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In this paper we formally specify and verify memory consistency models for shared-memory
multiprocessor systems, focusing on the causal memory consistency model, by use of a formal
method proposed by Taguchi and. Araki. This formal method includes the combination of the
Z notation and value-passing CCS (Calculus of Communicating Systems), and the state-based
CCS semantics which has the ability to describe the evolution of processes and the transition
of states simultaneously. So we specify separately the functional aspects and the concurrent
aspects of the causal memory in the Z notation and value-passing CCS respectively and define
the causal memory consistency model in terms of the state-based CCS semantics. We also
verify that the specified causal memory meets the defined causal memory consistency model.

1. Introduction

DSM (Distributed Shared Memory) systems
are a recent trend in parallel computer archi-
tectures and system software. Various mem-
ory consistency models have been proposed for
more efficient use of these systems. Memory
consistency models define the behavior of mul-
tiple memory accesses in DSM systems. For
example, in the sequential consistency model,
any series of memory operations must be ob-
served in the same order by different proces-
sors. Processor consistency models sometimes
allow a read operation to pass by previous write
operations. In the case of release consistency
models, any memory operations can be seen in
arbitrary orders if they are not issued from crit-
ical sections of a given parallel program.

In general, the weaker memory consistency
models are, the more complicated the behav-
ior of memory requests in the resultant DSM
systems is. Therefore, at some point, a formal
specification of such memory consistency mod-

_els will be required to understand and compare
the conventional memory consistency models as
well as explore new models.

To abstract the memory consistency mod-
els, two aspects of the models, functional as-
pects which model states and operations as state
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transitions and concurrency aspects which spec-
ify reactions with the environment and synchro-
nization of operations by communication, are
discussed in this paper.

Taguchi and Araki') proposed a formal
method which combines the Z notation? and
value-passing CCS (Calculus of Communicat-
ing Systems)®), a variant of CCS which allows
value passing between processes.

The Z notation is a model-based specification
language based on set theory and first-order
predicate logic. It has rich data structures and
facilities to define various operations. Thus it is
suited for modeling states and operations. But
the Z notation does not have enough facilities
to specify concurrency aspects. CCS is a pro-
cess algebra that is a suitable vehicle for model-
ing mathematical structures of concurrency as-
pects. However CCS has no explicit modeling
facilities for states and operations. Therefore,
the combination of the Z notation and CCS,
which complement each other, would result in
a versatile specification language)9.

In this formal method, functional aspects and
concurrency aspects are separated for the de-
sign of information systems. Taguchi and Araki
advocate the use of Z in the specification of
functional aspects and the use of value-passing
CCS in the specification of concurrency aspects.
In order to provide a sound theoretical basis for
this formal method, they proposed the state-
based CCS semantics. The main characteristic
of these semantics is its ability to describe the
evolution of processes and transition of states .
simultaneously.
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Modal and temporal logics have been used for
specifying and verifying properties of concur-
rent systems. They are also used for describ-
ing the capabilities of processes in process alge-
bra®. Taguchi and Araki proposed a Hennessy-
Milner logic for processes in value-passing CCS
which enables us to express properties such as
liveness and safety ascribed both to states and
to actions!.

In this paper we formally specify and verify
memory consistency models for shared-memory
multiprocessor systems, focusing on the causal
memory consistency model, using the formal
method above proposed by Taguchi and Araki.

Causal memory is an implementation of the
memory mechanism which satisfies the causal
memory consistency model: any read opera-
tion to shared-memory obtains the value which
is consistent with other causally related read
and write operations. A formal definition, im-
plementation and verification of causal mem-
ory have already been presented by Ahamad
and Hutto®). Regardless of their results, they
are inefficient for us to formalize every mem-
ory consistency model since they described only
program order and restrictions between opera-
tions and vector clocks using algebra, pseudo-
code and natural language and we have to ex-
plicitly specify functional and concurrency as-
pects, which are important factors for us to an-
alyze and design DSM.

In contrast, we specify separately the state
aspects and the concurrent aspects of the causal
memory in the Z notation and value-passing
CCS respectively and define the causal mem-
ory consistency model in terms of the state-
based CCS semantics. We also verify that
the specified causal memory meets the defined
causal memory consistency model using the
state-based CCS semantics.

This paper is structured as follows. In section
2, weak vector clocks”)-®) based on the causally-
precedes relation defined by Lamport?) is de-
scribed. In section 3, the state-based CCS se-
mantics is explained. In section 4, definition of
the causal memory consistency model in terms
of the state-based CCS semantics is given. In
section 5, a description of causal memory is de-
scribed by using the combination of the Z no-
tation and value-passing CCS. Verification of
causal memory is presented in section 6. Fi-
nally, we conclude and indicate our future works
in section 7.
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Fig. 1 A history of events in a causal memory system

2. Weak Vector Clocks

Vector clocks'® are used in distributed sys-
tems to determine whether a pair of events e;,
e; have a causal relation denoted by e; — e;
where — is the causally-precedes relation de-
fined by Lamport?). Using the vector clocks,
a timestamp is recorded when any event is de-
tected, and the causal relationship of pairs of
events are determined by comparing the times-
tamps. The timestamp is an n-tuple of integers,
where n is the number of processes. Given two
events e;, e; and their associated vector times-

tamps t(e;), t(e;), the following relations hold:

t(e:) < t(e)) L (VE:1...net(e)k] < t(e;)[k])

A@BL:1. . net(e)]l] < t(e)[])
tes) < t(e) = (t(es) < () V (&) = ¥(ey)
t(ei) X tle) © e — ¢ .

With the traditional vector clocks, the local
counter ¢[4] of a process P; increases whenever
P; executes an event. In contrast, with weak
vector clocks”), t[i] increases only when P; exe-
cutes an event that potentially leads to a change
in the system property which is expressed by
some state variables.

In either case, P; sends a message that con-
tains P;’s state change information with its vec-
tor timestamp, ¢;, to all other processes when-
ever its vector clock changes. When such a mes-
sage is received, all other processes, P;, learn
that the process P; has potentially changed
some properties and update their local state
and vector timestamp. In the case of weak vec-
tor clocks, P; updates its vector timestamp ¢;
as follows:

Vk:1...netk] = max(¢[k], t:[k])

Figure 1 illustrates a history of events in
the causal memory system described in sec-
tion 5 which adopts weak vector clocks. Pro-
cess P; increases its local counter t;[i] only
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when P; executes a write operation w;(z,v)
that changes the value of its local memory de-
noted by M;(z) = v. P; sends a broadcast
message of M;(z) = v and ¢;. Receiving the
broadcast message, all other processes, P;, ex-
ecute an apply operation for the consistency of
M;(z) = v to its local memory and its local
vector timestamp. Thus the following relations
hold.
ti(wi(2,0)) 2 12(r2(z,0)) & wi(z,0) = r2(,0)
t1(wi(,0)) = ts(rs(z,0)) & wi(z,0) — r3(z,0)
to(we2(z,1)) < ti(ni(z, 1)) & wa(z,1) = r(z,1)
t2(wa(z,1)) = t3(rs(z, 1)) © wa(z,1) = r3(z,1)
Note that t;[j] is the number of write oper-
ations by P; because t; is initialized to the 0
vector.

3. The State-Based CCS Semantics

Taguchi and Araki combine the syntax of the
Z notation and value-passing CCS and then
define a labeled transition system, called the
state-based CCS semantics, that reflects the
state transitions of Z variables and evolutions
of value-passing CCS processes simultaneously
and give transition rules for all operations?). In
this section the state-based CCS semantics and
its transition rules are explained. An example
of state transitions and evolutions of processes
using the transition rules will be shown in sec-
tion 5.3.
3.1 Labeled Transition Systems
In3), Milner provides the operational seman-
tics of CCS in terms of the following labeled
transition system:
(€, Act, {> | a € Act})
which consists of the set £ of agent expressions
in CCS, the set Act of actions, and the tran-
sition relation = C & x & for-each a € Act.
For example, a process E which evolves another
process E' by an action « is denoted by the fol-
lowing transition relation:
E 5 E
Taguchi and Araki regard operation schemas
in Z as transitions from old states to new states
so they provide the operational semantics of Z
in terms of the following labeled transition sys-
tem:
(8¢, Op, {= | a € Op})
which consists of the set St of states in Z, the
set Op of operation schemas, and the transition
relation 3 C St x St for each a € Op. For
example, a state s which evolves another state
s’ by an operation schema « is denoted by the
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following transition relation:
s 3
3.2 The State-Based CCS Semantics
In addition, they provide the operational se-
mantics of the combination language of the Z
notation and value-passing CCS in terms of the
following labeled transition system.

(€ x St, Act U Op,{> | a € ActU Op})
There is a restriction ActN Op = § which makes
distinctions between actions in CCS and oper-
ation schemas in Z. For example, a process a.F
with the state s which evolves another process
E with the state s’ by an operation schema o
in Z is denoted by the following transition rela-
tion: ' ,

(a.E,8)3(E,s') & a.ESE A s5s'
provided that s, s’ |= [©], where O is the first-
order representation of an operation schema a.

3.3 Transition Rules

In the state-based CCS semantics it is pos-
sible to access variables of the Z specification
within value-passing CCS expression. But there
are the following restrictions. The state of the
Z specification can only be changed by Z oper-
ation schemas and only input and output vari-
ables defined in the Z specification can be used
as variables within value-passing CCS expres-
sion. Thus, the action which reflects the vari-
ables can not be used within value-passing CCS
expression.
Prefix operator (1)

X o
B SE g @€ Opsme)
Prefix operator (2)
————— (a € Act)
(a.E,s)=>{E,s)

Z has a convention for the use of variables.
A variable with 7, e.g., 7 is regarded as an in-
put variable and a variable with !, e.g., z! as an
output variable. So in order to receive a value
for an input variable of the Z specification via
an input port from the environment, say a(z?)
is used and in order to send a value for an out-
put variable of the Z specification via an output
port to the environment, say @(z!) is used re-
spectively as the following prefix operators.
Prefix operator (3)

(sfz] = ¢)

(@(z)).B, s)"$(E, 5)
Prefix operator (4)

——— (s' = s{¢/a7})
(a(z?).E,s)" S (E,s') :
If the following prefix operator is.a prefix op-
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erator(2) and (3), the following s’ is s.
Recursion

(E,s)(F,s")
" , (P def E)
(P, 3>'—)<F, $ >
Sum(Non-deterministic Choice)
<El7 s>g)<F’ Sl)
(Ey + By, s)3(F,s')
(B, s)3(F,s")
(Ey + By, s)3(F, s")
Concurrent Composition (1)
(E,s)(E", ')
(E | F,s)>(E'| F,s')
(F,s)S(F's")
(E | F,s)E | F',s)

When an output value, say c, is communi-
cated from an output port @ to an input port
a, the following rule is applied.

Concurrent Composition (2)
(B,5) (B 5) (F,s)" D, s")
(E|F,s)D(E"| F',s

When the action « and @ do not involve val-
ues, the resulting communication is a synchro-
nization. In such a case the following rule is
applied.

Concurrent Composition (3)
(E,5)S(E',s) (F,s)S(F',s)
(E| F,s)5(E"| F',s)
Restriction
(B, 5)%(F,s")
(E\ L, s)=(F \ L,s")

(a ¢ Lo € Act)

Renaming
(B, s)(F,s")
Act,a = £(8))
T

Stlrhngs) defined a natural extension of a sin-
gle transition relation % to a sequence of ac-
tions of finite length, or traces a; . ..o, to pro-
vide the following transition rules:

Let w be such a sequence with £ as an empty
trace. The notation E-5F represents “E may
perform the trace w and become F.”

E3E E'3F
ESE EXF

We propose the following natural extension of
transition relations and trace transition rules:

For example let w be a sequence of actlons
including operation schemas a; ... ay,. '

(E,51)3(F,s!) & ESF A s1—)s,'z
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provided that Vi:1...nes;, s | [O;], where
s; and s] are regarded as old state and new state
of an operation schema «; as a transition, re-
spectively, ©; is the first-order representation of
a;, and n is the number of operation schemas
in w.

Trace

(B,5)>(E,s)
(E, )=

FWILEE

(E,
(E',s") (B',s")=
(E,s)=(F, s")

4. Definition of Causal Memory Con-
sistency Model

(F,s")

This section explains the causal memory con-
sistency model proposed by Hutto and Ahamad
in®11) | and then defines the model in terms of
the state-based CCS semantics.

4.1 Shared Memory Parallel Com-

puter Model

In®, Hutto and Ahamad define a shared
memory parallel computer model as follows:

e It is a finite set P of processes {Py,..., Py}
that interact by a series of read and write
operations via a shared memory that con-
sists of a finite set of locations.

e A write operation by a process P;, denoted
by w;(z, v) here, stores the value v in loca-
tion z.

e A read operation, denoted by r;(z,v) here,
notifies P; that v is stored in location z.

A local execution history L; of process P; is

a sequence of read and write operations. An
execution history H = (L, Lo, ..., L,) is a col-
lection of local histories. Let A be a set of all
operations in H and Aﬁw be a set of all oper-
ations by P; and all write operations in H.

Two kinds of program orders, serialization
and “respect’ are defined as follows:

* 0170z, if operation 0, precedes o2 in L;.

e 01 —) 02, if operation o; precedes o5 in H.

e S; is a serialization of A, if S; is a linear
sequence containing exactly the operations
in A such that each read operation from a
location returns the value written by the
most recent preceding write to the loca-
tion. If a read operation has no preceding
write, an initial value | is assumed to be
returned.

o Serialization S; of A respects order —, if,
for any operations o; and 02 in A, 03 — 0y
implies that o; precedes oy in S;.

Let w be a sequence A* of operations in H
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with ¢ as an empty trace. Let per;(0) be an op-
eration that P; “perceives’as the operation o.
For example, peri(ri(z?,v!)), peri(r;(z?,0!)),
pers(w;(z?,v?)) and per;(w;(z?,v?)) are
ri(x?, 0!} by P;, rj(2?,0!) by P;,w;(z?,0v?) by
P; and Apply; such that P; applies w;(z?,v7?)
to its local memory, respectively (See the opera-
tion schema Apply; and abbreviations r;(z?, v!)
and w;(z?,v?) that will be described in sec-
tion 5). Let (£ x St,Act U Op,{> | a €
Act U Op}) be a state-based CCS semantics
of the shared memory parallel computer model
above. Eo,El,El,EQ,Eé,E,,E“EJ,E range over
£ and 30,31,31,32,52,32,31,31,s over St Now we
define the above definitions in terms of the CCS
semantics as follows respectively:
® 01,00 € L;,3weE A% e
(01.E1, $1>i)<02.E2, S2>
o 01,00 € Hdw € A* e
<01.E1, 81>—w-)<02‘E2, 82>
o (Vo€ AeIper;(0) € 5;)
A

5,k 1. n,Vperi(re(z?,ul)) € S; o
(Fperi(wj(m?,u?) € S;,
peri(w; (zi?, vm?)) ¢ we
(peri(wj (z:?, vi?)).Ej, s;)
pert(w;(ﬁl) o ))w<p67‘i(7‘k($l?, 'Ul!)).Ei, Si>)
Y ,
(I peri(w;(@?, vm7)) € S;,
per; (w; (217, v,7)) §we
(start.Ey, so)—={per; (ry,(::?, v!)).E;, 5;))
V peri(wi(z?, vn?)) € Si) = v = 1))
o Vo1,00 € A,Jwi,ws € A*e
<01.E1, 81>S<OQ.E2, Sz> =
(peri(o1).Ei, s1)=3 (peri(02). B3, s5)
4.2 Definition of Causal Memory Con-
sistency Model
In®, Hutto and Ahamad define write-into or-
der and causality order for the definition of the
causal memory consistency model as follows:
A write-into order — on H is any relation
with the following properties:
e if 0y ~ 0o, then z and v exist such that
01 = w(z,v) and 02 = r(z,v);
e for any operation og, there is at most one
03 such that o; — o09;
e if 0o = .r(z,v) for some z and there is no
01 such that o; + 02, then v =1; that is,
a read with no write must read the initial
value.
A causality order o1 ~ o0, on H if and only
if one of the following cases holds:
° 0170 for some P; (01 precedes o2 in L;);
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e 01 > 02(0z reads the value written by oy);
or
e there is some other operation o' such that
.01~ 0~ 09
(If the relation is cyclic, then it is not the
causality order.)
A history H is causal if it has the causality
order such that:
CM: for each process P;, there is a serialization
S; of A2, that respects ~».
Now we define write-into order on H in terms
of the CCS semantics.
6,7 :1...n,Vri(z?,vl) € Ae
((3 wj(scl", 1117) € A,weE A*e
(wi (m?, 0?). By, 5;) > (ri(@?, w!). B, 5:))
\%
(((Fwi(@?, v ?7) € A, wi (27, v,7) ¢ we
(start.Eg, so)=(r;(m?, v!).E;, 5;))
Vwi(zi?,v,7) ¢ A) = v = 1))
By iteration of applylng trace transition
rules:
J01,0",00 € Aywi,ws € A* e
(01.E1,81)=3(0".E", 8"y (0'.E',5'Y53(02.E2, sb)

(01.E, 31)w£2<02.E2,Sé>

Then, if there is a trace w; corresponding to
01 ~ o' and a trace wy corresponding to o' ~»
02, a trace wyws corresponding to 0; ~» o' ~»> 0y
always exists.

Since the causally-precedes relation — which
the state-based CCS semantics uses is a partial
order, — on traces with vector clocks is acyclic.

Now we can define the causal memory consis-
tency model in terms of the CCS semantics as
follows:

A history H is causal &
j:l...n,Vi:1l...ne
(((Voe Af, e 3 per;(o) € S of AR)

A
(Vri(z?,w!) € S; of AR
(3 per; (w; (%7, v?)) € S of Al_,_w,
per;(w; (m?, v,?) we
{per; (w; (27, ;7). E;, s5)
per;(w; (_z_l)‘7 s UL! ))w<7'7, («'El?, 'Ul') Ez, Sz>)
\ (((Hper,(w](:vﬁ Um ! )) € S; Of Az+w7
peri(wi(m?,v,?) gwe
(start.Eo, so)=>(rs(w?, v!).E;, 32))
\/ perl(wj (:Ul? U ! )) ¢ S Of Az+w)
= u=1))))
A

(Val, 0y € Lj of Agrw,ﬂwl,wg € A*e
(01.E1,$1>g<02‘E3,$2> = )
{peri(o1).EY, s1)=3(per;(02). B3, s3))
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A

(V n(xl?, vl!) € S; Of Ag_w,awl,wz € A* o
(wj(azl?, 'Ul?).E]', Sj>g<7'i($l?, ’Ul!).Ez', Sz') =
(per;(w; (:?, u?)).Ej, s]’-)“i%(n (2,7, w!).Ei, 8)))

5. A Description of Causal Memory

In this section, using the combination of the Z
notation and value-passing CCS, a formal spec-
ification of causal memory, which was proposed
by Ahamad et al®), is described.

First, the functional aspects which model the
states and operation schemas of each process
are specified in the Z notation. Weak vector
clocks are adopted here as logical time of dis-
tributed systems like Marzullo and Neiger did®.
In addition, we use a vector timestamp which is
represented by the sequence data type using the
Z notation. Second, the concurrency aspects
of causal memory are specified in value-passing
CCS. Third, an example of the state transitions
and evolutions of processes of causal memory
using the state-based CCS semantics is shown.

5.1 Specifying the Functional Aspects

of Causal Memory in Z

Each process P; has a schema s; of the state
in Z. Each schema s; consists of seven local data
structures; a process identity number pn;, a lo-
cal memory M; of the abstract shared causal
memory M, a vector timestamp ¢; which is used
for updating the local timestamp, two message
queues OutQueue; and InQueue;, a local ex-
ecution history L; which is a set of read and
write operations by P;, and a serialization S; of
Affrw which is a set of all operations by P; and
all write operations in H.

OutQueue; is a first-in-first-out queue and
contains information about write operations to
local memory that have not been communi-
cated to other processes yet. InQueue; is or-
dered by vector timestamps and contains in-
formation about remote write operations to its
remote memory that have not been written to
local memory yet. '

The schema s; of P;’s state is described using
Z as follows:

M, A, Val]

write_tuple == N; X M x Val x seqN
NumOfProcesses : Ny
MazOutQueuve, MaxInQueue : Ny
MaxSerial, MaxLocalHis : Ny
priority_queue : (seq write_tuple)
x write_tuple -» seq write_tuple
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— S;
;N
M;: M+ (ValU {1})
t; : seq N
OutQueue; : seq write_tuple
InQueue; : seq write_tuple
L; :seq A
S; :seq A

#t; = NumOfProcesses

# OutQueue; < MaxOutQueue
#InQueue; < MazInQueue
#L; < MaxLocalHis

#8; < MazSerial

P, has an initialization operation schema
InitP; and five basic operation schemas; Read;,
Write;, Send;, Receive;, and Apply;.

A read operation schema Read; is executed
whenever a read operation to a location z? is
invoked by P;. Then, the value v! stored in.
M;(x?) is sent to P;. The label r;j(z?,v!) of
the read operation is added to a local execution
history L; and a serialization S;.

__InitP;

p

pni? Ny

pni = pn;?

M/ =Xz :Mel

t! =An:1.. NumOfProcesses ® 0
OutQueue; = ()

InQueue! = ()

Ly =)

Si=4
__Read;

Asi

z?7: M

v!: Value

vl = M,:D?

pn; = pn;

M = M,

ti=1t

OutQueue;, = OutQueue;
InQueue; = InQueue;
Ly =L; ™ (ri(z?,v))
Sl =8; " (ry(x?,v!))

A write operation schema Write; is executed
whenever a write operation of a value v? to
a location z? is invoked by P;. P, increases
t[i], writes v? to M;(z?), and appends the tu-
ple (4,27,v7,t) to OutQueue;. This tuple is
called a write_tuple which is a message to other
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processes. The label w;(2?,v?) of the write op-
eration is appended to L; and S;.

The information about local write operations
_in OutQueue; must be sent to all other pro-
cesses. A send operation schema Send; sends
a nonempty prefix of OutQueue; to all other
processes and removes it from OutQueue;.

__ Write; ‘
Asi

z?7: M
v? : Value

pn; = pn;
Mi’ =M & {:E? = 'U?}
tipni = tipn; +1
k1. . #t |k#pnetlk=1tk
# OutQueue; < MazOutQueue
OutQueue; = OutQueue;

- A((pniam?) U?? t?{»
InQueue) = InQueue;
L = L; ™ {w;(z?,v7?))
S =87 (wi(z?,v7))

message! : write_tuple
Outqueue; # ()

pn; = pn;
M! = M;
th=t

message! = head OutQueue;
OutQueue; = tail OutQueue;
InQueue! = InQueue;

L, =L

S, =8;

When a message is received by P;, a re-
ceive operation schema Receive; is executed.
Receive; appends the message to InQueue;
which is a priority queue sorted by vector times-
tamps. The InQueue; and an element with
vector timestamps are inputted to a function
priority_queuve. The priority_queue attaches
the element to InQueue;, and returns the new
InQueue;. Although it is not hard to specify the
function priority_queue in Z, the specification
is not presented here because of lack of space.

The information in InQueue; is used to up-
date the view of a process to memory by an
operation schema Apply;. Apply; compares the
local timestamp #; with a remote timestamp ¢;
associated with the write operation which was
executed by the remote process P;. A write op-
eration can be applied to local memory only if
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all components of ¢; (other than the jth) are
less than or equal to those of t; and if the jth
component of ¢; is more than the jth compo-
nent of ¢; by exactly one.

When a write operation is applied, it is re-
moved from InQueue;, the corresponding com-
ponent of the local vector timestamp t;[j] is
updated, and the new value v; is written to
M;(z;). This means that such a write opera-
tion ,w;(z;,v;), will be the most recent write
operation of the write-into order relation pre-
ceding the following read operation, r;(z;, v;),
w;(z;,v;) — 7i(;,v;) where the vector times-
tamp of w;(z;,v;) is less than or equal to that
of ri(zj, v;). The label of the write operation,
w;(z;, v;), is appended to S;.

__ Receive;
AS,’
message? : write_tuple

pn; = pn;

M = M

tl{ =t

OutQueue, = OutQueue;

InQueue! = priority_queue(
InQueue;, message?)

=1L

Sl = §;

— Apply;
AS,’ .
(4, %, vj, t;) : write_tuple

InQueue; # ()

pn; = pn;

(J,zj, v, t;) = head InQueue;
kl#tzlk;éjot]kst,k

ANtig=tj+1
M;:Mz‘@{xj ij}
tj=1tj

k1. . #t |k£jetlk=1tk
OutQueue, = OutQueue;
InQueue! = tail InQueue;

L =L;

5 =8 " (wj (=, v5))

5.2 Specifying the Concurrency As-
pect of Causal Memory in CCS
In this section, we specify the concurrency
aspects of causal memory in value-passing CCS.
We assume that the causal memory has n
processes. Each of the processes is connected
with all other processes through input ports
pipey - - - pipe,,, and output ports: pipe; - - - pipe,,.
Each process P; consists of six operation
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schemas specified above in Z and four basic
input or output ports; id;, loc;, val;, heap;,
and pipe;. An input port id; is initially ex-
ecuted by each process P; to obtain its pro-
cess identity number. The other ports loc;,
val;, heap;, and pipe; are used for input or out-
put ports in the following abbreviated actions:
ri(z?,v!), w;(2?,v?), broadcast;(message!) and
receive; (message?).

An action r;(z?,v!) is an abbreviation of
blocked sequential actions: First, an input port
loc; is executed by P; whenever a value for an
input variable 7 is received via the input port
loc; from the environment. Second, a read oper-
ation schema Read; is executed by P;. Finally,
the value v! stored in M;(xz?) is sent to the en-
vironment via an output port val;.

ri(2?, v!) = loc;(z?). Read; .val; (v!)

An action w;(z?,v7) is also an abbreviation
of blocked sequential actions: First, an input
port heap; is executed by P; whenever values for
input variables 7 and v? are received via the
input port heap; from the environment. Second,
a write operation schema Write; is executed by
P;.

w;(z?, v?) = heap; (z?,v?). Write;

An action broadcast;(message!) is an abbre-
viation of blocked sequential actions: First, a
send operation schema Send; is executed by P;.
Second, a message message! is sent to all other
processes via all output ports pipe except pipe;
as follows:

broadcast;(message!) = Send;.
.pipe; 1 (message!).
pipe; 1 (message!). - - - .pipe, (message!)
An action receive;(message?) is an abbrevi-
ation of blocked sequential actions: First, an
input port pipe; is executed by P; whenever a
message for an input variable message? is re-
ceived via the input port pipe; from the output
port pipe; as a co-named port of this input port
pipe;. In CCS, this action is called 7 action.
Second, a receive operation schema Receive; is
executed by P; as follows:
receive; (message?) = pipe;(message?).
Receive;
We then specify the concurrency aspects of
the processes P;.

P & ri(z?, o). P; +
wi(z?,v7?).P; +
broadcast; (message!).P; +

pipe; (messagel). - -
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recetve; (message?).P; +
Apply;.P;

Each process is connected with all other pro-
cesses through ing 1nput ports pipe; - - - pipe, and
output ports pipe; - - - pipe, t0 communicate the
information about local writes to local memory.
Next we specify a causal memory CM in CCS
as follows:

K = {pipey,- - pipen}
CM = id(pn, 7). InitP;. -
4d(pn,?). InitP, ( [+ | Pn)\K

5.3 Example of CM Transitions
Now we show an example of the state transi-
tions and evolutions of processes of the causal
memory CM which has two processes, P; and
Ps, using the state-based CCS semantics as fol-
lows. -
Let 1 be an indicator of locations, say = T
€ M indicates a location z.
(CM, So)
Y (InitPy.id(pna?).InitPs.(Py | Pa)
\K, 50)
— (zd(pnz ) InitPs. P1 l Pz) \ K 51)

RAGY (InitPy.(P1 | P2) \ K, s3)

(P P2)\ K, s5)
heern (51:1) ((Write1.Py | P2) \ K, s4)
Writey

T (P P2\ K, 55)

Y ((pipez(message!).P1 | P2) \ K, sg)
—  {(P1] kReceivez.Pg) \ K, s7)

SR (P Pa)\ K s)

Last 7 action is applied using the following
transitions.

( pipes(message!). Py, s7)
PR ) s @

( P, 37)pipe2((1£’%1’<1’0)))(Receivez.Pz, 57)(2)
( (pipez(message!).P1 | P2), s7)
- 5((P1 | Receivey.Ps), s7) (3)
{ (pipez(message!).P1 | P2)\ K, s7)
~Z3((P1 | Receives.P2) \ K, s7) (4)
(1) (2)

( ¢ K)
(4)
The state transitions as variable components

are shown as follows:
We adopt notations @ and + in Z in order to
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describe how states are changed. Given two
functions f and g, f ® ¢ denote the relational
overriding of f with g in?. z ~ v denotes a
mapping from a variable z to a value v.
so = {}
86 =s1 = {pm?+— 1}
S{ = 8 =51${pn1 =1 M — (_L~~-J_>,
t1 — (0,0}, OutQueuer — (),
InQuees -5 ), Ly > (), Si = (0}
5%233‘—‘5269{[)712?%—)2} :
s =54 =53@® {pnz — 2, My — (L --- 1},
to = (0, 0), OutQueues — (),
InQueues v (), La — (), S2 — ()}
sy =85 =84®{z? >z vl 1}
=86 = 5 ®{M1 = M1 ® {z t— 1},
ti (1,0,
OutQueuer — ((1> z 1,1, (1) 0)));
Iy — <wl($ 1 1))» 51— <w1($ g 1)>}
56 = s7 = 36 ® {message! — (1,2 1,1,(1,0)),
OutQueuer — ()}
sh = s = sy @ {message? — (1,z 1,1, (1,0))}
Sé =39 = 58D {InQueuez = ((1>$ 1, (17 0>)>}

6. Verification of Causal Memory

In this section, we verify that the causal mem-
ory described in section 5 meets the causal
memory consistency model described in section
4 using the state-based CCS semantics.

n%, Ahamad and Hutto prove the following
Lemma 1,2 and Theorem 3.

Lemma 1: Let H be o history of the imple-
mentation, ts(o) be the timestamp of an oper-
ation o, and o1 and oo be two operations such
that 0y ~ o0o. Then ts(o01) =< ts(o02). Further-
more, if 02 is a write operation by P;, ts{o1)[4]
< ts(02)[i],50 ts(o1) < ts(o2).

Proof : Let A be a set of operation schemas
and actions as described in section 5. Let ¢;(0)
and t/(o) be vector timestamps of P; when an
event o starts and finishes, respectively. Note
that the process P; has the state, operations
and actions described in section 5. Consider
the following three cases:

®0] — 09y
By definition of operation schemas of P;
. which adopt weak vector clocks, only Write,
and Apply; operation schemas update local
timestamp ¢; as follows:
t{( Writei)[i] = ti(.WTitei)[i] + 1
t{(Apply:)[j] = ti(Apply;)[j] + 1
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Then, ts(01) = ts{0z2). Furthermore, if 0y is a
write operation by P;, ts(01)[i] < ts(02)[¢], so
ts(01) < ts(02).

001 > 09

This means that o; is a write operation, say
w;(z;?,v;7), and oy is a corresponding read op-
eration, say r;(z;?, v;!).
Jw;(z;?,v;?), ri(z:?,v!) € Sof H,
Jwe Ao

(w (xf’,% )-Ej, 8)(ri(2:?, vil). By, i)

ANz? =27 A vl =07

Consider traces of CM in CCS. We can get
the following trace w by applying transition
rules iteratively:

Jwe A" e
w=w;j(%;?,v;?)...Send; ... pipe;(message!)
.. pipe;(message?) ... Receive; ... Apply; . ..

(For example,wp(z,1) — ri(z,1) in Figure 1.)
By applying o1 702 = ts(o1) =X ts(o2) as
proved above, the following holds:
ts(w;(2;7,v;7)) =X ts(Send;)
= ts(pzpez(message'))
ts(pipe;(message?)) < ts(Receive;)
< ts(Apply;) < ts(ri(z;?, v;!))
Note that there is a timestamp ¢s(w;(z;?, v;7))
in  message!. By use of the operation
schema Apply;, compare ts(w;(z;?,v;7)) with
t'(Apply:).
k:l..n|k#j :
o ts(w;(z;?,v;7))[k] < ¢'(Applys)[F]
ts(w; (77, v; 7)) lj] = t(Apply:)[j] + 1
ts(w; (77, v; 7)) [j] = ¢'(Apply:)[j]
So ts(w;j(z;7, v;?))= t'(Apply:)= ts(Apply:) =
ts(ri(z;?,vi!)). Thus ts(o1) < ts(o2).

o There is some operation oy, o', 05 such that oy
~» 0' ~ 09. Let wy,ws be traces that respect
7 or . By iteratively applying the trace
trans1t10n rule:

301,0,02 € Sof HAwi,wz € A* e
(01.B1,51)3(0".E',s") (0'.E',s')3(02.Ep, 52)

’ (Ol.E, Sl)wL‘;z(Oz.Ez, 82)

By the transitivity of <, so ts(o1) <X ts(0z).
Furthermore, if 0 is a write operation by P;,
ts(0")[i] < ts(02)[i], so ts(o1) < ts(o') < ts(oz).
O
Lemma 2: Let H be a history of the imple-
mentation and suppose that w;(z,v) is a write
operation of process P;. Then each process P;
eventually applies w;(x,v) to its local memory.

Proof : If j = i, an inspection of operation
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schema Write; shows that the write is applied
to its memory by M = M; & {z? — v?}; for
the remainder of the proof, assume that j # .
Since each OutQueue; is a finite first-in-first-
out queue, an inspection of CM in CCS shows
that, once P; has executed w;(z, v), the follow-
ing trace transition exists by iteratively apply-
ing transition rules.

Vi:1l...n(i#7),3 Receive; € A,Jw € A* o

(w;(2;7,v;7). By, 8;)=>(Receive; . E;, s;)

Next the message! of the w;(z;?,v;7) is re-
ceived by P; and is appended to InputQueue;
which is a finite priority queue sorted by vector
timestamps. Recall that ¢s[j] is the number of
write operations by P;. Let m be the sum of all
the components in the vector clock of the mes-
sage!. CM creates at most m messages such
that its vector timestamps < ts(w;(z;7,v;7)).
Then the message! is inserted no deeper than
the mth element from the head of InputQueue;.

After that the following trace transition ex-
ists:

Vi:l...n(i#j),Apply; € A,Jwe A* o
(Receive;.E;, s;)=( Apply; .Ey,, s1,)

Let t be P;’s vector clock in the state
s before Apply; applies the message! to
its local memory. We must show that
ts(w;(z;7,v;7))[k] < t[k] for all k # j and
that ts(w;(z;?,v,7)[j] = t[j] + 1. Let
P; be any process other than P; and w'
be the (ts(w;(z;?,v;7))[k])th wrlte by P;.
This means P; has applied w' before P;
executes w;(z;?,v;?).  Therefore ts(w') <
‘ts(w;j(z;7,v;7)). Thus, by induction, P; has al-
ready applied w' before the state s;. Once P;
applies w’, ts(w;(=;?,v;7))[k] < t[k]. Similarly
the (ts(w;(=;?,v;7))[j] — 1)th write by P; has
been applied by P; before the state s;. After
that ts(w;(z;7,v;7))[j] = t[j] + 1. Since P; exe-
cuted operation schema Apply; infinitely often,
P; eventually applies w;(z; ?, v; 7).

0
Theorem 3: Let H be a history of the imple-
mentation. Then H is causal.

Proof : An inspection of operations Read;,
Write; and Apply; shows that the serialization
S; for P; includes all writes in H (by Lemma, 2)
and all read operation in L;. Thus,

Vi .ne

(Vo G AR, e3per;(o) € S;of AL )

An inspection of operation schemas Read;,

Write; and Apply; shows that a local memory
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M; is updated such that M = M; ® {z? — 07}
by P; and the value v! such that v! = M;z?
is reported to P;. Then each read operation
schema sends the value that the most recent
write operation schema has written. Thus, the
following transitions exist:
j:l...n,Vi:l...ne
(V T (:l:l?, 'Ul!) e S; Of Ag_w
(G pers (w (@2, u.?)) € 5 of AR,
peri(wi(z?, vm?)) g we
(peri(w; (m?, v ?)).Ej, 57)
peri(u(f ot ))w(n(wl?, ul).E;, 8;))
\%
(((Hperl(wj (xl?> U ! )) € S Of Az+w7
peri (w;(z?, Um : 7)) ¢we
(start.Eo, so)=(per;(r;(z?, Ul')) E;, i)
-V peri(w; (@7, vn?)) & S; of Az+w)
= U = _L)) )

The state sj’ has a value 7; — v in the local
memory M;. The value xl — v is not updated
by P; between the state s; and the state s;, be-
cause wj (17, vm?) ¢ w. Thus v, = v(= M; ;).

SDEOGEE

o

Let 0y and o2 be operations in A, 1, such
that ~. By Lemma 1, ts(01) =< ts(02). One of
the following cases must hold. We assume that
J#i

° 0170 by P;. An inspection of operation

schemas Read; and Write; shows that the
labels of these operations are concatenated
to L; and S; in the same order in which
these operation are executed by P;. There-
fore 01 precedes o2 in'S;.

¢ 01— 0y by P;. This means that o; and o,

are both writes. By Lemma 1, ts(o1) <
ts(02). An inspection of operation schema
Receive; and Apply; shows that oy is ap-
plied by P; before 05. Then 0; precedes oy
in S, .
e 03 — 02 by P;. This means that o; is a
write operation and os is a read operation.
By Lemma. 1, ts(01) < ts(02). An inspec-
tion of operation schema Receive;, Apply;
and Read; shows that oy is applied by P,
before 09. Therefore o; precedes oy in S;.
® 01~ 0 ~ 0y
(01.E1, 51>w—}<0l.El, S,) <0l.El, 5')3(02.E2, sé)
<01 B, Sl)w—u), (02 Ez,Sz)
Thus the followmg condltlon holds.
j: .n,Vi: .ne
((Vol, 02 € Lj of AB  Fwi,ws € A*
<01 El,Sl)—g(OQ E2, 52) =




Vol.40 No.SIG2(TOM 1)

(per;(01).B{, 51)=3(peri(02).E3, 53))
A
(Vri(z?,u!) € S; of Aﬁw,Ewl,a& €A e
(wi(m?, 0?).Ey, 8) 3 (ri(m?, u!). B, 8:) =
(per;(w;(z7, u?)).E;, s]'.)f—%(n (z?,v!)).Ei, 8:)))

Thus, the proof is complete. :
[}
7. Conclusion

" In this paper we described a causal memory
using the formal method proposed by Taguchi
and ArakiV. First, we described functional as-
pects using the Z notation so that we could de-
fine the state variables and operation schemas
separately. Second, we described concurrency
aspects using value-passing GCS so that we
~could define the processes, communications,
and concurrency of processes. Third, we ver-
ified that the causal memory meets the causal
memory consistency model.

As compared with only an algebra or a pro-
cess algebra, this combination language is use-
ful to us while we are designing causal memory,
because we can describe the operation schemas
in detail and independently and we could also
express the concurrency of the processes. In
verifying the system, we could consider the evo-
lution of processes and the state transition sep-
arately. For example, it is easy to suppose that
the system in which the following condition is
removed from the Receive; operation schema
meets PRAM consistency model'?).

E:l..#t | k#jet;k <tk

Much future work remains to be done. First,
we should adopt this technique for other mem-
ory consistency models, especially release con-
sistency models, and develop a new formal tech-
nique for specifying lock and release operations.
Second, we will be able to propose a new mem-
ory consistency model and present the design
of new parallel computer architectures with the
new memory consistency model. Those mod-
els and architecture designs can be formally de-
scribed and verified by our formal techniques
we propose.

DSM systems are the hot research field and
a lot of implementations have been reported.
We believe that our formal techniques can val-
idate those numerous DSM systems from a for-
mal viewpoint. .
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