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Performance Limits of Parallel Server Systems
Based on Deterministic Optimal Routing

Kazumasa OIDAT and KAZUMASA SHINJO!

This paper describes the perfermance limits of parallel server (PS) systems in which every
server has its own queue. The average packet delays of PS systems depend on the routing
policy, which assigns each arriving packet to one of the parallel servers. The optimal routings
are numerically calculated based on the condition that the input traffic is completely deter-
ministic. These optimal routings show that under a heavy traffic load, PS systems outperform
a single server (5S) system. When an infinite number of packets arrive simultaneously, the
expected average delay of a PS system that includes 10 servers is 20% smaller than that of
an SS system but is 60% larger than that of an SS system that has a “shortest remaining

processing time” discipline.

1. Introduction

How far can we improve the performance
of parallel server systems? In this paper, we
present optimal routings for parallel server (PS)
systems in which every server has its own queue.
We show that under a heavy traffic load, a PS
system can outperform a single server (SS) sys-
tem whose transmission (service) rate is the
same as the total transmission rate of the PS
system.

The average packet delay of the PS system
is uniquely determined by a routing policy that
assigns each arriving packet to one of the paral-
lel servers. For example, assuming that packets
arrive according to a Poisson process, the sizes
of the arriving packets have a negative exponen-
tial distribution, and all p parallel servers in the
PS system have the same transmission rate. If
each packet is uniformly assigned to one of the
p parallel servers according to a Bernoulli pro-
cess, then by using the M/M/1 model, the av-
erage packet delay of the PS system is p times
larger than that of the SS system (e.g., Ref.
1)). In contrast, Kingman? showed that un-
der a heavy traffic load, if the packets are as-
signed according to a “join the shortest queue”
(JSQ) policy, the average waiting time of the
two parallel servers is smaller than that of the
SS system.

An optimal routing policy that minimizes the
average packet delay of the PS system abso-
lutely depends on the information available for
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routing decisions. Most previous studies have
dealt with this optimal routing policy based on
“stochastic input,” in which all packets arrive
according to a certain stochastic process and
the service time (or the size) of each packet has
a certain probability distribution®-®). For ex-
ample, Winston®) considered the case of Pois-
son arrivals and exponential service times and
showed that the JSQ policy is optimal. Other
heuristic routing policies based on the stochas-
tic input can be found in Refs. 9) and 10).

In this paper, we consider an optimal rout-
ing based on “deterministic input,” in which
all of the input packet arrival times as well as
all of the packet sizes are fully known in ad-
vance. Aicardi et al.!!) considered the case in
which the inter-arrival times and sizes of all
packets are deterministic and constant. Our
model does not assume that they should be con-
stant. The reason we are studying an optimal
routing based on deterministic input is that the
obtained optimal routing, called a determinis-
tic optimal routing, achieves the performance
limits of the PS systems. This is because the
deterministic optimal routing makes the best
use of the entire body of information on the
input traffic. Therefore, the value of PS sys-
tems can be determined according to the per-
formance limits. We believe that efforts spent
on this old routing problem should depend on
the potential performance.

In Section 2, we first formulate an optimal
routing problem for assigning a deterministic
input traffic load to parallel servers. The prob-
lem was numerically sclved with an optimiza-
tion algorithm, so that an optimal numerical so-
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lution of the problem represents a deterministic
optimal routing. Next, based on the numerical
results, we show that PS5 systems can outper-
form SS systems only if there is heavy traffic,
while under light or moderate traffic the “join
the shortest delay” (JSD) pelicy is almost al-
ways optimal. These results indicate that solv-
ing this routing problem is significant only if
the traffic is heavy. We also show two char-
acteristics of the optimal numerical solutions,
which were first introduced by Oida et al.l®)
for p = 2. We extend the results to the case
where p > 2.

In Section 3, in order to verify the two charac-
teristics of the optimal solutions, a novel rout-
ing policy was created based on these charac-
teristics: if the average delay of the created op-
timal routing policy is nearly equal to the op-
timal values of the problem, then these char-
acteristics are proven to be true. Accordingly,
our work can be regarded as research into find-
ing the natural laws that may exist in an ana-
lytically intractable combinatorial optimization
problem.

In Section 4, we consider the performance
limits of PS systems based on the assumption
that all packets simultaneously arrive. This
simultaneous arrival model presents the max-
imum advantage of PS systems. We show that
the average delay of a PS system is at most 20%
smaller than that of an SS system but is at least
60% larger than that of an SS system with the
shortest remaining processing time discipline.

In Section 5, we discuss the application of our
results. Most traffic on the Internet today is
bursty, so many SS systems can be replaced by
PS systems for better performance. From the
results of the simultaneous arrival model, if the
batch size of arriving packets is a priori known,
then by using the optimal “fix queue based on
size” (F'S) policy, the optimal number of servers
that maximizes the performance of the PS sys-
tem can be determined. This approach is quite
practical because the model does not require
input traffic to be deterministic.

2. Deterministic Optimal Routing

2.1 TFormulation of the Optimization
Problem

We have formulated the routing problem for

the PS system discussed in the former section.

Consider a parallel server (PS) system

(Fig. 1) in which there are p (> 2) homoge-

neous parallel servers (Sg,k = 1,...,p). In a
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Fig. 1 Parallel server sysem having p servers.
single server (SS) system, p = 1. Each server
(Sk) has its own infinite-capacity queue (Q}),
and the transmission rates (C/p) of all servers
are identical. Each arriving packet (e;) joins
one of the queues according to a routing policy
and is transmitted on a first-come first-served
(FCFS) basis. Once a packet joins a queue, it
cannot change its queue (that is, no jockeying).
The total number (n) of arriving packets (e;, =
1,...,n) is finite. Let x; and #; be the size of
packet e; and its arrival time at the PS system,
respectively. We assume the values of the sizes
and the arrival times (z;,%;,4 = 1,...,n) of all
packets are given (the deterministic input as-
sumption), and 4 <ty < -+ < ¢,. Let W (%)
denote the emptying time of server Sy, at time t.
Strictly speaking, Wy (¢) is equal to the sam of
the remaining transmission time of the packet
being transmitted by S, at time ¢ and the total
transmission time of all packets waiting in Q,
at time ¢. If the assignment (u;) of packet e; to
queue Oy is given by u; = k, then we have

Wi(tiy1) =

max(Wy(t; C/ = (tip1 — :),0), (1)
k= 17 By 2
where
; 1, ifu, =k,
gi = ! . (2)

0, otherwise.
Then, the average packet delay becomes

Dy

“ZEWWN)“L zc/p (3)

where Wl(tl) = Wa(ty) = = Wy(¢1) = 0.
The first and the second terms on ‘che right-
hand side of Eq. (3) represent the average wait-
ing time and the average transmission time, re-
spectively. Accordingly, the optimization prob-
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Fig. 2 Comparison between minimum average delays

of four PS systems (p = 2,3,4,6) and average
delays of SS system.

lem P to be solved in this section can be de-
scribed as

Minimize Dy n(u1,u2,...,%n)
Subject to  u; € 5,
P ti§t¢+1,i:1,...,n—1,
z; >0,1=1,...,n,
C >0,

where § = {1,2,...,p}. Note that problem P
can also be regarded as an optimization prob-
lem that minimizes the “average waiting time”
since the second term on the right-hand side of
Eq. (3) does not depend on the routing deci-
sions {u;}.

2.2 Calculation Conditions

We numerically solved the optimization
problem P with the Hamiltonian Algorithm
(HA)'?), which is one of the iterative algorithms
used to search for the global optimum solution
{u}}. Suppose that the HA generates a rout-
ing sequence {ul}, {ul}, -, {ult}. Let {u;(R)}
be one of the routings in the sequence satisfy-
ing Dpn({u;(R)}) = mino<k<r Dpn({uf}). In
this paper, routing {u;(R)} represents the op-
timal numerical solution of problem P.

Calculations in this paper were made on par-
allel computers, and the number of iterations R
was more than 10%. The values for packet sizes
{=;} and inter-arrival times {f;41 —t;} were ran-
domly generated based on a negative exponen-
tial distribution. In addition, identical values
for {x;} and {t;41 — t;} were used for all nu-
merical calculations in this paper.

2.3 Numerical Results

We numerically calculated the optimal values
(Dp,n({ui(R)}) of problem P when p = 2,...,6
and n = 128 and obtained the following results.
Under light or moderate traffic, all PS
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systems are inferior to the SS system; in
contrast, under heavy traffic, all PS sys-
tems are superior to the SS system.

The input traffic intensity (I) assigned to the
SS system and the PS systems can be described
as

A
- & (4)
where 1/u and 1/) are mean values of dis-
tributions that generate {z;} and {t;11 — &},
respectively. Figure 2 compares the aver-
age packet delays (D 128) of the PS systems
(p=2,3,4,6) with those of the SS system when
1/p = 1/X = 1. (In order to use identical values
of {z;} and {t;4.1 — t;} for all calculations, we
varied I by changing the total transmission rate
C in (4)). From Fig. 2, if 7 < 0.9, the 55 sys-
tem scores the best performance. In contrast,
if I > 1.1, all PS systems outperform the S5
system. This result demonstrates that optimal
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routing policies should be considered under the
heavy traffic assumption. Note that if 7 < 0.9,
the average delay increases with an increase in
p, while if I — oo, from the lines corresponding
to the PS systems, the average delay seems to
decrease with an increase in p. We will show in
Section 4 that this is true when n = co.

We also observed the following two character-
istics which are common to p = 2,...,6. They
were first reported in Ref. 13) when p = 2.
Characteristic 1: Under heavy traffic,

the optimal routing assigns a queue
for each arriving packet based on its
size.

Figure 3 and 4 show the size distributions
of the packets for p packet groups, where each
distribution is assigned to one of the p queues
(Q1,...,Qp) by the optimal solution {u}(R)}
when p is 3 and 4, respectively, and I = 1.8.
As these figures show, the optimal solution de-
termines a queue for each arriving packet based
on its size. For example, Fig. 3 shows that most
of the small packets are assigned to @y, most
of the large packets are assigned to Qs, and the
rest are assigned to (3. We call this routing
a “fix queue based on size” (F'S) policy. The
assignment (4;) of packet e; to queue Q; ac-
cording to this FS policy is defined as

0 1) =7, (5)
ifof <2< o,

ﬁi(af, cee

where 0 = af < of < --- Sozl’j_l < of = oo.
The optimal values of tuples (af,..., e} ;) for

P > 2 are discussed in Section 4.

Characteristic 2: Under light or moder-
ate traffic, the average delay of the
optimal routing is almost equal to
that of the JSD policy.

The assignment (4;) of packet e; to queue Q,
according to the “join the shortest delay” (JSD)
policy can be expressed by

Figure 5 compares the average delays (D, 12)
of four different routings when p = 2,4. The
figure shows that the average delays of the JSD
policy {;} are almost equal to those of the op-
timal numerical solution {u}(R)} when 7 < 0.9.

3. Mimic Optimal Routing

In this section, we present a mimic optimal
9
routing derived from “Characteristic 17 and
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Fig. 5 Average packet delays for four routings: op-
timal numerical solution {u?(R)}, mimic op-
timal routing {u7**™*}, FS policy {i;}, and
JSD policy {@;}. 1/A=1/p =1 and p = 2,4.

“Characteristic 2” of Section 2. The mimic op-
timal routing is used to verify the characteris-
tics of the optimal numerical solutions. If the
mimic optimal routing attains a performance
near the optimal value of problem P, then we
can conclude that the two characteristics are
true.

From the two characteristics, the optimal
routing may be expressed as the weighted sum
of two routing policies (the JSD policy and the
FS policy), and the weights of these two policies
would depend on the current input traffic inten-
sity. In order to make a mimic optimal routing
based on this conjecture, we first introduce two
functions: d(7, j) and w(I). The function d(z, 5)
represents the distance between packet e; and
queue ¢; and is defined as

0, ifof | <a;< of,

Lo » . ¥ X b
d(i,j) = ¢ of_; —xz, ifz; < a;_y, (7)

z; — of, if of < a2,
where ozg,...,a;j correspond to those used in

(5). As the distance d(i, j) decreases, the prob-
ability that packet e; is assigned to queue Q;
increases. Next, the function w([/) is defined as

WD) = 5 {1+ e, ®
where erf denotes the error function, and -y and
o are parameters. The value of w(J) increases
from 0 to 1 for J, with the increase occurring
around / = v, and the increase rate is deter-
mined by o(> 0). The weights of the F'S and the
JSD policies correspond to w(l;) and 1 —w(1;),
respectively, when the current input traffic in-
tensity is I;. I; is measured in the time interval
[t; — 81, + 8], where 6;(> 0) and 85(> 0) are
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parameters; i.e., suppose that
timr—1 < by — 61 _<_ tz’~r7 (9)
ties < ti+by <ties,
where r and s are non-negative integers, then
I, = X /Cp;, where
r+s

1//“‘1 = (z xi—T+k)/(T + s+ ])7 (10)

k=0
1/ = (61 +6)/(r +5+1).
Now, we describe the assignment (umec) of
packet e; to queue @), according to the mimic
optimal routing as:

we = g, i My = min M ., (11)
where o
M;; = w(;)d(i, 5)
+6:(1 — w(ls))(W;(t:) — min Wi (t:))(12)
0, if Wilts) = -+ = Wy(ts) =0,
¢ = ————1—/&_—- otherwise. (13)
P ﬁ:l Wk(f;i)

Here, ¢; is a scaling factor for the waiting time
relative to the packet size at time #;. Note that
if w(I;) = 0, the mimic optimal routing de-
scribed in (11) is equal to the JSD policy; if
w(I;) = 1, the mimic optimal routing is the FS
policy.

Figure 5 plots the average packet de-
lays of two mimic optimal routings for
p = 2,4, where the parameters (v,0,01,02)
used in (8)-(10) are (0.89,0.55,60,58) and
(1.0,0.52,50,65), reopectlve}y, and the values
of tuples (ozl,ozz, c,ob ) for p = 2,4 are
listed in Table 1 of the next section. For
all I .D2 128({umzmzc}) and D4 128 {umzmzc})
closely approximate Dp, 128({u (R)}) and
Dy2s({uf(R)}), respecuvely This means
that “Characteristic 17 and “Characteristic 2"
of Section 2 are confirmed.

The mimic optimal routing indicates two
important possibilities. First, the optimiza-
tion problem P can be reduced. This
is because problem P has n variables:
Uy, Us, ..., Un, but the mimic optimal rout-
ing has only p + 3 undetermined parameters:
a’l’,a’;, ab_1,7,0,01,6. Consequently, if
n > p, the calculation time for obtaining a
minimum average delay will decrease consid-
erably with the mimic optimal routing. Sec-
ond, a practical routing policy that achieves
a performance limit may be created based
on (11), which does not require all the in-
formation on the input packets but only re-
quires p + 2 data ([, 1/ps, Wi(ts), - .-, Wyp(ti))
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as the current state of the PS system when the
shape of the weight curve w(l;v,0) and the
value of a tuple (of,af,...,af ;) are given.
Note that suitable values for the parameters
(v,0,0f,0a5,...,a8 ) can be determined ac-
cording to {z;} and {t;41 —t;} and that f; and
1/p; require forecasts of the average intensity
and average packet size of arriving packets, re-
spectively. Therefore, a practical routing policy
will be created based on (11) if the packet ar-
rival process and the packet size distribution
are known in advance.

4. Performance Advantage of Parallel
Server System

In this section, we consider a simultaneous
arrival model, in which all packets simultane-
ously arrive, for two reasons. First, to obtain
the optimal values of tuples in (5). Second, to
show how much better the performance of a PS5
system is than that of an S5 system. In Section
2, we showed that PS systems are superior to
the SS system when the input traffic intensity
is high. Then, in Section 3, we confirmed that
the optimal routing for the PS systems uses an
FS policy in this traffic environment. Conse-
quently, the simultaneous arrival model and the
FS policy maximize the performance advantage
of PS systems.

4.1 Simultaneous Arrival Model

Consider a case in which all n packets arrive

simultaneously at a PS system. For simplifica~
tion, the total transmission rate of all servers is
one; i.e.,
In this case, we suppose that the decisions of
routing {u;} are made in the following order:
U1,Usz,. .., U,. By using constraints (14), the
average packet delay D, , in problem P can be
rewritten in the following simple form.

P
I
n = ;; dquuh
k=1

where
AY
1 Z 0 ces 0
4y (*
k x Ty
U = . 7@ = ! ?
" 0
9k Zy Lo ... ITp

/

Consequently, we have the optimization prob-
lem P':
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Minimize — Jp n(u1,u2,...,U%,)
P’ { Subject to wu; € 5,
Zi >0a Z.::lw"?n

4.2 Expected Average Packet Delay
for F'S policy

Here, we formulate the expected value of J,,
according to the FS policy. Let X; denote
a continuous random variable representing the
size of packet e;. Assume that Xy, X5, ..., X,
are all independent and have an identical
probability distribution with a density func-
tion p(z). Let Jpn,(of,...,ab_;) be the ex-
pected value of J, , according to the ¥'S policy
{ai(ef,..., 00 )}

Lemma 1 Foralln >1and p> 2,

Jpn =

pm+ ?—(—732_‘—12]7]3(0/1’7 cab ), (1)

where m = fo zdP(z), dP(z) = p(x)dz, and
Fy(of,...,ap ;)=

- ;pz dP(x) apﬁ a:dP(:c) (18)

-

O—a0<o<p§ §o¢p—oo (19)

The proof of Lemma 1 is omitted here since it
closely resembles the proof of Eq. (17) in Ref.
13).

On the other hand, from Eq. (15), the av-
erage packet delay of the 38 system is J; , =
%{nazl +(n—1)zy+ -+ 22,1 + 2}, so the
expected average packet delay becomes

Jin= (—"%Dm. (20)

4.3 Single Server versus Parallel Server

We now compare the expected average delays
of the PS systems and the SS system.

Let ap be an optimal vector (ef,- oy )
that minimizes F,(af, . .. p_ ;) subject to (19)
when the packet size dlstmbutlon is glven From
(17), o also minimizes Jom(e?, .. o P_y) for
any n(z 2). Let J* and 7 be the minimum

values of J, , and Fp, respectively. From (17)
and (20),

"y X
ﬁ’-’i:p( 2 "_Efﬂ). (21)
Jin n+l n+lm

Lemma 2 If the packet sizes have a nega-
tive exponential distribution, then for any m >
0, ¥ /m is constant.

Lemma 2, which is proven in the Appendix, in-
dicates that if packet sizes have a negative ex-
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Table 1  Values of optimal vectors aj = (af,.. ., p 1)
p=2,...,6, when packet 51zes have a nega-
tive exponentml distribution with a mean of

one.

= (azlr,...,az_l)
(117
(0,73, 1.666)
70,561, 1.147, 2.032)
(0.464,0.902,1.448, 2.306)
(0.4,0.755, 1.158, 1.683, 5.526)

O O i) Wi v

ponential distribution, then the ratio J;*,’n /in
does not depend on the mean value m of the dis-
tribution. Table 1 shows o, p = 2,...,6 when
m = 1. m =m', the values of the vectors ay,
p=2,...,6in Tczble 1 have to be modified to

’()42,19:2,...,6.~ )

Figure 6 plots J; . /Jin, when the packet
sizes have a negative exponential distribution.
The figure shows that when n (the number of
arriving packets) is small, the SS system is bet-
ter than the PS systems (j;’n/jl,n > 1). Con-
versely, when n is large, the PS systems surpass
the SS system. When n = co, the minimum av-
erage delay of the PS system that includes 10
servers is approximately 20% smaller than the
average delay of the SS system. Note that if
n = 0o, the ratio J; ,/J1, decreases as p in-
creases.

4.4 Single Server with SRPT

Finally, we compare the performance of the
PS systems with that of an SS system that
has a “shortest remaining processing time”
(SRPT) discipline. In this paper, we have
so far only considered the FCFS discipline for
packet scheduling. Here, we consider the per-
formance of an SS system that has an SRPT
discipline. The SRPT discipline is an optimal
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packet scheduler that minimizes the number of
packets in the SS system at all times indepen-
dent of any assumptions about the distribution
of either the inter-arrival times or the service
times'%. The SRPT discipline always serves
the packet with the shortest remaining trans-
mission times. Note that this discipline is pre-
emptive; however, in the simultaneous arrival
model, preemption by this discipline never oc-
curs.

We will approximate the SRPT discipline
with a prioritized FCFS (p-FCFS) discipline.
In the p-FCF'S discipline, all arrival packets are
divided into g groups such that packet e; be-
longs to group j, if 87 ; < z; < 37, when
0=p <B] << By, < B =00, and
packets in the shorter packet size group are
given higher priority. Within each group, the
FCFS discipline is then applied.

Consider an SS system that has the p-FCFS
discipline. Assume that the constraints (14)
hold (although all packets simultaneously ar-
rive, the arrival order is assumed to be as fol-
lows: e1,...,e,) and that Xy, X5,..., X, are
all independent and have identical probability
distributions with the density function p(z).
Let H, and H,, denote the expected average
delays of SS systems that have the SRPT and
p-FCFS disciplines, respectively, and g and n
represent the numbers of groups and packets,
respectively.

Lemma 3 Foralln > 2and g > 2,

Hy, =

mt Ve 0,8, @)
where m = 1020 zdP(z), dP(z) = p(x)dz, and
Go(B],. . B5-1) =
L[5 @) [} 2dF(@)
+ fﬁk_ 2dP(z) 55 dP(2)}, (23)
0=pl << <Bl=oco.  (24)

Lemma 3 is proven in the Appendix.

Let 8; be an optimal vector Bs,....85_1)
that minimizes H, , and G, subject to 24),
and let H . and G be Hgyn(B;) and G4(8y),
respectively. Since H, = limg .o H; ., from
(17) and (22),

SRR Dec. 1999
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H g—eo Hy o
24+ (n—1)FF/m
( VEy/ (25)

Py (n—1)limy_,0 G5/m
If the packet sizes have a negative exponen-
tial distribution, then G%/m is independent of
the mean value m(> 0) of the distribution.
(This proof is exactly the same as the proof
of Lemma 2.) Thus the ratio J},/H , is in-
dependent of m. From now on, we only con-
sider the case in which the packet sizes have
a negative exponential distribution with mean
one. Function G, monotonically decreases with
g (the proof is shown in the Appendix) and con-~
verges to a constant (G); therefore, if g is large
enough, G, ~ G. Figure 6 shows the plot of
J o/ Hioo - (We selected Gigo as an approx-
imate value of @. Since G, — Gigo < 107°,
G%,o may be sufficiently close to G.) This fig-
ure shows that for all p and n, J;,, > Higg - I
n = 0o, the minimum average delay of a PS5 sys-
tem that has 10 servers is approximately 60%
larger than the average delay of an S5 system
with the SRPT discipline.

5. Discussion

We have considered PS systems in which the
transmission rates of all p servers are C/p, so for
any p the total transmission rate of all servers
is identical. We then assume that the transmis-
sion rates of all p servers are C instead of C/p.
Then the minimum average delay of the PS sys-
tems becomes J; . /p, which is at least p times
smaller than Ji , for all (p,n) pairs that satisfy
J3 o/ J1m < 1in Fig. 6. In other words, when n
is large, in the simultaneous arrival model, the
performance of the PS systems becomes more
than p times higher than that of the SS system.

Figure 6 indicates that the optimal number
of servers that minimizes J;’n /J1,n can be de-
termined if the batch size, which corresponds to
n in Fig. 6, is @ priori known. For example, if
n = 32, then the optimal number of servers is 2.
Note that this figure is not based on the deter-
ministic input assumption but simply requires
that the optimal FS policy be used for all PS
systems; therefore, this approach is quite appli-
cable.

We have come to the conclusion that the PS
systems are suitable for a bursty traffic en-
vironment. The question is whether such a
bursty traflic environment is common or not.
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On the Internet today, the window-based flow
control'®) is used between two hosts. A receiver
reports a window size to a sender for limiting
the amount of data the sender can transmit.
The window size depends on the buffer size of
the receiver. Such window-based flow control
makes traffic bursty. For example, if the win-
dow size is 1 Mbyte and the size of all packets
is 1024 bytes, then the sender can continuously
transmit 1024 packets.

6. Conclusions

‘We have studied a deterministic optimal rout-
ing for homogeneous PS systems both numer-
ically and analytically and learned that find-
ing the optimal routing policy is significant only
if the traffic is heavy. The performance of PS
systems based on deterministic optimal routing
can be summarized as follows:

(1) The performance merit of PS systems in-
creases with the input traffic intensity
and with the number of simultaneous ar-
riving packets.

(2)  When the packet sizes have a negative ex-
ponential distribution, the minimum av-
erage delay of a PS system is at most 20%
smaller than the average delay of an SS
system but at least 60% larger than the
average delay of an SS system that has
an SRPT discipline.

We also presented the following additional re-

sults:

(3)  The characteristics of the optimal rout-
ing for parallel servers (p = 2,...,6) were
verified.

(4)  An extended mimic optimal routing was
described for p > 2. This routing can be
used not only to reduce the size of the
optimization problem but also as a ba-
sis for creating a practical routing policy
that achieves a performance limit.

In the future, we will create a practical opti-

mal routing policy based on this mimic optimal

routing. We also plan to investigate the im-

pact of the weight curve’s shape on the average

packet delay.
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Appendix

A.1 Proof of Lemma 2

Let pp(z) be a density function of a nega-
tive exponentla,l distribution with mean m; i.e.,
Pon () —z/m ¢ > 0,m > 0. Let Fpm de-
note #, deﬁned in (18) when p(z) = pm(e);
i.e.,

m( dﬁ_.l)
P P
= E x) f:;k 2d Py (2),
k—1
where d 15 (:B) = pm( Ydz. I t = mz (m > 0),
then
Fp 1 (alf’ O‘zgl)
P
= E [5 dPi(x) [+ wdPi(z)
Pt k-1
P mak med 4
= g oo AP (2) P 0
1
= - pm(mal’ map 1) (26)
Eq. (?Gﬁndlcates that if a* = (a7, a3, . ,a;_l)
minimizes Fy 1, then ma* = (may, ma2, ,mas

minimizes F) ., and vice versa, and tha‘t for all
m >0 Fpi(a”) = _Fpm(ma )

A.2 Proof of Lemima 3

Let T¢ denote the total packet delay of an SS
system Wlth p-FCFS discipline, where g(> 2)
and n(> 2) represent the numbers of groups
and packets, respectively, and let

6k: 1, 1fﬂk 1an<:3]c7
0, otherwise.

T9 —T?_, is equal to the sum of the delay of
packet e, and the total waiting time increase
of other packets due to packet e,’s arrival; ac-
cordingly, it can be expressed as

g n—1
TS~ T2, =y [5{Y wil6i+ - +81)
k=1 =1
n—1 ) ]
+Zn + Z xn(éz—&-l +oee 5;)}}
=1

Then, the expected value of T — T)/_, can be
written as

He R Dec. 1999
[Tg n l]
= fo  J(TE =T )dP(x1) - dP(z)
:Z{f ) dP( n)}“‘ ﬂkde( i)
+f frndP (zn)
n—1
64 N poo
+ xndP(a:n)Ei_i} Jos dP(2:)}
=m+(n — 1)Gg(ﬁf,.,.,ﬂgg_1), (27)
where
G!](ﬂf? e :/Bg—‘l)
g g
- Z{ fﬁk () [7 2dP(z
—{-f xdP(z) fﬁg dP(z)}.
By usmg (?7), we have
n = E[T}/n]
1 1
= EE[(Tg —T7 )+ (Th_ —Ths)
) e (T =TT+ TY]
1
(n
= o ——“__1 (1317 '5183_1)'
A.3 G, is a monctonically decreasing
function
Let ﬁ* = (bl, ceey bg—l) and ﬁg+1 =
(0,by,...,bg—1). For any g > 2, we have

9+1(/39+1) < (’g+1<ﬁg+l) = Gg(ﬂ;)-
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