

developed an additional analysis focusing on critical path,

and made our visualization tool to highlight the critical path

on DAG visualizations.

By breaking down critical path length into work, safe de-

lay & problematic delay which is further decomposed into

different sub-components of end, create, create cont. & wait

cont. delays, we have successfully contrasted five different

runtime systems of interest and emphasized reasons why one

system is performing better than another on a particular ap-

plication.

References

[1] OpenMP Architecture Review Board: OpenMP Application
Program Interface, Technical Report July, OpenMP Archi-
tecture Review Board (2011).

[2] Leiserson, C. E.: The Cilk++ concurrency platform,
Proceedings of the 46th Annual Design Automation
Conference DAC ’09, ACM Press (2009).

[3] Pheatt, C.: Intel(R) Threading Building Blocks, J. Comput.
Sci. Coll., Vol. 23, No. 4, pp. 298–298 (2008).

[4] Wheeler, K. B., Murphy, R. C. and Thain, D.: Qthreads: An
API for programming with millions of lightweight threads,
2008 IEEE IPDPS, IEEE, pp. 1–8 (2008).

[5] Nakashima, J., Nakatani, S. and Taura, K.: Design and
implementation of a customizable work stealing scheduler,
Proceedings of the 3rd International Workshop on Runtime
and Operating Systems for Supercomputers - ROSS ’13,
ACM Press (2013).

[6] Nakashima, J. and Taura, K.: MassiveThreads: A Thread
Library for High Productivity Languages, Festschrift of
Symposium on Concurrent Objects and Beyond: From
Theory to High-Performance Computing (to appear as a
volume of Lecture Notes in Computer Science) (2012).

[7] Blumofe, R. D. and Leiserson, C. E.: Scheduling mul-
tithreaded computations by work stealing, Journal of
the ACM, Vol. 46, No. 5, pp. 720–748 (online), DOI:
10.1145/324133.324234 (1999).

ⓒ 2016 Information Processing Society of Japan 7

Vol.2016-HPC-155 No.23
2016/8/9

IPSJ SIG Technical Report

[8] Huynh, A., Thain, D., Pericàs, M. and Taura, K.: DAGViz:
A DAG Visualization Tool for Analyzing Task-parallel Pro-
gram Traces, Proceedings of the 2nd Workshop on Visual
Performance Analysis, VPA ’15, ACM, pp. 3:1–3:8 (2015).

[9] Duran, A., Teruel, X., Ferrer, R., Martorell, X. and Ayguade,
E.: Barcelona OpenMP Tasks Suite: A Set of Benchmarks
Targeting the Exploitation of Task Parallelism in OpenMP,
2009 International Conference on Parallel Processing, IEEE,
pp. 124–131 (2009).

[10] Tallent, N. R. and Mellor-Crummey, J. M.: Effective Perfor-
mance Measurement and Analysis of Multithreaded Applica-
tions, Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP
’09, ACM, pp. 229–240 (2009).

[11] Olivier, S. L., de Supinski, B. R., Schulz, M. and Prins, J. F.:
Characterizing and Mitigating Work Time Inflation in Task
Parallel Programs, SC ’12, IEEE Computer Society Press,
pp. 65:1–65:12 (2012).

ⓒ 2016 Information Processing Society of Japan 8

Vol.2016-HPC-155 No.23
2016/8/9

