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Regular Paper

Evaluating Information Retrieval Metrics

Based on Bootstrap Hypothesis Tests

Tetsuya Sakai†

This paper describes how the bootstrap approach to statistics can be applied to the eval-
uation of IR effectiveness metrics. More specifically, we describe straightforward methods
for comparing the discriminative power of IR metrics based on Bootstrap Hypothesis Tests.
Unlike the somewhat ad hoc Swap Method proposed by Voorhees and Buckley, our Bootstrap
Sensitivity Methods estimate the overall performance difference required to achieve a given
confidence level directly from Bootstrap Hypothesis Test results. We demonstrate the useful-
ness of our methods using four different data sets (i.e., test collections and submitted runs)
from the NTCIR CLIR track series for comparing seven IR metrics, including those that can
handle graded relevance and those based on the Geometric Mean. We also show that the
Bootstrap Sensitivity results are generally consistent with those based on the more ad hoc
methods.

1. Introduction

A typical IR paper claims that System X is
better than System Y in terms of an effective-
ness metric M computed based on a test col-
lection C: How reliable is this paper? More
specifically, (a) What happens if C is replaced
with another set of data C ′? (b) How good is
M?

Question (a) posed above is usually dealt
with as follows:
( 1 ) Use two or more test collections of “re-

spectable” size, and observe trends that
are consistent across the different data;

( 2 ) Make sure that the overall performance
difference between X and Y is “relatively
large”;

( 3 ) Conduct statistical significance tests to
claim that the difference was not ob-
served due to chance ☆.

All of the above are arguably necessary condi-
tions for making a good IR paper that involves
comparative experiments, although surpris-
ingly many IR papers do not satisfy them 19).

Unfortunately, there has been a controversy
as to which statistical significance tests should
be used for IR evaluation, as well as whether
such tests should be used at all 4),19),20). It
is known that a typical IR evaluation environ-
ment often violates the underlying assumptions
of significance tests, but it is also known that
some significance tests work well even when
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some of the assumptions are violated. Para-
metric tests rely on the normality assumption
and generally have higher power than nonpara-
metric ones. (That is, it is easier to detect sig-
nificant differences with parametric tests.) But
even nonparametric tests are not assumption-
free: the Paired Wilcoxon Test depends on
both the symmetry and the continuity assump-
tions 4). An IR researcher who wants to be con-
servative (i.e., who wants to minimise the risk
of jumping to wrong conclusions) might, for ex-
ample, choose the two-tailed Sign Test, which
generally has little power.

However, as Savoy 20) points out, there is
a very attractive alternative called the boot-
strap 3). Invented in 1979, the bootstrap is the
approach to statistics for the computer age, and
has strong theoretical foundations. While clas-
sical statistics rely on mathematical derivations
that often require several assumptions on the
underlying distributions of data, the bootstrap
tries to achieve the same goal by directly es-
timating the distributions through resampling
from observed data. The Bootstrap Hypothe-
sis Tests are free from the normality and sym-
metry assumptions, and it is known that they
often show power comparable to that of tradi-
tional parametric significance tests. Moreover,
the Unpaired Bootstrap Hypothesis Test is di-

☆ We are aware that there are negative arguments
against statistical significance tests in general 6).
However, while we agree that significance tests are
not The Perfect Methods that can validate an ex-
periment, we believe that they can be useful if used
correctly.
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rectly applicable even to unconventional sum-
mary statistics that are not Arithmetic Means
over a topic set (e.g., the “area” measure based
on the worst N topics for each system 21) and
Geometric Means 11),18),21)). We therefore be-
lieve that Bootstrap Hypothesis Tests deserve
more attention from the IR community.

This paper ☆ concerns Question (b) posed
above: How “good” is IR metric M? More
specifically, we use the Bootstrap Hypothe-
sis Tests to assess and compare the discrim-
inative power (or sensitivity) of different IR
metrics. This is related to the Swap Method
proposed by Voorhees and Buckley 22), which
derives the overall performance difference re-
quired for guaranteeing that a system is better
than another, and that the chance of obtain-
ing a contradictory result with another topic
set (the swap rate) is below a given threshold.
However, while the Swap Method is not directly
related to statistical significance tests, our new
methods estimate the overall performance dif-
ference required to achieve a given confidence
level directly from Bootstrap Hypothesis Test
results.

To demonstrate the usefulness of our Boot-
strap Sensitivity Methods, we use four differ-
ent data sets (i.e., test collections and submit-
ted runs) from the NTCIR CLIR track series 7)

and compare seven IR effectiveness metrics, in-
cluding those based on graded relevance and
those based on the Geometric Mean. Our meth-
ods agree with the more ad hoc ones such as
the Swap Method that, for the majority of the
data sets, the most sensitive IR metrics are Q-
measure 17), normalised Discounted Cumulative
Gain at cut-off 1000 5),9) and Average Precision
(AveP), while the least sensitive one is Precision
at cut-off 1000. In the middle lie normalised
Cumulative Gain at cut-off 1000 and Geomet-
ric Mean AveP/Q-measure.

The remainder of this paper is organised as
follows. Section 2 discusses previous work re-
lated to this study. Section 3 formally defines
the seven IR effectiveness metrics we consider,
and Section 4 describes our NTCIR data sets.
Section 5 describes how Paired and Unpaired
Bootstrap Hypothesis Tests can be conducted

☆ An early, eight-page version of this paper was pre-
sented at ACM SIGIR 2006. While the SIGIR paper
used the NTCIR-3 Chinese and Japanese data only,
this paper uses the NTCIR-5 Chinese and Japanese
data in addition, and provides more detailed analy-
ses of the experimental results.

in IR evaluation, and Section 6 proposes and
tests our new methods for comparing the dis-
criminative power of IR metrics based on Boot-
strap Hypothesis Tests. Section 7 compares our
Bootstrap Sensitivity results with those based
on the more ad hoc methods. Finally, Section 8
provides conclusions and prospects for our fu-
ture research. In addition, the Appendix dis-
cusses the similarities among the metrics we
consider using Kendall’s rank correlation, in or-
der to complement our results on the discrimi-
native power of individual metrics, which is the
focus of this study.

2. Related Work

Savoy 20) used the Paired Bootstrap Hypoth-
esis Test and Confidence Intervals, along with
traditional significance tests, for comparing two
IR strategies. However, comparing the discrim-
inative power of IR metrics based on many sys-
tem pairs was beyond the scope of his work.

Our Bootstrap Sensitivity Methods have
much in common with the Swap Method pro-
posed by Voorhees and Buckley 22), in that we
use a test collection and a set of submitted runs
as input and generate sets of resampled top-
ics from the original topic set to estimate the
overall performance difference required between
two systems in order to satisfy a given “con-
fidence level”. However, there are important
differences. Our confidence level is defined as
1 − α, where α is the probability of concluding
that two systems are different even though they
are in fact equivalent in a Bootstrap Hypothe-
sis Test, also known as Type I Error. Thus, our
methods are directly related to achieved signif-
icance levels. In contrast, the Swap Method is
rather ad hoc (although Lin and Hauptmann 10)

have discussed a theoretical justification of the
method), and is not directly related to statisti-
cal significance tests: Sanderson and Zobel 19)

used significance tests for filtering out some sys-
tem pairs before applying the Swap Method;
Sakai 17) reported that the system pair ranking
according to significance tests and that accord-
ing to the Swap Method are not very highly
correlated.

The essence of the Swap Method is to esti-
mate the swap rate, which represents the prob-
ability of the event that two experiments (each
using a different topic set) are contradictory
given an overall performance difference. The
“confidence level” in this method is defined as
one minus the swap rate, that is, the probabil-
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ity that a pair of topic sets agree as to whether
one system outperforms the other. The method
estimates this probability by generating many
pairs of new topic sets from Q, the original set
of topics provided in the test collection. The
original Swap Method samples topics without
replacement from Q, each time generating two
new topic sets that are disjoint from each other:
Hence the new topic sets contain no dupli-
cates. Sanderson and Zobel 19) also used sam-
pling without replacement (although they called
their method “selection with replacement” in
their paper) but ensured that the two topic sets
were independently drawn from Q: Hence the
two topic sets were generally not disjoint from
each other in their method. In both the original
Swap Method and the Sanderson/Zobel vari-
ant, the sets of resampled topics were no greater
than half the size of Q, due to the original idea
that each pair of new sets should be disjoint.
For this reason, these studies used extrapolation
to discuss the reliability of IR evaluation using
a topic set of size |Q|. Subsequently, however,
Sakai 12) showed that sampling with and with-
out replacement with the Swap Method yield
similar results for comparing different IR met-
rics. In light of this, the present study uses
bootstrap samples 3) with the Swap Method as
well as with our proposed methods, where each
bootstrap sample is obtained by sampling with
replacement and is equal in size to Q. There-
fore, our experiments do not require extrapola-
tion: We can directly discuss the reliability of
IR evaluation using exactly |Q| topics. More
details will follow in Section 7.

Recently, Cormack, Lynam and Cheriton 2)

proposed a method for estimating the (statisti-
cal) precision of IR evaluation using bootstrap
techniques. However, while our methods (and
standard significance tests) focus on the effect
of random error associated with the selection
of topics , their concern is the effect of random
error associated with the target documents .

The Bootstrap Sensitivity Method has also
been used for comparing IR metrics for the task
of finding one relevant document 13), and for
investigating the effect of IR metric parame-
ters for penalising late arrivals of relevant doc-
uments 15).

3. IR Effectiveness Metrics

The basic IR metrics we consider in this pa-
per are Average Precision (AveP), Precision
at cut-off 1000 (PDoc1000), Q-measure 17), and

normalised (Discounted) Cumulative Gain at
cut-off 1000 (n(D)CG1000) 5),9).

AveP represents a very sensitive IR metric
based on binary relevance, while PDoc1000 rep-
resents a very insensitive one. (PDoc1000 re-
wards a system with 10 relevant documents at
Ranks 1-10 and one with 10 relevant documents
at Ranks 991-1000 equally. Note also that it
does not average well 17).) Let R denote the
number of relevant documents for a topic, and
let L (≤ 1000) denote the size of a ranked out-
put. For each Rank r (≤ L), let isrel(r) be
1 if the document at Rank r is relevant and 0
otherwise, and let count(r) =

∑
1≤i≤r isrel(i).

Clearly, Precision at Rank r is given by P (r) =
count(r)/r. Then, AveP is defined as:

AveP =
1
R

∑
1≤r≤L

isrel(r)P (r) . (1)

PDocl = P (l) . (2)
We can also use IR metrics based on graded

relevance, since the NTCIR data contain S-, A-
and B-relevant (highly relevant, relevant and
partially relevant) documents. Let R(L) de-
note the number of L-relevant documents so
that

∑
L R(L) = R, and let gain(L) denote

the gain value 5),9) for retrieving an L-relevant
document. We use gain(S) = 3, gain(A) = 2,
gain(B) = 1 thoughout this paper: The effect
of using different gain values has been discussed
elsewhere 15),17). Let cg(r) =

∑
1≤i≤r g(i) de-

note the cumulative gain 5) at Rank r of the sys-
tem’s output, where g(i) = gain(L) if the doc-
ument at Rank i is L-relevant and g(i) = 0 oth-
erwise. In particular, consider an ideal ranked
output, such that isrel(r) = 1 for 1 ≤ r ≤ R
and g(r) ≤ g(r − 1) for r > 1, and let cgI(r)
denote the ideal cumulative gain at Rank r.
Similarly, by using dg(i) = g(i)/ loga(i) in-
stead of g(i) for i > a, we can obtain the
(ideal) discounted cumulative gain dcg(r) and
dcgI(r) 5),9). Then we have:

nCGl = cg(l)/cgI(l) . (3)

nDCGl = dcg(l)/dcgI(l) . (4)

Q-measure =
1
R

∑
1≤r≤L

isrel(r)BR(r) (5)

where BR(r) is the blended ratio given by:

BR(r) = (cg(r) + count(r))/(cgI(r) + r) .

(6)

It is known that nCGl has a problem: it
cannot penalise late arrival of relevant docu-
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Table 1 Statistics of the NTCIR CLIR data.

|Q| R/topic R(S)/topic R(A)/topic R(B)/topic runs used

NTCIR-3 Chinese 42 78.2 21.0 24.9 32.3 30

NTCIR-3 Japanese 42 60.4 7.9 31.5 21.0 30

NTCIR-5 Chinese 50 61.0 7.0 30.7 23.3 30

NTCIR-5 Japanese 47 89.1 3.2 41.8 44.2 30

ments after Rank R as cgI(r) = cgI(R) holds
for r ≥ R. nDCGl partially solves this problem
by discounting the gains, but using a large loga-
rithm base a with it would imply that it inherits
the defect of nCGl, since discounting cannot be
applied until the rank is greater than a. For
this reason, we let a = 2 throughout this pa-
per. On the other hand, Q-measure solves the
above problem by including r in the denomi-
nator of BR(r). For more details on the “late
arrival” problem, we refer the reader to Sakai’s
papers 15),17).

nDCGl is a stable and sensitive metric pro-
vided that l is large and a is small 15),17). Q-
measure is also stable and sensitive 15),17), and
it has been applied to XML retrieval 8) as well
as factoid question answering 16). It is more
highly correlated with AveP than nDCG is; In
a binary relevance environment, Q-measure =
AveP holds for any ranked output if there
is no relevant document below Rank R, and
Q-measure > AveP holds otherwise ☆.

By default, we use the Arithmetic Mean over
a given topic set with any IR metric. However,
this paper also considers the Geometric Mean
versions of AveP and Q-measure, which we de-
note by G AveP and G Q-measure. It has been
argued that the Geometric Mean may be more
useful than the Arithmetic Mean for building
robust IR systems, i.e., those that can produce
a decent output whatever the query is 11),18),21).
This is because the Geometric Mean puts more
emphasis on low-performing topics than the
Arithmetic one: Note, for example, that while
the Arithmetic Mean of 2 and 50 is 26, the cor-
responding Geometric mean is 10.

Let xi denote the value of a metric for the i-th
topic (down to four significant figures). Then,
following 21), the actual method we use for ob-
taining the Geometric Mean (GM) is:

GM =

exp
(∑

1≤i≤nlog(xi+0.00001)
n

)
−0.00001 .

(7)

☆ Q-measure can also be reduced completely to AveP
by setting all gain values to zero 15).

The 0.00001’s are necessary because limiting
the ranked output size to L ≤ 1000 implies
that xi may be zero. Geometric Mean AveP
was used at the TREC Robust Track in order
to focus on the “hardest” topics. Sakai 18) used
Geometric Mean Q-measure for analysing their
results at NTCIR-5.

4. Data

Our experiments use four different data sets
(i.e., test collections and submitted runs) from
the NTCIR CLIR track series 7). Table 1
provides some statistics of the data such as
the number of L-relevant documents per topic.
From each data set, only the top 30 runs as
measured by Mean relaxed AveP (i.e., AveP
that treats S-, A- and B-relevant documents
just as “relevant”) were used in our experi-
ments, since “near-zero” runs are unlikely to be
useful for discussing the discriminative power
of metrics. Thus, for each data set, we have
a set of 30 ∗ 29/2 = 435 system combinations,
which we shall denote by C. The distribution
of Mean AveP values for each data set is shown
in Fig. 1: It can be observed, for example, that
the top 30 NTCIR-5 Japanese runs are quite
similar to one another in terms of Mean AveP.

5. Bootstrap Hypothesis Tests

This section describes how existing Bootstrap
Hypothesis Tests 3) can be applied to IR eval-
uation. Our proposed methods, which will be
described in Section 6, use these tests as the
basis for comparing the discriminative power of
IR metrics.

5.1 Paired Test: One Sample Problem
We first describe the Paired Bootstrap Hy-

pothesis Test, which can be used for comparing
two IR strategies run against a common test
collection. This is similar to the one described
earlier by Savoy 20), except that we use a Stu-
dentised test statistic to enhance accuracy. It is
based on fewer assumptions than standard sig-
nificance tests such as Paired t- and Wilcoxon
tests, is easy to apply, yet has high power.

Let Q be the set of topics provided in the
test collection, and let |Q| = n. Let x =
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Fig. 1 Distribution of Mean AveP values for the runs used in this study.

(x1, . . . , xn) and y = (y1, . . . , yn) denote the
per-topic performance values of systems X and
Y as measured by some performance metric
M . A standard method for comparing X and
Y is to measure the difference between sample
means x̄ =

∑
i xi/n and ȳ =

∑
i yi/n such as

Mean AveP values. But what we really want
to know is whether the population means for
X and Y (μX and μY ), computed based on
the population P of topics, are any different.
Since we can regard x and y as paired data,
we let z = (z1, . . . , zn) where zi = xi − yi, let
μ = μX −μY and set up the following hypothe-
ses for a two-tailed test ☆:

H0 : μ = 0 vs H1 : μ �= 0 .
Thus the problem has been reduced to a one-
sample problem 3). As with standard signifi-
cance tests, we assume that z is an independent
and identically distributed sample drawn from
an unknown distribution.

In order to conduct a Hypothesis Test, we
need a test statistic t and a null hypothesis dis-
tribution. Consider:

t(z) =
z̄

σ̄/
√

n
where σ̄ is the standard deviation of z, given by

☆ One could also consider a one-tailed test, e.g., H0 :
μ > 0. However, in order to do this, one needs prior
knowledge that System X is better than Y . We
prefer a two-tailed test, which is more conservative
(See Section 1).

for b = 1 to B
create topic set Q∗b of size n = |Q| by
randomly sampling with replacement from Q;
for i = 1 to n

q = i-th topic from Q∗b;
w∗b

i = observed value in w for topic q;

Fig. 2 Algorithm for creating bootstrap samples Q∗b

and w∗b = (w∗b
1 , . . . , w∗b

n ) for the Paired Test.

σ̄ =

(∑
i

(zi − z̄)2/(n − 1)

) 1
2

.

Moreover, let w = (w1, . . . , wn) where wi =
zi − z̄, in order to create bootstrap samples w∗b

of per-topic performance differences that obey
H0. Figure 2 shows the algorithm for ob-
taining B bootstrap samples of topics (Q∗b )
and the corresponding values for w∗b. (We
let B = 1000 throughout this paper.) For
simplicity, let us assume that we only have
five topics Q = (001, 002, 003, 004, 005) and
that w = (0.2, 0.0, 0.1, 0.4, 0.0). Suppose that,
for trial b, sampling with replacement from Q
yields Q∗b = (001, 003, 001, 002, 005). Then,
w∗b = (0.2, 0.1, 0.2, 0.0, 0.0).

For each b, let w̄∗b and σ̄∗b denote the mean
and the standard deviation of w∗b. Figure 3
shows how to compute the Achieved Signifi-
cance Level (ASL) using w∗b. In essence, we
examine how rare the observed difference would
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count = 0;
for b = 1 to B

t(w∗b) = w̄∗b/(σ̄∗b/
√

n);
if( |t(w∗b)| ≥ |t(z)| ) then count++;

ASL = count/B;

Fig. 3 Algorithm for estimating the Achieved
Significance Level based on the Paired Test.

Fig. 4 Histogram of t(w∗b) for the difference in Mean
AveP between Run 1 and Run 16 from the
NTCIR-5 Chinese data.

be under H0. If ASL < α, where typically
α = 0.01 (very strong evidence against H0) or
α = 0.05 (reasonably strong evidence against
H0), then we reject H0. That is, we have
enough evidence to state that μX and μY are
probably different.

Figure 4 shows a histogram of 1000 boot-
strap replicates t(w∗b) for the difference in
Mean AveP between the top run and a “me-
dian” (16th-best) run from the NTCIR-5 Chi-
nese data. It can be observed that the graph
looks quite normal . The observed value t(z)
for this run pair is 5.373, which is greater than
any value of t(w∗b) represented in this figure.
Therefore, according to the algorithm in Fig. 3,
the estimated ASL is 0.000. That is, it is ex-
tremely unlikely that the observed difference is
simply due to chance. Figure 5 shows a sim-
ilar histogram for the same run pair, but for
Mean PDoc1000. The observed value t(z) for
this run pair is −0.633, and small values like
this occur quite frequently according to Fig. 5.
Hence, according to the algorithm in Fig. 3,
the estimated ASL is 0.544. To sum up, the
two runs are significantly different according to
AveP, but not according to PDoc1000. It can be
observed that the AveP distribution is sharper
than the PDoc1000 one, which gives the signif-
icance test with AveP higher power than that
with PDoc1000.

The Paired Test described above relies on the

Fig. 5 Histogram of t(w∗b) for the difference in Mean
PDoc1000 between Run 1 and Run 16 from the
NTCIR-5 Chinese data.

fact that the difference between two Arithmetic
Means equals the Arithmetic Mean of individ-
ual differences. But then how should we dis-
cuss statistical significance in terms of Geomet-
ric Mean AveP/Q-measure?

There are at least two ways to handle the
problem: One way is to use the Unpaired Boot-
strap Hypothesis Test instead, as we shall de-
scribe in Section 5.2. Unlike the Paired Test,
the Unpaired Test is directly applicable to vir-
tually any metric, such as the “area” mea-
sure based on the worst N topics for each
system 21). Alternatively, we can stick to the
Paired Test. Thus, instead of examining zi =
xi − yi as mentioned earlier, we could exam-
ine log(xi + 0.00001) − log(yi + 0.00001). This
is because testing the significance in terms of
the Arithmetic Mean inside Eq. (7) should be
equivalent to testing that in terms of the en-
tire Geometric Mean formula. For convenience,
“Arithmetic Mean inside the Geometric Mean”
will be denoted by the prefix “AG ”: In Sec-
tion 6.2, we test AG AveP and AG Q-measure
to discuss the discriminative power of G AveP
and G Q-measure.

5.2 Unpaired Test: Two Sample Prob-
lem

As mentioned above, the Unpaired Bootstrap
Hypothesis Test is more widely applicable than
the Paired one, and it can handle Geomet-
ric Means directly. The downside is that the
Unpaired Test has much less power than the
Paired one since it uses less information. To be
more specific, the Unpaired Test does not utilise
the fact that the performance values xi and yi

(See Section 5.1) correspond to each other for
each topic. For this reason, the Paired Test
should be preferred wherever it is applicable.

The Unpaired Test treats x and y as unpaired
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let v = (x1, . . . , xn, y1, . . . , ym);
for b = 1 to B

from a set of integers (1, . . . , n + m),
obtain a random sample of size n + m
by sampling with replacement;
for i = 1 to n

j = i-th element of the sample of integers;
x∗b

i = j-th element of v;
for i = n + 1 to n + m

j = i-th element of the sample of integers;
y∗b

i−n = j-th element of v;

Fig. 6 Algorithm for creating bootstrap samples x∗b =
(x∗b

1 , . . . , x∗b
n ) and y∗b = (y∗b

1 , . . . , y∗b
m ) for the

Unpaired Test. (We let m = n throughout this
paper.)

data, naturally. (In general, the two sets of ob-
servations may come from different test collec-
tions, hence |x| and |y| may differ. For this rea-
son, |x| and |y| are denoted by n and m, respec-
tively. However, since we are dealing with data
obtained by running two IR strategies against a
common test collection, |x| = |y| = n holds in
our case.) As with standard significance tests,
we assume that x and y are independently and
identically distributed samples from unknown
distributions F and G, respectively. The test
statistic we consider in this case is

d̂ = M(x) − M(y) (8)

where, for example, M(x) is the value of metric
M computed based on x. (Note that M does
not have to be an Arithmetic Mean metric.)
But what we really want to know is d, which
represents the “true” absolute performance dif-
ference between Systems X and Y when the
whole population of topics is taken into ac-
count. Thus the hypotheses we can set up for
a two-tailed test are:

H0 : d = 0 vs H1 : d �= 0 .
We now need a null distribution for the data

under H0. A natural choice would be to assume
that F = G, i.e., that the observed values xi

and yi actually come from an identical distribu-
tion. (In fact, F = G itself is commonly used as
the null hypothesis.) First, let v denote a vector
of size n+m obtained by concatenating the two
per-topic performance vectors x and y. Fig-
ure 6 shows how to generate bootstrap samples
for the Unpaired Test. For simplicity, let us as-
sume that x = (0.1, 0.3) and y = (0.2, 0.0), and
therefore that v = (0.1, 0.3, 0.2, 0.0). Then we
generate random integers that range between 1
and 4: Suppose that we have obtained (1,4,1,2)
for b = 1. Then, by splitting this vector into

count = 0;
for b = 1 to B

d∗b = M(x∗b) − M(y∗b);

if( |d∗b| ≥ |d̂| ) then count++;
ASL = count/B;

Fig. 7 Algorithm for estimating the Achieved
Significance Level based on the Unpaired Test.

(1,4) and (1,2), we obtain x∗1 = (0.1, 0.0) and
y∗1 = (0.1, 0.3). In this way, Fig. 6 shuffles
the observed values without looking at whether
they come from x or y.

Figure 7 shows how to compute the two-
tailed ASL based on the Unpaired Test, in a
way similar to Fig. 3.

6. Discriminative Power Comparison
Using Bootstrap Sensitivity Meth-
ods

6.1 Proposed Methods
We now propose straightforward methods

for assessing and comparing the discriminative
power of IR effectiveness metrics, which we call
the Bootstrap Sensitivity Methods. The idea is
simple: Perform a Bootstrap Hypothesis Test
for every system pair, and count how many of
the pairs satisfy ASL < α. That is, we com-
pare the sensitivity of metrics while holding the
probability of Type I error (α) constant. More-
over, since each bootstrap replicate of the differ-
ence between two summary statistics (i.e., w̄∗b

for the Paired Test and d∗b for the Unpaired
Test) is derived from exactly n = |Q| topics,
we can obtain a natural estimate of the over-
all performance difference required for guaran-
teeing ASL < α, given n. This may be useful
for informally guessing whether two systems are
significantly different by just looking at the dif-
ference between two summary statistics.

Let w̄∗b
X,Y and d∗b

X,Y explicitly denote the
above bootstrap replicates for a particular sys-
tem pair (X, Y ). Figures 8 and 9 show our al-
gorithms for estimating the overall performance
difference required for achieving ASL < α given
n, based on the Paired Test and the Unpaired
Test, respectively. For example, if α = 0.05
is chosen for Fig. 9, the algorithm obtains the
Bα = 1000 ∗ 0.05 = 50-th largest value among
|d∗b

X,Y | for each (X, Y ). Among the |C| = 435
values thus obtained, the algorithm takes the
maximum value just to be conservative. Fig. 8
is almost identical to Fig. 9, although it looks
slightly more complicated: Since we used Stu-
dentisation with the Paired Test, the bootstrap
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DIFF = φ;
for each system pair (X, Y ) ∈ C

sort |t(w∗1
X,Y )|, . . . , |t(w∗B

X,Y )|;
if |t(w∗b′

X,Y )| is the Bα-th largest value,

then add |w̄∗b′
X,Y | to DIFF ;

estimated diff = max{diff ∈ DIFF}
(rounded to two significant figures);

Fig. 8 Algorithm for estimating the overall perfor-
mance difference required for achieving a given
significance level with the Paired Test.

DIFF = φ;
for each system pair (X, Y ) ∈ C

sort |d∗1X,Y |, . . . , |d∗B
X,Y | and

add the Bα-th largest value to DIFF ;
estimated diff = max{diff ∈ DIFF}
(rounded to two significant figures);

Fig. 9 Algorithm for estimating the overall perfor-
mance difference required for achieving a given
significance level with the Unpaired Test.

replicate w̄∗b
X,Y is not equal to the test statistic

t(w∗b
X,Y ) (See Fig. 3) which we are using as the

sort key .
6.2 Experimental Results
Figures 10, 11, 12 and 13 plot, for each IR

metric, the Paired/Unpaired Bootstrap ASLs
of all system pairs for the NTCIR-3 Chi-
nese/Japanese data. (Similar graphs for the
NTCIR-5 data are omitted due to space limi-
tation.) The horizontal axis represents 435 sys-
tem pairs sorted by the ASL. As the curves
may be difficult for the reader to distinguish
from one another, below we report the results
in words, using the symbol “≥” to represent the
relationship “is at least as sensitive as”.
• Figures 10, 11 and 12 all agree that “Q-

measure, nDCG1000, AveP ≥ nCG1000,
AG AveP, AG Q-measure ≥ PDoc1000”.
(In Fig. 11, PDoc1000 fails to achieve
ASL < α = 0.05 for all system pairs.)

• Figure 13 suggests that PDoc1000 is far less
sensitive than the other six metrics, which
does not contradict with our first observa-
tion.

The ASL curves for the NTCIR-5 data, not
shown here, generally agree with the above
trends, except that G Q-measure and G AveP
appear to be more sensitive than Q-measure
and AveP according to the Unpaired Tests with
the NTCIR-5 Japanese data. We will discuss
this anomaly later.

Table 2 was obtained by cutting the Paired

Test ASL curves (Fig. 10, Fig. 12, and similar
graphs for the NTCIR-5 data not shown in this
paper) in half at ASL < α = 0.05. For each
data set, the metrics have been sorted by Col-
umn (ii), which represents our proposed sensi-
tivity criterion based on the Paired Bootstrap
Hypothesis Tests. Column (iii) shows, for each
metric, the estimated difference required for
satisfying ASL < α = 0.05, given the topic set
size. The algorithm shown in Fig. 8 was used
to obtain these estimates. For example, the
first entry in Table 2 (a) shows that Q-measure
managed to detect a significant difference for
242 system pairs out of 435 NTCIR-3 Chinese
runs (i.e., 56%) and therefore is the most sensi-
tive metric for this data set, and that an overall
difference of around 0.10 is required to achieve
ASL < α = 0.05 using 42 topics. For AG AveP
and AG Q-measure, the estimates represent dif-
ferences between two Arithmetic Means of logs
rather than differences between two Geometric
Means (See Section 5.1).

Again, Table 2 (a)-(c) all suggest that Q-
measure, nDCG1000 and AveP are the most
sensitive metrics, that PDoc1000 is the least
sensitive metric, and that nCG1000, G AveP
and G Q-measure lie somewhere in the mid-
dle. Table 2 (d), which represents the NTCIR-5
Japanese results, agrees with this trend except
that nCG1000 appears to be exceptionally in-
sensitive.

It is clear that the Bootstrap Sensitivity val-
ues are heavily dependent on the distribution
of the run performances. For example, the sen-
sitivity values for the NTCIR-5 Japanese data
(Table 2 (d)) are much lower than those for the
NTCIR-3 Japanese data (Table 2 (b)), reflect-
ing how similar the run performances are for
the NTCIR-5 Japanese data (See Fig. 1). On
the other hand, the estimated overall difference
required for guaranteeing ASL < α = 0.05 ap-
pears to be relatively stable for a given topic
set size: For example, the overall difference
required in terms of AveP for the NTCIR-
3 Chinese data and that for the NTCIR-3
Japanese data are both 0.11 (Compare Ta-
ble 2 (a) and (b)). Note, however, that Col-
umn (iii) is not for comparing the discrimina-
tive power of different IR metrics: some metrics
tend to take small values while others tend to
take large values, so such comparisons are not
necessarily valid.

Similarly, Table 3 (a)-(d) were obtained by
cutting the Unpaired Test ASL curves (Fig. 11,
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Fig. 10 Paired Test ASL curves for the NTCIR-3 Chinese data.

Fig. 11 Unpaired Test ASL curves for the NTCIR-3 Chinese data.

Fig. 13, and similar graphs for the NTCIR-5
data not shown in this paper) in half at ASL <
α = 0.05. It can be observed that, because the
Unpaired Test has considerably less power than
the Paired one no matter what metric is used,
our Unpaired Bootstrap Sensitivity Method is
less useful than the Paired one for discussing
which metrics are more sensitive than others.
Note that the sensitivity values in Column (ii)
are naturally much lower compared to the cor-
responding Paired Test values. On the other
hand, the advantage of using the Unpaired ver-

sion of our method is that it can directly es-
timate the overall performance difference re-
quired even for non-Arithmetic Mean metrics
such as G AveP and G Q-measure. For exam-
ple, Table 3 (c) shows that, for the NTCIR-5
Chinese runs, a difference of 0.23 is required
in terms of G AveP, which is much larger than
0.12, the difference required in terms of Arith-
metic Mean AveP.

Figures 14 and 15 summarise the general
trends of our Paired and Unpaired Test re-
sults, by visualising all the sensitivity values
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Fig. 12 Paired Test ASL curves for the NTCIR-3 Japanese data.

Fig. 13 Unpaired Test ASL curves for the NTCIR-3 CLIR Japanese data.

shown in Column (ii) of Table 2 and Table 3.
Again, the Paired Test results in Fig. 14 sug-
gest that Q-measure, nDCG1000 and AveP are
the most sensitive metrics while PDoc1000 is the
least sensitive one (although nCG1000 is excep-
tionally insensitive for the NTCIR-5 Japanese
data). Whereas, the Unpaired Test results in
Fig. 15 just suggest that PDoc1000 is less sen-
sitive than others. Thus, as mentioned earlier,
the Unpaired Bootstrap Sensitivity Method is
less useful than the Paired one for comparing
metrics.

We now discuss the anomalous results with
the NTCIR-5 Japanese data represented at the
very front of Fig. 15, which show that G Q-
measure and G AveP are exceptionally sensi-
tive for this data set. While we do not have a
good explanation for the discrepancy between
the Paired Test results and the Upaired Test
ones, we conjecture that the NTCIR-5 Japanese
runs themselves have some characteristics that
are different from the other run sets. To be-
gin with, the run performances are very simi-
lar, as Fig. 1 shows. Moreover, the fact that the
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Table 2 Results based on the Paired Bootstrap Sen-
sitivity Method (α = 0.05; NTCIR-3 and
NTCIR-5 CLIR data).

(i) metric (ii) sensitivity (iii) estimated

(ASL < α) difference

(a) NTCIR-3 Chinese (42 topics)

Q-measure 242/435 = 56% 0.10

AveP 240/435 = 55% 0.11

nDCG1000 235/435 = 54% 0.13

nCG1000 195/435 = 45% 0.15

AG AveP 163/435 = 37% 1.42

AG Q-measure 150/435 = 34% 1.76

PDoc1000 116/435 = 27% 0.02

(b) NTCIR-3 Japanese (42 topics)

nDCG1000 316/435 = 73% 0.14

Q-measure 305/435 = 70% 0.13

AveP 296/435 = 68% 0.11

nCG1000 268/435 = 62% 0.18

AG AveP 258/435 = 59% 1.62

AG Q-measure 251/435 = 58% 1.74

PDoc1000 160/435 = 37% 0.04

(c) NTCIR-5 Chinese (50 topics)

Q-measure 174/435 = 40% 0.11

nDCG1000 163/435 = 37% 0.10

AveP 159/435 = 37% 0.11

nCG1000 92/435 = 21% 0.17

AG AveP 65/435 = 15% 1.14

AG Q-measure 64/435 = 15% 1.02

PDoc1000 51/435 = 12% 0.01

(d) NTCIR-5 Japanese (47 topics)

Q-measure 136/435 = 31% 0.09

nDCG1000 120/435 = 28% 0.13

AveP 113/435 = 26% 0.10

AG AveP 93/435 = 21% 0.59

AG Q-measure 90/435 = 21% 0.57

PDoc1000 53/435 = 12% 0.01

nCG1000 35/435 = 8% 0.12

Geometric Means do well suggests that some
“hard” topics (i.e., those with very low perfor-
mances) are playing an important role in sys-
tem discrimination 11),18),21). Note also that, in
Fig. 15, nDCG1000 does relatively well for the
NTCIR-5 Japanese data, though not as well as
G Q-measure and G AveP. This may be be-
cause nDCG1000 is relatively highly correlated
with G Q-measure and G AveP, as is discussed
in the Appendix.

7. Comparison with Stability and
Swap Methods

Readers familiar with the Stability Method
proposed at ACM SIGIR 2000 1) and the Swap
Method proposed at SIGIR 2002 22) will note

Table 3 Results based on the Unpaired Bootstrap
Sensitivity Method (α = 0.05; NTCIR-3 and
NTCIR-5 CLIR data).

(i) metric (ii) sensitivity (iii) estimated

(ASL < α) difference

(a) NTCIR-3 Chinese (42 topics)

Q-measure 124/435 = 29% 0.12

AveP 121/435 = 28% 0.12

nDCG1000 117/435 = 27% 0.13

G Q-measure 103/435 = 24% 0.17

G AveP 100/435 = 23% 0.16

nCG1000 92/435 = 21% 0.15

PDoc1000 0/435 = 0% 0.03

(b) NTCIR-3 Japanese (42 topics)

nCG1000 235/435 = 54% 0.19

Q-measure 234/435 = 54% 0.13

nDCG1000 231/435 = 53% 0.15

G Q-measure 224/435 = 51% 0.20

AveP 220/435 = 51% 0.14

G AveP 212/435 = 49% 0.19

PDoc1000 62/435 = 14% 0.03

(c) NTCIR-5 Chinese (50 topics)

nDCG1000 44/435 = 10% 0.11

nCG1000 44/435 = 10% 0.11

Q-measure 43/435 = 10% 0.11

G Q-measure 43/435 = 10% 0.25

G AveP 39/435 = 9% 0.23

AveP 35/435 = 8% 0.12

PDoc1000 0/435 = 0% 0.03

(d) NTCIR-5 Japanese (47 topics)

G Q-measure 55/435 = 13% 0.19

G AveP 49/435 = 11% 0.20

nDCG1000 34/435 = 8% 0.10

nCG1000 17/435 = 4% 0.09

Q-measure 14/435 = 3% 0.11

AveP 7/435 = 2% 0.12

PDoc1000 0/435 = 0% 0.04

that our Bootstrap Sensitivity Methods are re-
lated to them. The crucial difference is that
our methods are based on the bootstrap which
has time-honoured theoretical foundations. At
the implementation level, the main difference
is that the original Stability and Swap Meth-
ods use sampling without replacement whereas
the bootstrap samples are obtained by sam-
pling with replacement. However, as was men-
tioned in Section 2, Sakai 12) showed that sam-
pling with and without replacement yield sim-
ilar results for the purpose of ranking metrics
according to discriminative power. In light of
this, we conduct Stability and Swap experi-
ments by reusing our Paired Test Bootstrap
samples Q∗b, which have been sampled with re-
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Fig. 14 Summary of Paired Bootstrap Sensitivity results.

Fig. 15 Summary of Unpaired Bootstrap Sensitivity results.

placement from the original topic set Q. Recall
that these samples are equal in size to the orig-
inal topic set Q.

7.1 Comparison with the Stability
Method

The essence of the Stability Method is to
compare systems X and Y in terms of met-
ric M using B different topic sets and count
how often X outperforms Y , how often Y out-
performs X and how often the two are re-
garded as equivalent. Our version works as
follows: Let M(X, Q∗b) denote the value of
metric M for System X computed based on
Q∗b. Given a fuzziness value f 1), we count
GT (X, Y ), GT (Y, X) and EQ(X, Y ) as shown
in Fig. 16. From the algorithm, it is clear that
GT (X, Y )+GT (Y, X)+EQ(X, Y ) = B, where
GT (X, Y ) is the number of times System X
outperforms System Y , and EQ(X, Y ) is the
number of times System X and System Y are

for each system pair (X, Y ) ∈ C
for b = 1 to B

margin = f ∗ max(M(X, Q∗b), M(Y, Q∗b));
if( |M(X, Q∗b) − M(Y, Q∗b)| < margin )

EQ(X, Y ) + +
else if( M(X, Q∗b) > M(Y, Q∗b) )

GT (X, Y ) + +
else

GT (Y, X) + +;

Fig. 16 Algorithm for computing EQ(X, Y ),
GT (X, Y ) and GT (Y, X).

“almost” equal, where “almost” is defined by
the fuzziness value. Then, the minority rate
(MR) and the proportion of ties (PT ) for M
are computed as:

MR =
∑

C min(GT (X, Y ), GT (Y, X))
B
∑

C

.

(9)
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Fig. 17 MR-PT curves based on 30 runs for the NTCIR-3 Chinese data.

Fig. 18 MR-PT curves based on 30 runs for the NTCIR-3 Japanese data.

PT =
∑

C EQ(X, Y )
B
∑

C

. (10)

MR estimates the chance of reaching a wrong
conclusion about a system pair, while PT re-
flects lack of discriminative power. Thus, for
a good performance metric, both of these val-
ues should be small. As a fixed fuzziness value
implies different trade-offs for different metrics,
we vary f (= 0.01, 0.02, . . . , 0.20) for comparing
the stability. We refer to the trade-off curves as
MR-PT curves 12),17).

Figures 17 and 18 show the MR-PT curves

for the NTCIR3 Chinese and Japanese data,
respectively. (Similar graphs for the NTCIR-
5 data are omitted due to space limitation.)
It can be observed that the Stability Method
results are consistent with the Bootstrap Sensi-
tivity results which suggested that “Q-measure,
nDCG1000, AveP ≥ nCG1000, G AveP, G Q-
measure ≥ PDoc1000”. The two methods agree
with each other for the NTCIR-5 data as well:
they even agree that G AveP, G Q-measure do
exceptionally well for the NTCIR-5 Japanese
data.
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for each system pair (X, Y ) ∈ C
for b = 1 to B

D∗b = M(X, Q∗b) − M(Y, Q∗b);
D′∗b = M(X, Q′∗b) − M(Y, Q′∗b);
counter(BIN (D∗b)) + +;
if( D∗b ∗ D′∗b > 0 ) then

continue
else

swap counter(BIN (D∗b)) + +;
for each bin i

swap rate(i) = swap counter(i)/counter(i);

Fig. 19 Algorithm for computing the swap rates.

7.2 Comparison with the Swap
Method

As was mentioned in Section 2, the essence of
the Swap Method is to estimate the swap rate,
which represents the probability of the event
that two experiments are contradictory given
an overall performance difference. Our version
works as follows: First, in addition to the set of
B bootstrap samples {Q∗b}, we create another
set of B bootstrap samples {Q′∗b} by sampling
with replacement from Q. Let D denote the
overall performance difference between two sys-
tems as measured by M based on a topic set;
we prepare 21 performance difference bins 22),
where the first bin represents performance dif-
ferences such that 0 ≤ D < 0.01, the second bin
represents those such that 0.01 ≤ D < 0.02,
and so on, and the last bin represents those
such that 0.20 ≤ D. Let BIN (D) denote the
mapping from a difference D to one of the 21
bins where it belongs. The algorithm shown
in Fig. 19 calculates a swap rate for each bin.
Note that D∗b is not the same as our d∗b from
Fig. 7: D∗b is the overall performance differ-
ence between X and Y as measured using the
bootstrap topic sample Q∗b; whereas, d∗b is the
bootstrap replicate of the observed overall per-
formance difference under the assumption that
the per-topic values of X and Y come from an
identical distribution.

We can thus plot swap rates against per-
formance difference bins. By looking for bins
whose swap rates do not exceed (say) 5%, we
can estimate how much absolute difference is
required in order to conclude that System X
is better than Y with 95% “confidence”: But,
as mentioned earlier, the Swap Method is not
directly related to statistical significance tests:
the “confidence” in this context is to do with
the probability of observing a discrepancy be-
tween two experiments, whereas confidence in
statistical significance tests is derived directly

Table 4 Swap Method results (swap rate ≤ 5%;
NTCIR-3 and NTCIR-5 CLIR Chinese and
Japanese data).

(i) metric (ii) diff. (iii) max. (ii)/(iii) %pairs

satisfying

(ii)

(a) NTCIR-3 Chinese (42 topics)

nDCG1000 0.07 .7414 9% 47%

Q-measure 0.07 .5374 13% 43%

AveP 0.08 .5295 15% 40%

nCG1000 0.08 .9514 8% 35%

G AveP 0.09 .4739 18% 33%

G Q 0.10 .4967 20% 33%

-measure

PDoc1000 0.01 .0983 10% 20%

(b) NTCIR-3 Japanese (42 topics)

nDCG1000 0.07 .7994 9% 69%

Q-measure 0.07 .6433 11% 67%

AveP 0.07 .6449 11% 66%

nCG1000 0.10 .9913 10% 56%

G AveP 0.10 .5699 18% 54%

G Q 0.12 .5981 20% 53%

-measure

PDoc1000 0.01 .0982 10% 41%

(c) NTCIR-5 Chinese (50 topics)

Q-measure 0.07 .6757 10% 26%

AveP 0.07 .6480 11% 26%

nDCG1000 0.07 .8334 8% 23%

G AveP 0.14 .6065 23% 23%

G Q 0.15 .6501 23% 22%

-measure

nCG1000 0.07 .9927 7% 16%

PDoc1000 0.01 .0830 12% 0.4%

(d) NTCIR-5 Japanese (47 topics)

G AveP 0.13 .6203 21% 17%

Q-measure 0.07 .6652 11% 16%

G Q 0.13 .6480 20% 15%

-measure

nDCG1000 0.07 .8389 8% 15%

AveP 0.08 .6438 12% 11%

nCG1000 0.07 .9973 7% 7%

PDoc1000 0.01 .1324 8% 0.1%

from the probability of Type I error.
Table 4 summarises the results of our swap

experiments for the four data sets. Column (ii)
shows the absolute difference required for guar-
anteeing that the swap rate does not exceed
5%. The column labelled with “(ii)/(iii)” trans-
lates these values into relative values using the
maximum performance recorded among all tri-
als (Column (iii)). The last column, by which
the IR metrics have been sorted, shows the
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Fig. 20 Summary of Swap Method results.

percentage of comparisons (among the total of
435*1000 comparisons) that actually satisfied
the difference threshold shown in Column (ii).
Figure 20 visualises the last column of Table 4.

Again, the results are generally consistent
with the Bootstrap Sensitivity ones: Accord-
ing to the Swap Method, nDCG1000, Q-measure
and AveP are the best metrics and PDoc1000

is the worst metric for the NTCIR-3 Chi-
nese/Japanese data and the NTCIR-5 Chinese
data. In the middle lie nCG1000, G AveP
and G Q-measure. (The results generalise
those by Voorhees 21) who compared AveP and
G AveP.) Yet again, the NTCIR-5 Japanese
results (Table 4 (d)) look somewhat anomalous,
in that G AveP and G Q-measure do as well as
their Arithmetic Mean counterparts. As men-
tioned earlier, this suggests that “hard” top-
ics (i.e., those with low performance values)
are playing an important role for discriminat-
ing some of the NTCIR-5 Japanese runs from
others. To sum up, the Swap Method results
are generally consistent with both the Stability
Method and the Bootstrap Sensitivity results.

Finally, note that the estimated overall per-
formance differences for guaranteeing 5% swap
rate or less are lower than those required for
achieving ASL < α = 0.05 with the Bootstrap
Hypothesis Tests. For example, Table 4 (c)
shows that, given 50 topics, the overall perfor-
mance difference in Q-measure (or AveP) re-
quired for guaranteeing 5% swap rate or less is
0.07. Whereas, the Paired Test result in Ta-
ble 2 (c) and the Unpaired one in Table 3 (c)
agree that, under the same circumstance, the
estimated difference in Q-measure (or AveP)
required for achieving ASL < α = 0.05 is 0.11.

Thus the requirement of ASL < α = 0.05 based
on our Bootstrap Sensitivity Methods is more
demanding.

8. Conclusions and Future Work

This paper showed that Bootstrap Hypothe-
sis Tests are useful not only for comparing IR
strategies, but also for comparing the discrim-
inative power of IR metrics. The Paired Boot-
strap Test is directly applicable to any Arith-
metic Mean metric. The Unpaired Bootstrap
Test has less power, but is directly applica-
ble even to unconventional metrics. Our ex-
periments with the NTCIR-3 Chinese/Japanese
and the NTCIR-5 Chinese data showed that Q-
measure, nDCG1000 and AveP are all very sen-
sitive metrics; PDoc1000 is naturally extremely
insensitive; and that nCG1000 and Geometric
Mean AveP and Geometric Mean Q-measure
lie in the middle. Whereas, for the NTCIR-
5 Japanese data, the Geometric Mean metrics
appear to do at least as well as the Arithmetic
Mean ones, possibly because some difficult top-
ics are playing an important role for system dis-
crimination for this particular data set. More
importantly, however, these Bootstrap Sensitiv-
ity results are generally consistent with those
based on the somewhat ad hoc Stability and
Swap Methods.

Finally, it should be noted that the bootstrap
is not assumption-free: the most basic assump-
tion that it relies on is that the original topics
of the test collection are indepent and identi-
cally distributed samples from the population
P . We are aware that not all IR researchers are
happy even with this assumption 2). Moreover,
the bootstrap is known to fail when the empir-
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ical distribution based on the observed data is
a poor approximation of the true distribution.
Clarifying the limitations of our approach will
be one of the subjects of our future work.
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Appendix

This paper examined seven IR effectiveness
metrics from the viewpoint of discriminative
power in order to demonstrate the usefulness
of our proposed Bootstrap Sensitivity Meth-
ods. However, there are other aspects of IR
metrics that need to be examined, including
how the system rankings according to each met-
ric resemble each other . Following previous
work 9),17),21), we use Kendall’s rank correlation
for this purpose. For each of the four data sets
we used, we use the same 30 runs for computing
Kendall’s rank correlation τ between two sys-
tem rankings according to two different IR met-
rics. Note that Kendall’s τ lie between −1 and
1, where the former represents a pair of rank-
ings that are the perfect inverse of each other,
and the latter represents two identical rankings.

For Kendall’s τ , there is a standard signifi-
cance test available: Given the number of sys-
tems ns,

Z0 =
|τ |

((4ns + 10)/(9ns(ns − 1)))
1
2

(11)

obeys a normal distribution. Thus, a normal
test can easily be applied. Note that the test
statistic Z0 is proportional to |τ | given ns: In
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Table 5 Kendall’s rank correlations based on the top 30 runs from each data set.

NTCIR-3 metric (b) (c) (d) (e) (f) (g)

Chinese (a) Q-measure .8575 .7057 .9678 .6736 .6966 .7057

(b) nDCG1000 - .7655 .8345 .6874 .8115 .8207

(c) nCG1000 - - .6920 .8299 .7977 .7793

(d) AveP - - - .6782 .6644 .6736

(e) PDoc1000 - - - - .7103 .7011

(f) G Q-measure - - - - - .9632

(g) G AveP - - - - - -

NTCIR-3 metric (b) (c) (d) (e) (f) (g)

Japanese (a) Q-measure .9126 .8345 .9540 .8345 .8345 .8391

(b) nDCG1000 - .8667 .8851 .8115 .9126 .9172

(c) nCG1000 - - .8345 .7977 .8621 .8759

(d) AveP - - - .8345 .8069 .8299

(e) PDoc1000 - - - - .7609 .7563

(f) G Q-measure - - - - - .9586

(g) G AveP - - - - - -

NTCIR-5 metric (b) (c) (d) (e) (f) (g)

Chinese (a) Q-measure .8621 .5126 .9172 .6368 .5494 .5448

(b) nDCG1000 - .5402 .7977 .6460 .6414 .6552

(c) nCG1000 - - .4759 .7287 .5494 .5172

(d) AveP - - - .5632 .5126 .5264

(e) PDoc1000 - - - - .4897 .4667

(f) G Q-measure - - - - - .9218

(g) G AveP - - - - - -

NTCIR-5 metric (b) (c) (d) (e) (f) (g)

Japanese (a) Q-measure .8161 .5034 .8851 .5540 .6276 .6138

(b) nDCG1000 - .5862 .7563 .5816 .7287 .7241

(c) nCG1000 - - .4529 .6368 .7379 .7149

(d) AveP - - - .5494 .5862 .5816

(e) PDoc1000 - - - - .5402 .5448

(f) G Q-measure - - - - - .9494

(g) G AveP - - - - - -

terms of a two-tailed test with ns = 30 runs,
the rank correlation is significant at α = 0.01
if it is over 0.34. (For an alternative approach
to quantifying the accuracy of rank correlation,
we refer the reader to 14).)

Table 5 shows Kendall’s rank correlations
for the four data sets. For example, Row (a)
Column (b) represents the correlation between
Q-measure and nDCG1000. It can be observed
that all the values easily exceed 0.34 and there-
fore are statistically highly significant. For con-
venience, values over 0.8 are shown in bold, al-
though the choice of this threshold is arbitrary.
It can be observed that:
• Q-measure is consistently highly correlated

with AveP, and is also highly correlated
with nDCG1000

17). On the other hand,
the rank correlation between AveP and
nDCG1000 is below 0.8 for the NTCIR-5

Chinese and the Japanese data.
• Not surprisingly,G Q-measure and G AveP

are very highly correlated.
• Somewhat surprisingly, nDCG1000 is con-

sistently more highly correlated with G Q-
measure/G AveP than Q-measure and
AveP are.

Our explanation for the above third observa-
tion is as follows. Recall that, while nDCG1000

is a rank-based metric, Q-measure and AveP
are recall-based metrics computed by dividing
either the Blended Ratio or Precision by R,
the total number of relevant documents (See
Eqs. (1) and (5)). This suggests that nDCG1000

is more “forgiving” for low-recall topics than Q-
measure and AveP. That is, the nDCG1000 val-
ues for these topics tend to be relatively large,
and therefore these topics may have a signif-
icant impact on the overall nDCG1000 perfor-
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mance. This tendency coincides with those of
G Q-measure and G AveP, because they have
been designed to boost the contribution of low-
performing (i.e., low-recall) topics to the over-
all performance. However, it is known that
nDCG1000 is both counterintuitive and insen-
sitive if a large logarithm base is used 15),17).
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