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A Combined Data and Program Partitioning Algorithm
for Distributed Memory Multiprocessors
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In this paper we propose an algorithm to perform data partitioning and program parti-
tioning simultaneously on an intermediate representation for parallelizing compilers which we
have proposed, the Data Partitioning Graph. Conventional and, therefore, conservative par-
allelizing compilers usually activate program partitioning prior to data partitioning. However,
on distributed memory multiprocessors it is quite difficult to partition a program effectively
with consideration of data partitioning since communication costs change depending on a
data partitioning and distribution decision. The proposed algorithm resolves this conflict by
handling these inseparable partitioning problems simultaneously with an A* algorithm.

1. Introduction

Introduction of distributed memory multi-
processors, which promise high performance
computation because of their scalability, in-
creases the complexity of manual parallel pro-
gramming tremendously. The most serious
problem will be how to partition and distribute
data of the program to distributed memory
modules not to raise expensive interprocessor
communications frequently. Many researchers
have been exploring methods to reduce inter-
processor communication overheads automati-
cally by parallelizing compilers®®)12).

Parallelizing compilers partition a given pro-
gram to tasks executed concurrently on target
machines. This compilation process is often re-
ferred to as program partitioning, or partition-
ing simply. Syntactical objects of the source
language such as statements, basic blocks,
loops, or procedures, organize tasks themselves
in general. However, since excessive parti-
tioning fails in frequent expensive interproces-
sor communications and insufficient partition-
ing exploits poor parallelism®®), it is often re-
quired to optimize program partitioning by fus-
ing or splitting tasks after initial program par-
titioning. Moreover, parallelizing compilers for
distributed memory multiprocessors must opti-
mize data partitioning of the program, namely
partition and distribute array variables in an
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optimal form, unless partitioning or distribu-
tion of the array variables are specified at pro-
grammers’ responsibility with some means such
as source language properties®), compiler direc-
tives, and so on.

We cannot either find an optimal program
partitioning without communication costs be-
tween tasks fixed after data partitioning or op-
timize data partitioning without any program
partitioning decisions. Conflicted program and
data partitioning will follow sequential opti-
mization of these partitioning. Therefore, pro-
gram partitioning and data partitioning should
be optimized simultaneously in a unified man-
ner.

So far parallelizing compilers have often em-
ployed the dependence graph for parallelization
and code optimization as a simple and con-
venient intermediate representation. However,
the dependence graph is not powerful enough
for distributed memory multiprocessors since
the dependence graph is lack of explicit infor-
mation on data locations and accesses which is
essential to optimize data partitioning.

In this paper we propose the CDP? Algorithm
to optimize program partitioning and data
partitioning simultaneously with an extension
of the dependence graph representing explicit
data location and access information which we
have proposed, the Data Partitioning Graph
(DPG)'Y), as a common intermediate represen-
tation of a given program for data partitioning
and transferring optimization techniques. The
chief aim of this paper is to introduce an al-
gorithm which optimizes program partitioning
and data partitioning at the same time, there-
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fore, we do not discuss implementation and ap-
plication of the algorithm.

The rest of this paper is organized as follows.
Chapter 2 gives brief introduction to the DPG.
Chapter 3 formalizes the data-program parti-
tioning problem on the DPG. Chapter 4 de-
scribes fundamental properties of the DPG and
details of the CDP2?Algorithm utilizing those
properties. Finally Chapter 5 concludes this

paper.
2. Data Partitioning Graph (DPG)

In this chapter we summarize the dependence
graph and its constitutional difficulties as an in-
termediate representation of the program exe-
cuted on distributed memory multiprocessors.
Moreover, we introduce an extension of the de-
pendence graph which resolves those difficul-
ties, the Data Partitioning Graph (DPG)!9)| as
an intermediate representation for parallelizing
compilers.

2.1 Dependence Graph

Parallelizing compilers build and transform
the intermediate representation of a given pro-
gram to manage analytic information, detect
and exploit parallelism, and generate a paral-
lel program which is semantically equivalent to
the source program. The simplest and well-
known intermediate representation will be the
dependence graph which has been employed by
parallelizing (or vectorizing) compilers since the
dawn of the parallelizing compiler. The node of
the dependence graph represents a task. The
edge from a node ¥ to a node v of the depen-
dence graph, denoted by a tuple (u,v), repre-
sents that the task of v cannot begin its execu-
tion before completion of the task of u, that is,
the dependence from the task of u to the task
of v.

Advantageous features of the dependence
graph are its simplicity and commonality. The
dependence graph or its extensions?®) are use-
ful for many effective parallelization and code
optimization techniques employed by paralleliz-
ing compilers').

Although the dependence graph provides es-
sential information for semantically correct par-
allelization and code optimization, it does not
necessarily follow that the dependence graph
provides information to achieve good speedup.
Naive parallelization often fails in frequent in-
terprocessor communications which should be
avoided especially on distributed memory mul-
tiprocessors. If is a natural and possible ap-
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proach to attach costs of communications raised
by dependencies to the corresponding edges for
dealing with problems of communication over-
heads on the dependence graph. However, the
dependence graph represents no explicit infor-
mation about location of variables which af-
fects communication overheads extremely on
distributed memory multiprocessors.

2.2 Data Partitioning Graph (DPG)

Based on observation in the previous section,
we have defined the Data Partitioning Graph,
or the DPG, as an intermediate representation
which reveals variables and accesses to them in
its structure in reference 10).

Figure 1 shows an example of the DPG. The
DPG has two kinds of nodes: C-nodes shown
as circular nodes and D-nodes shown as square
nodes.

The C-node represents a task. There are two
kinds of dependence edges, that is, the control
dependence edge and the data dependence edge,
between C-nodes. A control dependence edge
and a data dependence edge represent a control
dependence?) and a data dependence from the
task corresponding to the source of the edge to
the task corresponding to the sink of the edge
respectively. Note that the DPG contains the
dependence graph in itself.

The D-node represents a set of scalar vari-
ables and array variable elements. Note that
we will refer to a scalar variable or an array
variable element as variable simply in the rest
of this paper. We partition the set of all the
variables into classes according to access pat-
terns of the variables and generate a D-node
for each class of variables, namely a set of the
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variables whose access patterns are same. The
access pattern is a property of the variable in-
dicating which tasks read the variable at what
frequency and which tasks write the variable at
what frequency. If the task of a C-node may
read a variable in the class of a D-node, we set
a read access edge from the D-node to the C-
node. Similarly, if the task of a C-node may
write a variable in the class of a D-node, we
set a write access edge from the C-node to the
D-node. We often refer to read access edges or
write access edges as data access edges without
distinction.

3. Data-Program Partitioning

In this chapter we put assumptions concern-
ing architectures on which run parallel pro-
grams, task execution model, and programs to
be partitioned optimally with their data. More-
over, we formalize the data-program partition-
ing problem on the DPG under these assump-
tions.

3.1 Assumptions

In this paper we assume that parallel pro-
grams are executed on a distributed memory
multiprocessor which satisfies the following re-
quirements.

(1) Processors are provided as many as the
executing parallel program requires.

(2) Each processor owns its local memory
module to be accessible with no latency.

(3) Each processor can access remote mem-
ory modules with some latency to be in-
dependent of the locations of the remote
memory modules.

Also we assume that all tasks are assigned to
processors by an appropriate static scheduling
algorithm®>") and each processor executes its
own assigned tasks in the following manner.
(1) Choose a task being ready to run.

(2) Read the values of the variables on re-
mote memory modules required for the
task execution into the copies of the vari-
ables on the local memory module.

(3) Execute the task non-preemptively.

(4) Write the values of the copied variables
back to their original on remote memory
modules.

(5) Go to Step 1.

In this execution model variables on remote

memory modules are accessed collectively be-

fore and after each task execution, while vari-
ables on the local memory module are accessed
at any time.
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For portion of the program to be partitioned
optimally we put the following assumptions.
(1) The dependence graph of the portion is

acyclic.
(2) There is no control dependence between
tasks.
The second assumption states there is mno
branch in the portion and all the tasks of the
portion are executed.

3.2 Grain Packing

Grain packing is one of well-known meth-
ods to optimize program partitioning by fus-
ing tasks of finer granularity. Grain packing re-
duces communication overheads since data ex-
changes between fused tasks never cause in-
terprocessor communications. However, grain
packing spoils parallelism at the same time in
case some of fused tasks can run in parallel.

We can formalize grain packing as a prob-
lem of grouping nodes of the dependence graph
and fusing the tasks corresponding to the nodes
in each group. Under this formalization grain
packing reproduces a new dependence graph
from the original dependence graph. At first
the nodes in each group are fused. Edges of the
original dependence graph whose sources and
sinks are in the same group appear as self-loops
at this moment. These self-loop edges are re-
moved. The remained edges are ones of the
original dependence graph whose sources and
sinks are in different groups. Some of them may
be parallel, namely their sources and sinks are
identical respectively. These parallel edges are
bundled into one edge.

We have often assigned execution time of each
task to the corresponding node of the depen-
dence graph and time required for the inter-
processor communication raised by each depen-
dence to the corresponding edge as their costs
for task scheduling. These costs should be re-
computed for the new dependence graph. The
cost of each node of the new dependence graph
is the total cost of the nodes of the original de-
pendence graph fused on grain packing. Simi-
larly, the cost of each edge of the new depen-
dence graph is the total cost of the edges of
the original dependence graph bundled on grain
packing. It is known the cost of the critical path
of a dependence graph, the path such that the
total cost of the nodes and the edges in itself
is not less than any other paths in the depen-
dence graph, gives the minimum parallel exe-
cution time required to complete all the tasks.
Therefore, we can formulate grain packing as a
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Fig. 2 Grain Packing

problem of grouping nodes of the dependence
graph to minimize the critical path cost of the
resulting dependence graph.

Figure 2 shows three examples of grain pack-
ing. The first example makes no fusing of
nodes. The second example fusing two nodes
reduces the critical path cost of the resulting
dependence graph than the first example owing
to elimination of interprocessor communication
by grain packing. However, the last example
fusing three plus two nodes turns the result un-
favorable because of loss of parallelism.

To avoid dead locks under our task execu-
tion model grain packing must respect a con-
straint on grouping nodes of the dependence
graph such that for any two different nodes u
and v in each group all the nodes in all the
paths from u to v must be in the same group,
the convez constraint'?). Grain packing with-
out the convex constraint reproduces a cyclic
dependence graph including a loop in itself and
causes a dead lock among the tasks of the nodes
in the loop.

3.3 Data-Program Partitioning

We achieve optimization of both program
partitioning and data partitioning simultane-
ously, or data-program partitioning, by fusing
C-nodes and D-nodes of the DPG. The data-
program partitioning prceblem is formalized as

a problem of grouping C-nodes and D-nodes
of the DPG likewise for program partitioning
on the dependence graph. The tasks of the C-
nodes in each group are fused, moreover, the
variables of the D-nodes in each group are lo-
cated at the local memory module of the proces-
sor which executes the task constructed by fus-
ing the tasks of the C-nodes in the same group.
Therefore, data access edges whose sources and
sinks are in different groups represent accesses
to remote memory modules.

Data-program partitioning on the DPG re-
produces a new dependence graph from the
original DPG. At first the C-nodes and the D-
nodes in the same group are fused. Self-loop
data dependence edges are removed and parallel
data dependence edges are bundled likewise for
grain packing. The DPG has execution times
of tasks as the costs of their corresponding C-
nodes. The DPG has communication times as
costs of data access edges instead of data depen-
dence edges. Each data access edge has time
of the interprocessor communication required
for the corresponding data access as its cost.
Data access edges are removed but their costs
are used to compute edge costs of the new de-
pendence graph with considering whether the
data access edges represent accesses to remote
memory modules or the local memory module.
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In this way costs of nodes and edges of the new
dependence graph are computed and the critical
path cost of the dependence graph gives mini-
mum parallel execution time under the program
and data partitioning decision defined by the
grouping of C-nodes and D-nodes. We can for-
mulate the data-program partitioning problem
as a problem of finding the optimal grouping of
C-nodes and D-nodes of the DPG, namely the
grouping such that minimizes the critical path
cost of the resulting dependence graph.

The convex constraint must be respected on
data-program partitioning to avoid dead locks.
The convex constraint is redefined for the DPG
as a constraint on grouping C-nodes of the DPG
such that for any two different C-nodes cvy
and cv, in each group all the nodes in all the
paths from cv, to cv, consisting of only data
dependence edges must be in the same group.
Data-program partitioning without the convex
constraint produces a cyclic dependence graph
which causes a dead lock.

4, The CDP?Algorithm

The CDP? Algorithm, which is extended from
Girkar’s program partitioning algorithm4) on
the dependence graph, is an A* algorithm®
which searches for the optimal grouping of
nodes of the DPG. In this chapter we make brief
introduction of the A* algorithm in a gener-
alized form and rewrite Girkar’s program par-
titioning algorithm as an A* algorithm. Fur-
thermore, we present fundamental properties of
the DPG to derive the CDP? Algorithm and de-
scribe details of the CDP?Algorithm.

Through this chapter we denote the depen-
dence graph, which is the input of Girkar’s
program partitioning algorithm, by a tu-
ple (V,E) where V and £ are a set of
the nodes and a set of the edges respec-
tively. Similarly we denote the DPG, which
is the input of the CDP?Algorithm, by a tu-
ple ({CV,DV},{DDE,CDE,RAE, WAE}),
where CV, DV ,CDE, DDE, RAE, and WAE
are a set of the C-nodes, a set of the D-nodes,
a set of the control dependence edges, a set of
the data dependence edges, a set of the read

% Girkar refers to his partitioning algorithm as a
branch-and-bound algorithm' in reference 4), how-
ever, his algorithm applies no bounding operations.
As written in this paper, the A* algorithm will be a
more proper category of Girkar’s algorithm and our
CDP? Algorithm rather than the branch-and-bound
algorithm.

[ AN
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access edges, and a set of the write access edges
respectively.

4.1 The A* Algorithm

The A* algorithm is an algorithm which
searches state space such that state transition
in the space is represented by a directed graph.
Fach state has its own evaluation value equal
to or greater than those of the previous states.
The A* algorithm finds out the final state whose
evaluation value is minimum. Algorithm 1 de-
scribes the A* algorithm in a generalized form.

Algorithm 1 (Generalized A* Algo-
rithm)

(1) TInsert the initial state to a list A.

(2) Remove the state s whose evaluation
value is minimum from A.

(3) Terminate the algorithm if s is one of fi-
nal states.

(4) Insert all the states derived immediately
from s to A with their evaluation values.

(5) Go to Step 2. O

As shown in Algorithm 1, the A* algorithm
is characterized by i)the definition of the staie,
ii)the initial state, iii)the final states, iv)the
state transition procedure, and v)the definition
of the evaluation value of the state. They are
defined according to the problem to be solved
with the A* algorithm.

The A* algorithm can use a biased state eval-
uation value f = g + h, where f is an actual
evaluation value and h is a non-negative bias,
for each state. h must be a lower bound of the
differences of the evaluation values of the reach-
able final states from the current state evalu-
ation value. Larger h reduces the number of
states to be examined and contributes to re-
duce computation time of the algorithm. Girkar
does not discuss biasing state evaluation values
of his program partitioning algorithm in refer-
ence 4). We also do not bias state evaluation
values of the CDP2?Algorithm in this paper to
keep discussion simple. But both algorithms
can improve their performance by biasing state
evaluation values effectively.

4.2 Girkar’s Program Partitioning Al-

gorithm

For a grouping of the nodes of the dependence
graph, if the nodes of each group and the edges
between these nodes are organizing a connected
subgraph of the dependence graph, we refer to
the partitioning given by the grouping as con-
nected. Girkar proved the following theorem
concerning optimality and connectivity of par-
titioning on the dependence graph in reference
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4).

Theorem 1 There exists a connected and
optimal partitioning. 4

Girkar’s program partitioning algorithm ac-
cepts a dependence graph of the program to be
partitioned and finds a grouping of its nodes
which gives the optimal partitioning of the pro-
gram out of groupings of its nodes which give
connected partitionings.  Girkar’s algorithm
classifies all the edges of the dependence graph
into a class IT or a class w. Girkar’s algorithm
regards the end point nodes of each edge in
7 as to be in the same group and end point
nodes of each edge in Il as to be in different
groups. There exist at least one or more con-
nected components in the subgraph consisting
of the nodes of the dependence graph and the
edges in w. These connected components can
define a grouping of the nodes of the depen-
dence graph, that is, the nodes in each of the
connected components organize one group of
the grouping. Obviously the partitioning given
by the grouping is connected. Therefore, the
problem is reduced to find a classification of
the edges of the dependence graph into IT and «
which minimizes the critical path cost of the de-
pendence graph reproduced by the grain pack-
ing which the edge classification defines. Girkar
characterizes the A* algorithm as follows to find
such an edge classification.

o The Definition of the State. Girkar’s
algorithm defines its state as a tuple (p, x)
where p is a set of the edges classified into
7 and X is a set of the edges classified into
peither II nor 7 yet. Let P be the set of
the edges classified into II, i.e. E— (pUx).

o The Initial State. Girkar’s algorithm de-
fines the initial state of the problem as state
(0, E). At the initial state no edge is clas-
sified into IT and .

o The Final States. A state (p, x) is a final
one if x = . At final states all the edge is
classified into IT or 7.

o The State Transition Procedure. Let
us suppose Girkar’s algorithm removes a
state (g, x) from the list A. Girkar’s algo-
rithm picks an arbitrary edge e = (u,v) in
x and derives two new states: (p,x — {e})
and (p U B,x — B) where B is a set of
the edges of the dependence graph in all
the paths from u» to v. The new state
(pyx — {e}) is always inserted to A\. How-
ever, the new state (p U B,y — B) is not
inserted to A if there exists an edge (a,b)
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such that (¢, b) € BNP. Note that the state
transition which this procedure defines is
represented by a directed tree.

o The Definition of the State BEvalu-

ation Value. The evaluation value of
a state (p,x) is the critical path cost of
the dependence graph reproduced by the
halfway edge classification which (p, ) de-
fines. Edges in y are dealt as if they did
not exist in the dependence graph on com-
putation of the critical path cost. States
derived by the above transition procedure
never have less evaluation values than their
original state since the dependence graphs
reproduced by the derived states have more
edges, which can contribute to increase the
critical path cost, than that of their original
state.

The final state obtained by Girkar’s algo-
rithm gives the edge classification which par-
titions a given program optimally. The com-
plexity of the algorithm is exponential in the
worst case.

4.3 Fundamental Properties of the

DPG

The CDP?Algorithm accepts the DPG of s,
given program, performs grouping of C-nodes
and D-nodes of the DPG to decide which tasks
are fused and where variables are located, and
produces a dependence graph of the program
optimized its partitioning and data partitioning
based on the aforementioned formalization in
the previous chapter.

The CDP?Algorithm classifies all the data de-
pendence edges of a given DPG into a class II
or a class 7 in a similar way to Girkar’s pro-
gram partitioning algorithm. Simultaneously
the CDP?Algorithm classifies all the read ac-
cess edges of the DPG into a class IIpsp or
a class Tpap and all the write access edges of
the DPG into a class Il ag or a class w4 5.
The C-node and the D-node which are the end
points of each data access edge in mpap and
mwag are enclosed in the same group. To the
contrary, the C-node and the D-node which are
the end points of each data access edge in g
or Iy 4 are in different groups. Thus data ac-
cesses corresponding to the data access edges in
IIrar or Hw ap raise interprocessor communi-
cations. Figure 3 describes the basic idea of
the CDP?Algorithm.

The CDP?Algorithm must classify data ac-
cess edges not to conflict with the classification
of the data dependence edges. We show two
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fundamental properties of the DPG to guar-
antee conflictless classification of the data ac-
cess edges below. The first property states for
any data dependence edge there exist D-nodes
which contain variables concerning its corre-
sponding dependence.

Property 1 For any data dependence edge

dde = (cvy,cv,) € DDE of a given DPG,

o If dde represents a flow dependence from
the task of cv, to the task of cv,, there
exists a D-node dv € DV such that
(cvy,dv) € WAE and (dv,cv,) € RAE.

o If dde represents an output dependence
from the task of cv, to the task of cuv,,
there exists a D-node dv € DV such that
(cvy,dv) € WAE and (cv,,dv) € WAE.

o If dde represents an anti-dependence from
the task of cv, to the task of cv,, there
exists a D-node dv € DV such that
(dv,cv,) € RAE and (cv,,dv) € WAE.

(It is trivial according to definitions of these
dependencies. See Fig. 4 instead of the proof.)
O

We denote a set of the D-nodes which
contain variables concerning with the de-
pendence of any data dependence edge
(cvy, cvy) by DVi((cvu, cvy)), DVo((cvu,cvy)),
and DV, ((cvy,cv,)) in case (cvy,cv,) Tep-
resents a flow dependence, an output de-
pendence, and an anti-dependence respec-
tively. DVi((cva,cvy)), DVo((cvu,cvy)), and
DV, ((cvy, cv,)) are defined as follows in formal.

DV;((cvy, cv,)) = {dv € DV|
(cv,,dv) € WAE,
(dv,cv,) € RAE}

4%
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=

DV, ((cvy, cvy)) = {dv € DV|
(cvy,dv) € WAE,
(cvy,dv) € WAE}

DV, ((cvy, cvy)) = {dv € DV|
(dv,cv,) € RAE,
(cv,,dv) € WAE}

The second property guarantees conflictless
classification of data access edges.

Property 2 For any flow dependence edge
(cvy, cvy), let a D-node contains variables con-
cerning the flow dependence of (cvy, cv,) be dv.
Conflictless classifications of the write access
edge (cvy,dv) into Ilwag or mwar and the
read access edge (dv,cv,) into Ilgar or TRAE
in case (cvy, cvy) is classified into II or 7 are as
follows.

o If (cvy,cv,) €11,

— (cvy,dv) € Mwag, (dv,cvy) € TRAE,
or

~ (cvy,dv) € Twag, (dv,cvy) € IlRag,
or

- (c’uu,dv) e llwag, (dv,cvv) €lrap.

o If (cvy,cvy) €,

— (cvy,dv) € Twag, (dv,cv,) € TrAE,
or
— (cvy,dv) € Owag, (dv,cv,) € rar.
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Likewise for output dependence edges and anti-
dependence edges. (It is trivial. See Fig. §
instead of the proof.) i

Given a conflictless classification of data de-
pendence edges and data access edges we can
define a dependence graph as described in Sec-
tion 3.3. We have to recompute the costs of the
nodes and the edges of the dependence graph
to evaluate minimum parallel execution time
at program and data partitioning given by the
classification. The recomputation is straight-
forward. The cost of a node of the dependence
graph is the total cost of C-nodes fused on con-
structing the node. On the other hand the cost
of a data dependence edge (cv,,cv,) denoted
by wppg((cvy,cv,)) is given as follows based
on the classification of data access edges. In
the following expression the cost of a read ac-
cess edge (dv, cv) and the cost of a write access
edge (cv, dv) are denoted by wrar((dv, cv)) and
ww ag((cv, dv)) respectively.

wppr((cvy, cvy))

— z ww 4 ((cvy,dv))

dve{dv' € DVy((cvu,cvy))|(cvu,dv’ ) Ellwar}

+ E wrap{(dv, cv,))

dvE{dv’EDVf((cvu,cvv))l(dv’,cvw)GHRAE}

+ Z ww ag((cv,, dv))
dve{dv' € DV, ((cvy,cvy))|(cvu,dv’' ) Elw 4 }
+ E ww ar((cvy, dv))

dve{dv' € DV, ({cvu,cvy))|(cvy,dv’ )Ellw a5}

+ Z wrag((dv,cvy))
dve{dv/eDVd((cvuﬁcvv))i(dvlvcvu)EHRAE}

+ E ww ar((cvy, dv))

dve{dv' €DV, ((cva,cvy))|(cvy,dv' ) EDw ap}
Note that we assume zero latency for local

memory module accesses and the costs of the
only data access edges in Iz and Iy 4 g con-
tribute the costs of data dependence edges. The
cost of a data access edge is time required for in-
terprocessor communication of the correspond-
ing data access as described in Section 3.3.

4.4 The CDP?Algorithm

The CDP?Algorithm is an A* algorithm to
find the classification of data dependence edges
and data access edges which minimizes the crit-
ical path cost of the dependence graph repro-
duced by the classification.

o The Definition of the State. The

CDP?Algorithm defines its state as a sextu-

plet (o, X, PRAE, XRAE, pWAE, XW AE). Here
pis a set of the data dependence edges clas-
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sified into 7 and x is a set of the data de-
pendence edges classified into neither I1 nor
T yet. PRAE, XRAE, PWAE, and Xw A are
similar sets but of data access edges. We
denote a set of the data dependence edges
classified into II, a set of the read access
edges classified into Iz 4z, and a set of the
write access edges classified into Iy 4 by
P, Prag, and Py 4p respectively. They
are represented as follows.

P=DDE - (xUp)
Prap = RAE — (XRrag U PRAE)
Py ap = WAE — (xwae U pwag)

The Initial State. The CDP?Algorithm
defines the initial state of the problem as
state (0, DDE,0, RAE,0,W AE). At the
initial state no data dependence edge is
classified into II and w. Tt is likewise for
data access edges.
The Final State. A state (p, X, 0rag,
XRAE, PWAE, XwAE) is a final one if x =
. At final states all the data dependence
edges are classified into II or =.
The State Trausition Procedure. Let
us suppose the CDPZAlgorithm removes
a state (p, X, PRAE, XRAE; PW AE: XW AE)
from the list A. The CDP?Algorithm picks
an arbitrary data dependence edge dde =
(cvy,cvy) in x to derive new states. Here
we define sets of data access edges denoted
by RAE,, WAFE,, RAE,, and WAE, as
follows.
RAE, = {(dv,cv,) € RAE)|
dv € DV, (dde)}
WAE, = {(cvy,dv) € WAE)|
dv € DV;(dde) U DV, (dde)}
RAE, = {(dv,cv,) € RAE|
dv € DV;(dde)}
WAE, = {(cv,,dv) € WAE)|
dv € DV, {(dde) U DV, (dde)}
We also define a set of the data dependence
edges in all the paths from cv, to cv, con-
sisting of only data dependence edges as
convex(dde).
The CDP?Algorithm considers two cases,
namely the case dde is classified into IT and
the case dde is classified into =.
For the case dde is classified into II we can
derive at most three conflictless states as
follows according to Property 2, if there ex-
ists no data dependence edge dde’ € p such
that dde € convex(dde').
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(1) o= p, X' = x — {dde}.

(2) pRAE1 ‘= PRAE, PIRAE? ‘= PRAE,
pRAEg = PRAE, XRAE = XRAE

(3) pWAEl = PWAE, PWAE) = PWAE,
Pwaps = PWAE, XwAE ‘= XWAE

(4) If (cvy,cv,) represents a flow depen-

dence,
(2) pRAEl = PRAE1 URAE,
(b) PWAF2 = PWAFz UWAE,
(¢)  Xrap = Xpap — RAE,
(d)  Xwap = Xwap — WAB,
(5) If (cvy,cvy) represents an output de-
pendence
(a) pWAEl = pWAEl UWAE,
(b) PWAEz = pWAE'2 U WAL,
(¢) Xwap = Xwap — (WAE, U
WAE,)
(6) If (cvy,cvy) represeants an anti-
dependence,
(a) PWAE1 = PWAE1 UWAE,
(b) PRAEz = PRAEz U RAE,
(c) XRAE = XRAE RAE,
(d) Xwap = Xwap — WAE,
(7) T RAE, C xrawUPrag, WAE, C
Xwag U Pwag, RAE, C Xprag U
praE, and WAE, C xwagUpwag,
insert a new state (o',x, Pram;>
Xrap: Pwags Xwag) 10 X
(8) If RAE, C Xrag U prar, WAE, C
XwaE U pwag, RAE, C Xrap U
Prag,and WAE, C xwaeUPwak,
insert a new state (p',x, Pramss
XRraE PwaBs Xwag) 10 A
(9) I RAE, CxrapUPrag, WAE, C
xwag U Pwag, RAE, C Xrap U
Ppag,and WAE, C xwaeUPwag,
insert a new state (0',x',Prars
X{RAEaprVAEwX{/VAE) to A
For the case dde is classified into m we can
derive at most two conflictless states as fol-
lows according to Property 2, if there ex-
ists no data dependence edge dde’ € PN

convex(dde).
(1) ¢ =pu{dde}, X' = x — {dde}.
(2) P’RAEzL ‘= PRAE; PRaEs ‘= PRAE,

XRAE = XRAE
(3) PWAE4 = PWAE, PWAE5 ‘= PWAE,

XWAE = XWAE
(4) If (cvy,cv,) represents a flow depen-

dence,

(a) pWAE4 = pWAEé U WAE,,
pRAE4 = PRAE4 URAE,

(b) XRAE = XRAE RAE,

(¢) Xwap = = Xwap — WAE,
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(8) If (cv,,cv,) represents an output de-
pendence,
(a) pIWAE4 = p%/VAEé U(W Ak, U

v

WAE,)

(6) If (ewy,cv,) represents an anti-
dependence,

(a) pRAE4 = PRAE4 U RAE,,

PWAE4 = PWAE4 UWAE,
(b) XRAE = XRAE RAE,
(¢) Xwag ™= Xwag — WAE,

(7) U RAE, C xXrarUprar, WAE, C
XwaE U pwag, RAE, C Yrarp U
PraE, and WAE, C xwapUpwag,
insert a new state (0',x',0%am4

XRAE: PwAE4 XwaE) to A
(8) U RAE, C xXragUPrap, WAE, C
: xwag U Pwag, RAE, C Xrag U
Prag,and WAE, C xwagUPwag,
insert a new state (0',x,0Raps
XIRAEa pIVVAEsa XQ/VAE) to A
For both cases a new state is not inserted
to A when the new classification of data ac-
cess edges specified by the state overrides
a decided classification of some data access
edges.

o The Definition of the State Evalua-
tion Value. The evaluation value of a
state (0, X, PRAE, XRAE, PWAE, XWAE) 18
the critical path cost of the dependence
graph reproduced by the halfway edge clas-
sification which (p, X, PRAE, XRAE, PW AE,
xwap) defines. The edges in ¥, xraE,
and xwag are dealt as if they did not
exist in the DPG on reproduction of the
dependence graph and computation of the
critical path cost of the reproduced depen-
dence graph. States derived by the abave
transition procedure never have less evalu-
ation values than their original state since
dependence graphs reproduced by the de-
rived states have more edges, which can
contribute to increase the critical path cost,
than that of their original state.

The final state obtained by the CDP?Algo-
rithm gives the edge classification which parti-
tions the given program and its data optimally.
The complexity of the algorithm is exponential
in the worst case.

Some data access edges may be left unclassi-
fied and some D-nodes may not be fused after
an application of the CDP2Algorithm. Read
access edges from D-nodes whose variables are
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read by some tasks but not written by any tasks
are left unclassified since the variables never re-
late to any data dependencies. Write access
edges to D-nodes whose variables are written
by one task but not read by any tasks are also
left unclassified for the same reason. We should
duplicate those variables pro re nata and lo-
cate variables or distribute their copies over lo-
cal memory modules of processors which exe-
cute tasks referring the variables. This pro-
cess keeps data references of these data access
edges from raising interprocessor communica-
tions. The variables of isolated D-nodes should
be removed since they are redundant variables
to be read or written by no task.

5. Conclusion

In this paper we formalized a problem to par-
tition a given program and its data in an opti-
mal form, the data-program partitioning prob-
lem, as a problem grouping nodes of the DPG
which is an extension of the dependence graph
with explicit data location and access informa-
tion. The CDP#Algorithm described in this pa-
per is an A* algorithm which solves the data-
program partitioning problem.

In this paper we employ an A* algorithm
to solve the data-program partitioning prob-
lem. It is because we concentrate on importing
the existing algorithm on the traditional depen-
dence graph, namely Girkar’s program parti-
tioning algorithm, to the DPG with some ex-
tension and improvement to consider data par-
titioning and transferring optimization simulta-
neously.

As described in Section 4.1 the A* algorithm
can reduce its computation time by biasing
state evaluation values and suppressing deriva-
tion of less attractive states. It will be our prior
future work to find an effective biasing method
for the CDP?Algorithm.

Although the current CDP?Algorithm picks
unclagsified data dependence edges in an ar-
bitrary order, sophisticating the order of data
dependence edge picking will contribute to re-
duce computation time of the CDP?Algorithm
by deriving less number of states. It is also a
future work to develop a heuristics on the or-
der of picking data dependence edges to sup-
press the number of derived states. For both
future works we consider utilizing evaluation
measures used in list scheduling algorithms®)»")
such as the critical path cost to the bottom of
the dependence graph, the number of children
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or descendants of each node of the dependence
graph, and so on.

Besides the A" algorithm there can be more
efficient algorithms to solve the data-program
partitioning problem under our formalization.
However, it is intractable to evaluate actual per-
formance of the algorithms, which changes de-
pending on their inputs, without experiments
applying algorithms to real applications. It
should be another future work to compare al-
gorithms to solve the data-program partitioning
problem with actual inputs of real applications.
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