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1. Introduction 

Clustering is an unsupervised learning process that 
partitions data such that similar data items are grouped 
together in sets referred to as clusters. This activity is 
important for condensing and identifying patterns in 
data. Despite the substantial effort invested in 
researching clustering algorithms by the data mining 
community, there are still many difficulties to 
overcome in building clustering algorithms. Indeed, as 
pointed in [1] “there is no clustering technique that is 
universally applicable in uncovering the variety of 
structures present in multidimensional data sets”. This 
situation has generated a variety of clustering 
techniques broadly divided into hierarchical and 
partitional; also, special clustering algorithms based 
on a variety of principles, ranging from neural 
networks and genetic algorithms, to tabor searches. 
 Data clustering is one of the key tools of data 
mining and numerous effective clustering methods 
have been developed.  However, there are still many 
challenges involved in using clustering for mining 
massive databases.  Some of those issues include:  

• Dealing with high dimensional data.  
• Scalability with respect to large databases.  
• Clustering nominal and mixed data in 

addition to numerical data.  
We are developing optimization based methods that 
can be applied to nominal data, that is, to data whose 
attributes have no particular natural ordering. In 
general clustering, objects to be clustered are 
represented as points in an n-dimensional space  
and standard distances, such as the Euclidean distance 
is used to evaluate similarity between objects. For 
objects whose attributes are nominal (e.g., color, genre, 
shape, etc.), no such natural representation of objects 
is possible, which leaves only the Hamming distance 
as a dissimilarity measure, a poor choice for 
discriminating among multi-valued attributes of 
objects. 
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2 Clustering and center concept 

Clustering aims to group similar objects into 
clusters which can be described by theirs centers. 
Each object is described by a set of attributes. Each 
attribute has a domain definition and takes a value in 
this domain. 

The K-means algorithm is one of the most famous 

algorithms for clustering [2]. We present the classical 
algorithm dedicated to numerical data, then we 
introduce a definition of the center concept more 
adapted to nominal data. We also introduce the 
associated distance 

 
2.1 The K-means algorithm 
The K-means algorithm is an iterative procedure 

where iteration is given below: 
 

 
 

Algorithm 1. 
Input: the number of clusters k and item attributes
Output: a set of k clusters that minimizes the squared-error 
criterion. 
(i)  Decide on the value of K. 
(ii)  Start off with K arbitrary centers.  They may be chosen 
randomly, or as the cluster center of arbitrary starting 
partitions of the case set. 
(iii)  Consider each case in sequence; find the centre to which 
the case is closest.  Assign the case to that cluster.  Recalculate 
the centre of the new and old clusters as the cluster center of 
the points in the cluster. 
(iv) Repeat until the clusters are stable. 
(v) Repeat for different initial centers.  Choose the best 
clustering, in terms of minimum within cluster sum of squares.
 
Fig. 1.  The K-means Clustering  

The major drawback of K-means algorithm is that it 
often terminates on a local optimum and works only 
on numerical values because it minimizes a cost 
function calculating the means of clusters. Moreover, 
it needs to compute centers. The center of a cluster is 
easy to define on numerical values because the mean 
makes sense, but for nominal data it is not so simple. 

 
2.2 Aggregate different data type 
In this section, we can aggregate mixed type of data 

(multivariate data) up to N dimension. Here there are 
binary, nominal, ordinal, and quantitative 
measurement scales. The goal is to transform this data 
into aggregated distance matrix.  

Here is step by step on how to aggregate 
multivariate distances:  

1. Convert data into coordinate based on 
measurement scale 
To transform the data into coordinate, we 
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need to consider each features data type.  
If the data is quantitative, we don't need to 

change anything.  
If the data is binary, we convert it into 0 

and 1. 
If the data is ordinal, we get the rank and 

normalize the rank into range [0, 1].  
  If nominal data and data is mutually 
exclusive values then find number of dummy 
variable by Eq. 1 and convert data into 
coordinate 
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Where a number of dummy variables are , 
 is a number of categories.  

dv
c

If nominal scale with multiple choices then 
assign each value of category into a single 
binary  variable. 

      
2. Determine distance matrix for each features 

variable based on coordinate  
3. Normalize the distance matrix into range of 

[0, 1]  
4. Aggregate the distance matrix  

Once we get the distance matrix, we use the distance 
matrix for K means clustering 
In reality, we have very rare of single type 
measurement scale. Most of cases in real 
measurements (especially in behavioral survey) may 
consist of mixed type measurement scale of nominal, 
ordinal, and quantitative scale. We handle this 
situation by; 

1. Use only normalized distance or similarity 
(which has value [0, 1]) for all variables.  

2. Determine the weight of each feature variable 
 (usually between 0 and 1)  ijkw

3. Then, general aggregated similarity and 
dissimilarity index are simple weighted 
average of distance matrices of each features 
variables  
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Index represents the features variables. and k ijks

ijkδ are similarity and dissimilarity of between object 

and i j for feature .  k

 
2.3 A new definition for the cluster center 

concept 
After the transformation of the dataset with multi-

categorical variables to dataset with only binary 
variables was used, methods for clustering binary data 
can be applied. Here is important to take into account 
variables of both nominal and ordinal nature. When 
we cluster the binary variables of nominal data, there 
is a sparse matrix. We then propose to compute the 
center of a cluster by using the dynamic threshold. 

1. Find the number of occurrences of bit “1” of 
all objects in cluster k :  

2. Divide the number of occurrences in (1) by a 
number of bit and set it to be the dynamic 
threshold  

3. Calculate cluster center by using the dynamic 
threshold divide the number of occurrences of 
bit “1” of the considered term.  

4. Repeat until all of clusters. 
In some works, authors have proposed some 

definitions for the center of categorical or nominal 
data. For example, [3] proposes to compute the center 
of a cluster by using the mode of a set. 

 
3. Conclusion 

Although cluster analysis of nominal variable is 
popular theme in the papers, it is implemented in 
software packages only rarely. Even K-means 
clustering is suitable only for simple numerical data. 
Generally, business data consist of many categorical 
variables with complex taxonomic domain structure.  
We then proposed the algorithm for adapted k-means 
clustering. It can use for all types of data. We apply 
this algorithm for our proposed system, the 
multidimensional recommendation system [4].  
 
4. References 
[1] A.K.Jain, M.N.Murty, and P.J.Flynn. Data 
clustering: A review. ACM Computing Surveys, 
31:264-323, 1999. 
[2] L. Bottou and Y. Bengio. Convergence properties 
of the K-means algorithms. In G. Tesauro, D. 
Touretzky, and T. Leen, editors, Advances in Neural 
Information 
Processing Systems, volume 7, pages 585-592. The 
MIT Press, 1995. 
[3] Z. Huang. Extensions to the k-means algorithm for 
clustering large data sets with categorical values. Data 
Mining and Knowledge Discovery, 1998. 
[4] Sutheera Puntheeranurak and Hidekazu Tsuji, A 
framework of a multidimensional recommendation 
system, 第 68 回情報処理学会全国大会、工学院

大学 新宿キャンパス、2006 年 


	tyt_no: 
	typ_page1: 1-386
	tyt_a: 
	typ_page: 
	tyt_head: 
	tyt_head1: 情報処理学会第69回全国大会


