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GA Generates New Amino Acid Indices through Comparison
between Native and Random Sequences

SATORU KANAI'* and HIROYUKI ToOH!

The amino acid sequence of a protein carries its folding information. If the information
is encoded by the arrangement of the amino acid residues along the primary structure, the
random shuffling of the residues would degrade the information. We developed a new method
to compare the native sequence with random sequences generated from the native sequence, in
order to extract such information. First, amino acid indices were randomly generated. That
is, the initial indices have no significance on the feature of residues. Next, using the indices,
the averaged distance between a native sequence and the random sequences was calculated,
based on the autoregressive (AR) analysis and the linear predictive coding (LPC) cepstrum
analysis. The indices were subjected to the genetic algorithm (GA) using the distance as the
fitness, so that the distance between the native sequence and the random sequences becomes
larger. We found that the indices converged to hydrophobicity indices by the GA operation.
The AR analysis with the converged indices revealed that the autocorrelation in the native
sequence is related to the secondary structure.

1. Introduction

Proteins are essential molecules for living or-
ganisms, which are involved in a wide variety
of biological phenomena. Living organisms can
generate various proteins which are composed
of 20 kinds of amino acid resides. Amino acid
residues are linearly combined by peptide bonds
to form a protein. So, proteins are string-like
molecules. The amino acid sequences of most
protein fold into a globular structure to exert
its biological activity. A statement known as
Anfinsen’s dogma ! maintains that the infor-
mation about the folding of a globular protein
is carried by the amino acid sequence. If we
extracted such information from an amino acid
sequence, we could predict the tertiary struc-
ture of the sequence. In addition, such infor-
mation is important to design artificial proteins
with desired structures. However, we do not
fully understand the relationship between pro-
tein sequence and the structure. "lechniques
for structure prediction or the design of arti-
ficial proteins are still far from practical ap-
plications. However, this problem has long at-
tracted many people, and various studies have
been made thus far.

One of the approaches to tackle this prob-
lem is to find the orders or rules held by the
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amino acid sequences of native proteins. In the
analyses, the amino acid sequences are trans-
formed into a series of numerical data. A simple
method is the binary transformation, where 0 is
assigned to a group of amino acid residues, and
1 is assigned to the residues of another group.
Then, an amino acid sequence is expressed as a
series of the numbers 1 and 0. For example, hy-
drophobic residues are expressed by 0, and hy-
drophilic residues are replaced with 1. A more
subtle method for the transformation is the ap-
plication of amino acid indices. An amino acid
index is a set of numerical values, each of which
corresponds to an amino acid residue. ‘T'here
are many different amino acid indices, which are
roughly classified into six types, hydrophobic-
ity, o and turn propensities, 5 propensity, com-
position, physicochemical properties, and other
properties ). Each residue of a given amino
acid sequence is replaced with the correspond-
ing numerical value of a given index. Then, the
amino acid sequence of a protein is expressed as
one-dimensional numerical value data, like time
series data. In this paper, the series of numer-
ical values corresponding to an amino acid se-
quence is called “profile.” The profile has been
analyzed by signal processing technique, such as
Fourier transformation and autoregressive mov-
ing average models, in order to find periodic-
ity or autocorrelation in a given amino acid se-
quence. There are many example of such ap-
proaches. Some people insist that residues are
randomly arranged in the amino acid sequences
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of native proteins*)~_ However, other people

have found periodicity or autocorrelation in the
amino acid sequences of native proteins $)~1).
In many cases, periodicity or autocorrelation
in hydrophobicity are found in amino acid se-
quences. Thus, the results obtained from the
various approaches are still controversial.

In this paper, we propose a new method for
the signal processing analysis of amino acid se-
quences. Our method is regarded as solving an
inverse problem against the current signal pro-
cessing approaches. We did not use any of the
known amino acid indices for the study. In-
stead of assumptions about the features of the
amino acid residues, we introduced another as-
sumption for the analysis: if the information
about the folding of a protein is carried by the
arrangement of the residues along the primary
structure, then the information is degraded by
the random shuffling of the sequence. There-
fore, it is expected to extract information re-
lated to protein folding through comparison of
sequences of native proteins and the randomly
shuffled sequences. First, we connected the
amino acid sequences of native proteins to gen-
erate a long sequence, which we call “native se-
quence.” For comparison, each sequence consti-
tuting a native sequence was randomly shuffled,
and then was connected in the same order as in
the native sequence. 'I'he long sequence com-
posed of the shuffled sequences is called “ran-
dom sequence.” A single random sequence may
fortuitously posses folding information. How-
ever, it is expected that this information would
be lost in most of the random sequences, if
many random sequences are generated. There-
fore, we used a set of random sequences instead
of a single random sequence. First, we prepared
a large number of amino acid indices, whose el-
ements were randomly generated. Therefore,
the initial amino acid indices did not have any
meaning in terms of on the feature of amino acid
residues. Using each amino acid index, the na-
tive sequence and the random sequences were
transformed into profile data. The former is
called “native profile,” while the latter is called
“random profiles.” Both profiles were subjected
to a univariate autoregressive (AR) analysis 1%
Then, the distance between the native and ran-
dom profiles was calculated based on the re-
sults of the AR analysis. The distance is known
as the linear predictive coding (LPC) cepstrum
distance ') in the field of speech recognition.
Using the distance as the fitness of the index,
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the population of amino acid indices was sub-
jected to a genetic algorithm (GA)'® as follows.
The more an amino acid index can distinguish
the native sequence from the random sequence,
the more descendants the index can reproduce.
The amino acid index with the highest fitness
in the final generation, therefore, is expected to
distinguish the native sequence from the ran-
dom sequences efficiently. Then, the autocorre-
lation in the primary structure can be examined
by the AR analysis with the obtained indices.

We will show how the GA worked on the evo-
lution of amino acid indices. The relationships
between the obtained amino acid indices and
the known amino acid indices will be discussed.
We will also discuss the relationship between
the AR coefficients and the secondary struc-
tures of the examined proteins.

2. Materials and Methods

2.1 Preparation of Native Sequences
and Generation of Randomly
Shuffled Sequences

The proteins used in this study were se-
lected based on the structural classification by
CATH®. 20 proteins were selected from the
mainly « class. 21 proteins were selected from
the mainly 3 class. 39 proteins were taken
from the a-3 class. All of the proteins were
selected so as to satisfy the following condi-
tions: (a) the sequence length is equal to or
greater than 100 amino acid residues, (b) each
protein is made of a single domain, and (c)
no hetero atoms or ligands are contained in
the structure. CATH has one more structural
class, few secondary structures. However, none
of the proteins included in that class fulfilled
the conditions described above. Therefore, no
proteins belonging to the last class were used
in this study. The proteins used in this study
are listed in Table 1. The amino acid se-
quences of the selected proteins were taken
from the homepage of the Protein Data Bank
(http://www.pdb.bnl.gov/pdb/index html).

As described below, the amino acid sequences
of the selected proteins were subjected to an
AR analysis'® in this study. However, the se-
quence length of a single protein was too short
to obtain enough samples for the AR analysis.
Therefore, all of the amino acid sequences be-
longing to the same structural class were con-
nected to form a native sequence defined above.
‘I'hen, three long sequences were constructed,
corresponding to the mainly «, the mainly 3,
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Table 1 The list of proteins used in this study. The
column, “ID,” indicates the PDB ID code.
The column, “CH,” indicates the chain when
the PDB entry includes several chains. The
column, “LN,” indicates the length of the
amino acid sequence.

(1) Mainly o class

1D CH LN ID CH LN
1bip 122 1jvr 137
1hul A 108 1gdz 151
1rfb A 119 11x1 221
2end 138 1lcol A 204
153! 185 lpbw A 216
1lbd 282 lcsm A 256
1sig 339 lcem 363
2spc A 107 1nfn 191
laep 161 1lis 136
1rch 129 13l 112

(2) Mainly B class

1D CH LN 1D CH LN
1bw3 125 2eng 210
1clh 166 1whi 122
lulo 152 lakp 114
lexg 110 Ilmsp A 126
1stm A 157 Infa 178
1knb 196 1thv 207
lcau B 184 1tnf A 157
1gff 1 426 ldup A 152
1tul 108 lgpr 162
1tie 72 lvmo A 163
Itsp 559
(3) a-B class

1D CH LN 1D CH LN
1fus 106 loun A 127
lnar 290 lonr A 316
1fwp 139 1ris 101
2pii 112 2chs A 127
ldco A 104 liba 101
1thd 134 1msc 129
1vhi A 142 1kpt A 105
1mil 104 1svg 114
1chd 203 lice A 167
lcex 214 1tib 269
1pda 135 1tht A 305
lcfy A 143 lcby 259
1pvu A 154 1fvk A 189
1bhm A 213 1smn A 245
leri A 276 1rva A 244
lesc 306 3pte 349
1jon 155 1htm B 138
lope 110 Imut 129
1reg X 122 1lts A 185
1pbn 289

and the o-3 classes. The lengths of the three
sequences were 3677, 3946, and 7050 amino acid
residues, respectively. In addition, the three
sequences were connected to form one more
amino acid sequence, which was referred to as
“all data.” The four connected sequences were
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used as native sequences.

Corresponding to each native sequence, a
number of shuffled sequences were generated.
The amino acid sequence of each constituent
protein of the native sequence is randomly shuf-
fled. The shuffled sequences are then connected
in the same order as the constituent proteins in
the native sequence. The sequence composed
of shuffled sequences is used as the random se-
quence. 'The random sequence has the same
length and the same amino acid composition as
the native sequence, but the arrangement of the
amino acid residues is randomized. Due to the
reason described above, 100 random sequences
were generated for each native sequence.

2.2 Genetic Algorithm to Generate

Amino Acid Indices

The overall procedure to generate the amino
acid indices is committed to the GA 8} The
GA is a heuristic method to solve the combina-
torial optimization problems by mimicking the
evolution mechanisms of living organisms. In
the GA, any possible solution is expressed as
a chromosome. Then, a population of chromo-
somes is subjected to evolutionary operations,
such as selection, crossover, and mutation. For
the procedure of selection, the fitness of each
individual chromosome should be defined, cor-
responding to the problem under consideration.
During the process, the population evolves to-
ward an optimal solution. Note that there is
no proof that a solution obtained by the GA is
optimal, because the GA is a heuristic method.
The following is a standard GA procedure.

P1 Initialization An initial population is
randomly generated.

P2 Reproduction and selection The fit-
nesses of the individuals constituting the
population are evaluated. Then, the de-
scendants of an individual are generated,
in proportion to the fitness. That is, the
greater the fitness is, the larger the num-
ber of descendants is. Note that the size
of the population is fixed during the whole
process. Therefore, an individual with rel-
atively low fitness is expected to become
extinct during the procedure.

P3 Crossover Crossover operations between
randomly selected pairs of chromosomes
are performed.

P4 Mutation Mutation operations against
randomly selected chromosomes are per-
formed.

P5 Judgment of termination If a condi-
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tion of termination is fulfilled, an individual
with the highest fitness among the current
population is regarded as a quasi-optimal
solution. Otherwise, go to P2 and repeat
the procedure until the termination condi-
tion is fulfilled.

To solve the problem considered in this
manuscript, the standard algorithm was en-
coded into a program that can perform each
operation as follows:

Chromosome representation and ini-

tialization

A chromosome indicates an amino acid index.
That is, a chromosome is a set of 20 numeri-
cal values, each of which corresponds to an un-
known feature of an amino acid residue. Note
that we did not adopt a binary expression of a
chromosome, but used a gray-scale expression.
That is, each element of an amino acid index is
restricted in a range from 0.0 to 1.0. 500 amino
acid indices were created as an initial popula-
tion, and the size of the population was fixed to
500 during the procedure. Each element of the
amino acid index in the initial population was
filled with a random number.

Distance between native and random

profiles

In this study, we searched for the order that is
present in a native sequence, but is degraded in
any random sequence generated from the na-
tive one. Therefore, a chromosome, which ef-
ficiently distinguishes a native sequence from
the random sequences, is regarded as effective
for selection. To realize this idea, the fitness of
a chromosome is defined based on the distance
between the native sequence and a random se-
quence. That is, the greater the distance is, the
higher the fitness is. Before entering into the
details of the GA operation, we will describe
the definition of the distance between the na-
tive sequence and a random sequence with an
amino acid index.

First, an amino acid sequence. A, is con-
verted to a profile, using a given amino acid
index, I. Let a sequence be A = {A;,...,
Ar}, where A; € {A,R,N.D,C,Q,E.
G HILKMFPSTWYV} L indi-
cates the length of the native sequence. Let an
amino acid index be I = {l4,....1;,..., v},
where 0.0 < 1; < 1.0, and j € {A,R,N,D.C,
Q.FE.G,H,1, L,I\ M. F.P.S T, WYV} The
amino acid residue at each i-th position, A;,
is replaced with a numerical value. F;. where
P; equals 1; if A; equals j. Then, a profile,
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P={F,...., P, ..., P}, isobtained. The pro-
file obtained from a native sequence is referred
to as native profile, while the profile for a ran-
dom sequence is called random profile. A profile
can be treated as time series data if the residue
position is regarded as discrete time.

For the time series analysis, the properties
of a time series are reduced to be expressed
as the AR model. Based on the obtained AR
models, the difference between two time series
data sets is calculated as the LPC cepstrum dis-
tance. This method is a traditional approach
in the field of speech recognition. We defined
the distance between a native sequence and the
random sequence, using the LPC cepstrum dis-
tance.

At first, a native profile, P, is analyzed as
the univariate AR model. A corrected profile,
T = {t1,...,t;,...,t1}, is calculated from P,
where t; = P; — M and M is the average of
P. The equation of the AR model of T is as

follows:
E

ti= D (b tim)+ei o
m=1
where k is the AR order, and g; is the white
noise at site 7. Let b = {by,...,bi,... bt} be a
set of AR coefficients of the model. The AR co-
efficients are estimated by minimizing the sum
of the squared residual, Qy.

L k 2
Qr = Z (t,» - Z(bm 'l‘im)) (2)

i=k+1 m=1
Then, the AR coefficients are obtained as the
solution of Eq. (3), where S, and I are defined
as Eqgs. (4) and (5).

S11 Stz ... Su] h 1y
Si2 S22 ... S| |b2 1y
: o : ] G
S Sor ... Sl L 1
L
Spe= Y (timr-tis), 1<r<s<k
i—k+1
(4)
L
L= (ti-tiy). 0<r<k (5
i=k+1

The AR order examined in this study ranged
from 1 to 8.

Let’s consider that two profiles are analyzed
by the AR model. Then, two sets of AR co-
efficients are obtained. In the field of speech
recognition, it is known that the Euclidean dis-
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tance with the sets of AR coeflicients is not
efficient for practical application, because the
AR coefficients do not always reflect the spec-
tral envelope of a given pattern 7). Instead, the
LPC cepstrum distance is widely utilized as the
distance between two sets of time series data.
Therefore, we adopted the LPC cepstrum dis-
tance as the distance between the native profile
and a random profile.

The coefficients of the m-th order LPC cep-
strum, ¢ = {c1,...,¢,...,Cn }, for a given pro-
file are calculated based on the AR coefficients:

= log Qy

Cc1 = bl
1 i-1 (6)

e = bi + = ;(n ¢ bin)
where m > k and b; = 0 (i > k). The sum of
the squared residual, Qy, is obtained from the
AR coefficients by the following equation.

k
Q= 1o = Y (b - ). (7)
m=1

In this study, the order of the LPC cepstrum,
m, was 15.

We can calculate the distance between the
profiles, based on the two sets of LPC co-
efficients corresponding to the profiles. Let
¢ = {co.---+Ciy--. om} be the set of LPC
coefficients for a profile, P.  Likewise, let
¢ = {¢,....¢,...,c,} be the set of LPC
coefficients of another profile, P’. The LPC
cepstrum distance between the two profiles,
D(P,P’'), is defined as follows:

D(P,P')? = (cg — ¢})?
+2-) (=)t (8)
=1
Reproduction

The population that is subjected to the GA
operation is composed by a set of chromosomes.
As described above, each chromosome is an
amino acid index. Here, we will define the fit-
ness of a chromosome and describe the opera-
tion of reproduction.

Let’s consider one chromosome, designated as
r. within a population. The raw fitness of chro-
mosome r is obtained as follows. (I) A profile
of a native sequence, P(x), is generated using
chromosome xr. Then, a set of random profiles,
{P}(x)...., Pi(x),....P(x)}, is generated by
applying chromosome x to the set of random
sequences, where S is the number of random se-
quences generated from a native sequence. (II)
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The LPC cepstrum distance between the native

profile and a random profile i, D(P(x), P}(x)),

is calculated. (III) The raw fitness of the chro-

mosome z, RF(x), is then calculated as follows.
5

RE 100 ZD ). ©)

The procedure is apphed to all of the chro-
mosomes included in the current population.
Then, the raw fitnesses are assigned to all of
the chromosomes within the population. It is
often observed that selection pressure is not re-
flecting the difference in fitness properly and
the efficiency of searching for an optimal point
becomes worse, as the number of generation in
the GA becomes larger. To improve the prob-
lem, the raw fitness is re-scaled for selection.
There are several methods to re-scale the fit-
ness. Here, we adopted one of the methods
which is called sigma truncation 292D The
scaled fitness SF(x) of an amino acid index x
by sigma truncation is defined as follows:

SF(x) = RF(z) — (RFse — C-0a) (10)
where RF,, and o are the average and the
standard deviation over all of RF'(x), respec-
tively. C is a scaling factor, which is obtained
as follows:

C = (Rbug — R¥min)/o (11)
where RF,,;, is the minimum value over all of
RF(x).

If the obtained value of C is less than 1.0,
then C is set to be 1.0. Likewise, C is set to be
3.0, if the ohtained value of C is greater than
3.0. If SF(z) is less than 0.0, then SF(x) is set
to be 0.0.

The offspring are generated in proportion to
the scaled fitness.” The number of offspring of
chromosome r is calculated as follows:

N SF(x)- N,

S (SF(i) - Ni)
where int|r| is the function that returns an in-
teger that is greater than or equal to r, but less
than r 4+ 1. Nr is the number of types of chro-
mosomes, and N; is the number of chromosome
i in the current population. Moreover, N is the
population size. That is,

Nt

N=Y"N (13)

As desclriﬁed above, N was set to 500 in the
actual run. However, the total sum of o, is not
always N, due to the dismissal of the decimal
fraction by the application of the “int” function

(12)

o, = int
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in Eq. (12). In order to adjust the population
size of the offspring, the number of each chro-
mosome is increased by 1 until the population
size of the offspring becomes N. The operation
is carried out according the order of the fitness.
That is, the operation starts from the chromo-
some with the highest fitness, and progresses
toward the chromosome with the lowest fitness.
If the total sum of the offspring becomes N mid-
way through the operation, then the operation
is terminated, and the numbers of the offspring
of the remaining chromosomes are left as they
are. If the total sum is less than N after the
operation is applied to all of the chromosomes,
then the same procedure is repeated until the
condition is satisfied.

Elitism strategy

Some individual chromosomes with high fit-
ness are inherited by the next generation with-
out the operations of crossover and mutation.
This strategy is called elitism?2?. In actual
runs, the top 1% of the reproduced offspring are
regarded as elite when the individuals of the off-
spring are sorted by scaled fitness. On the other
hand, the remaining non-elites are subjected to
the following two operations.

Crossover

The uniform crossover operation 2 is
adopted for this study. The algorithm allows
any number of crossover points at any position.
First, a pair of non-elite chromosomes is ran-
domly selected. Then, the two chromosomes
are aligned so that the elements for the same
amino acid residue in the chromosomes corre-
spond to each other. Each position between
two neighboring elements is a crossover point
candidate. At each position, a random number
ranging from 0.0 to 1.0 is generated. If the ran-
dom number is greater than a given crossover
probability, P, a crossover occurs at the posi-
tion. After the operation, the pair is removed
from the non-elite population, and is introduced
into a set that will be subjected to the muta-
tion operation. The operation is repeated un-
til the size of the non-elite population becomes
0. When the size of the non-elite population is
odd. the chromosome with the highest fitness
in the non-elite population is introduced into
the set for the mutation operation hefore the
crossover operation described above. Pg is 0.1
in actual runs.

Mutation

In a standard genetic algorithm, each chro-
mosome is expressed by binary codes, and a

3)
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mutation means exchanging 1 to 0 or vice versa.
In contrast, the chromosomes in this study were
expressed by a set of 20 numerical values rang-
ing from 0.0 to 1.0. In this study, therefore,
a mutation means an increase or a decrease in
the value of an element of the index by a given
constant.

All of the chromosomes included in the set
made by the crossover operation are subjected
to the mutation operation. Let’s consider chro-
mosome z as an example. Chromosome r is
an amino acid index with 20 elements. Cor-
responding to each element, a random number
ranging from 0.0 to 1.0 is generated. If the ran-
dom number is less than a given mutation prob-
ability, Py, the element is not mutated. Oth-
erwise, a random integer is generated to deter-
mine whether the change is an increment or a
decrement. If the number is odd, then the el-
ement is increased. Otherwise, the element is
decreased. In this study, Py is 0.1, and 0.05 is
used as the constant value for an increment or a
decrement. When the numerical value stored in
the element becomes greater than 1.0 by the in-
crement operation, the value is re-set to be 1.0.
Likewise, the value is re-set to be 0.0 when the
value becomes less than 0.0 by the decrement
operation. All of the elements in an index are
examined in the same way, and the procedure
is applied to all of the chromosomes in the set
made by the crossover operation.

Judgment of termination

‘I'he chromosomes subjected to crossover and
mutation operations were combined with the
elite individuals to form the next generation.
When the GA operation is repeated by a given
number, the program is terminated. Of course,
when the number is too small, we cannot obtain
a good solution. The number is, therefore, de-
termined by several preliminary trials of the GA
operations. In many cases, 50 generations were
sufficient for the highest fitness in the popula-
tion to converge to a constant value. 'l'o ensure
the convergence, we added 50 more generations.
That is, each GA operation was terminated af-
ter 100 generations.

2.3 Evaluation of Generated Amino

Acid Index

To compare the generated amino acid indices
with each other or with known indices, the cor-
relation coefficient between two amino acid in-
dices was calculated.

The cluster analysis was performed using the
absolute values of the correlation coefficients as
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the distance between two indices. In the anal-
ysis, the distance D1 (I,T') between two indices
I and I' is given by:

DILY)=1-|CC(,T) (14)
where CC(I, T') is the correlation coefficient be-
tween two amino acid indices. Then, a dendro-
gram was constructed by the NEIGHBOR pro-
gram in the PHYLIP 3.5¢ package 24), by adopt-
ing the unweighted pair-group method with the
arithmetic mean (UPGMA)?%. The UPGMA
dendrogram was drawn by the TreeView pro-
gram 29).

3. Results

3.1 Evolution of Amino Acid Indices

by the GA Operation

We examined four combined sequences, the
mainly «. the mainly 3, the -3 structural
classes, and all data in this study. For each se-
quence, the evolution of the amino acid indices
by the GA was performed, while changing the
AR orders from 1 to 8. Under a given AR or-
der, five GA runs were carried out to check the
effect of the initial conditions against the evo-
lution of the amino acid indices. Therefore, the
initial seed of the random number was changed
for each run.

In the case of the mainly « class, the fitness of
the population of amino acid indices converged
rapidly despite the difference in initial values,
when AR order was set to a value from 2 to
8. The convergence was attaine before the 30th
generation in every AR order except for AR or-
der = 1. When AR order = 1, the fitness did
not converge during 100 generations in any run
with different initial values. Due to the restric-
tion in pages, only the evolutionary process of
the amino acid indices with AR order = 4 is
shown in Fig.1(1). When the AR orders >
2, the converged fitnesses of the five runs for
each AR order were similar to each other, de-
spite the differences in the initial conditions. In
addition, the obtained amino acid indices from
the five runs for each AR order were also similar
to each other for the AR orders > 2. The ab-
solute values of the correlation coefficients for
every pair of the five amino acid indices for each
AR order were greater than or equal to 0.990.
The GA operation used in this study cannot
distinguish the fitness of the amino acid indices
that are symmetric to a value 0.5. Therefore,
some of the amino acid indices from the five
runs showed negative, but high, correlations to
the remaining indices (data not shown). We
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(1) Mainly o class, AR order = 4

30
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§ ,F"‘//“_ —runl
E 90 b ’{ ---run2
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é 10 | uns
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¢ 50 100
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(4) All data, AR order =4
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z —--run3
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0 .
4] S0 100
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Fig.1 The plots of the highest raw fitness among the
population of amino acid indices at a generation
against the generation number.

selected one of the five amino acid indices to
represent the AR order, so that the distance of
the native sequence to the random sequences
used for the five runs was the largest among
the five amino acid indices. As described above,
the fitness did not converge for the AR order =
1. However, a representative amino acid index
for the AR order = 1 was formally obtained
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by the same procedure described above. Ta-
ble 2 (1) shows the representative amino acid
indices for the AR orders from 1 to 8. Despite
the difference in the AR order, the representa-
tive amino acid indices for the AR orders from
2 to 5 show high positive correlations to each
other (correlation coefficients > 0.985). Like-
wise, the amino acid indices for the AR orders
from 6 to 8 showed high positive correlations
(correlation coefficients > 0.994). However, the
amino acid indices for the AR orders from 2
to 5 were negatively correlated with the indices
for the AR orders from 6 to 8, and the abso-
lute values of the correlation coefficients were
greater than or equal to 0.981. Thus, these two
types of amino acid indices were approximately
syminetric to an amino acid index value of 0.5.
This observation suggests that the amino acid
indices obtained from the GA operations for the
mainly o class are similar to each other when
the AR orders are greater than or equal to 2.
In contrast, the amino acid index for the AR
order = 1 was different from the other amino
acid indices. The absolute values of the cor-
relation coefficients between the representative
amino acid indices for the AR orders > 2 and
that for the AR order = 1 were less than or
equal to 0.276.

Like the case of the mainly o class, the amino
acid indices for the mainly 3 class converged in
any run with different initial values when the
AR orders > 3. However, the speed of conver-
gence seemed to be a little slower than that for
the mainly « class. Figure 1(2) shows the evo-
lutionary process of amino acid indices with AR
order = 4. The absolute values of the correla-
tion coefficients for every pair of five amino acid
indices for each AR order were greater than or
equal to 0.982. That is, the amino acid indices,
as well as the converged fitnesses, were similar
to each other in every run for each AR order,
although symmetric indices were often gener-
ated in the five runs. In each case of the AR
orders = 1 and 2, however, an amino acid in-
dex obtained from one run was not similar to
those from the other four runs. A representa-
tive index of the five indices for each AR or-
der was obtained in the same manner as for the
case of the mainly «a class, which is listed in Ta-
ble 2(2). Except for the case of the AR orders
= 1 and 2, the amino acid indices were highly
correlated with each other, despite the differ-
ence in the AR orders, and the absolute values
of the correlation coefficients were greater than

or equal to 0.924. The representative amino
acid indices for the AR orders = 3, 4, 7, and 8
and those for the AR orders = 5 and 6 were ap-
proximately symmetric around an index value
of 0.5. Moreover, the absolute values of the cor-
relation coefficients between the representative
amino acid index for the AR order = 1 and the
indices for the AR orders > 3 ranged from 0.740
to 0.832. That is, the representative amino acid
index for the AR order = 1 and those for the
AR orders > 3 were similar to each other. In
contrast, the representative amino acid index
for the AR order = 2 was different from those
for the other AR orders. The absolute values
of the correlation coefficients between the rep-
resentative amino acid index for the AR order
= 2 and those for the other AR orders were less
than or equal to 0.228.

Like the above two cases, the fitness con-
verged quite rapidly for the o-3 class. Fig-
ure 1(3) shows the evolutionary process of
amino acid indices with AR order = 4. The
converged fitnesses of the five runs for each AR
order were similar to each other. Moreover, all
of the amino acid indices from the five runs for
each AR order were highly correlated. The ab-
solute values of the correlation coefficients of
the indices from the five runs for each AR or-
der were greater than or equal to 0.963. Us-
ing the method described above, the represen-
tative amino acid index was obtained for each
AR order (see Table 2(3)). The absolute values
for the correlation coefficients among the rep-
resentative indices for the AR orders > 2 were
greater than or equal to 0.918. Therefore, the
indices showed high correlation. However, the
representative amino acid index for the AR or-
der = 1 was not similar to those for the higher
AR orders, and the absolute values of the cor-
relation coefficients were less than or equal to
0.244.

The process of the convergence for all data
was basically the same as those for the a-3
class. The evolutionary behavior of the amino
acid indices with AR order = 4 is shown in
Fig.1(4). Similar to the case of the mainly
o class, the difference in the initial conditions
was independent of the convergence in the case
of AR orders > 2. The absolute values of the
correlation coefficients for every pair of amino
acid indices from the five runs for each AR order
were greater than or equal to 0.990. In the case
of the AR order = 1, however, the amino acid
index from one run was different from the other
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The list of representative amino acid indices obtained in this study.
The column “AR” indicates the AR order for the examined model.
“RF” indicates the averaged raw fitness between a native sequence
and five random sequences, using an amino acid index corresponding
to the row. The following 20 columns indicated by the one—letter
amino acid code show the elements of the converged amino acid

indices.
(1) Mainly « class
AR RF 1 L M Vv F Y W A G P
1 16.731 0.20 0.25 .15 0.20 (.45 0.30 0.55 0.15 .25 0.10
2 26.370 1.00 0.90 0.78 1.00 0.90 0.80 1.00 0.50 .40 0.30
3 26.503 1.00 0.95 .80 1.00 0.95 0.80 1.00 0.50 0.40 0.35
4 28.341 1.00 0.95 0.75 0.95 1.00 0.80 0.90 0.50 0.40 0.25
5 28.4585 1.00 1.00 0.75 0.95 1.00 0.80 0.90 0.45 0.35 0.30
6 28.507 0.00 0.05 0.25 0.05 0,00 0.15 0.10 0.50 0.65 0.70
7 29.092 0.00 0.00 0.20 0.00 0.00 0.15 0.05 0.55 Q.60 0.75
5 20.167 0.00 0.00 0.20 0.00 0.00 0.20 0.05 0.55 (.65 0.70
AR S T D E N Q H R K C
1 0.45 0.10 0.15 0.10 0.35 Q.25 1.00 0.15 0.285 0.30
2 0.35 0.30 0.25 0.15 0.20 0.25 0.55 0.15 0.00 0.75
3 0.35 0.30 Q.25 0.15 0.20 0.25 0.55 0.15 0.00 .70
4 0.25 0.40 0.20 0.05 0.15 0.20 0.55 0.15 0.00 075
5 0.25 0.35 0.18 0.00 0.15 0.25 0.85 0.10 0.00 0.80
6 .70 0.65 0.80 0.95 0.85 0.75 0.45 0.85 1.00 0.15
7 0.75 0.65 0.80 1.00 0.80 0.75 0.35 0.85 1.00 0.10
8 0.75 0.70 .80 0.95 0.80 .80 0.40 0.90 1.00 0.15
(2) Mainly B class
AR RF 1 L M Vv F Y A
1 13,271 0.00 5.0 0.80 0.45 0.15 0.65 0,55 Q
2 13.693 0.00 3.45 0.30 .30 0.50 o
3 16.480 0.75 0.95 .20 .50 0.50 «
4 18 899 0.85 1.00 .08 0.50 0.40 G
5 19.279 0.10 0.00 .80 .50 0.55 [t
6 0.15 0.15 ®.75 0.50 0.55 0.
7 0.90 0.85 015 .50 0.45 0
& 0.90 0.90 320 0.55 0.45 0.
AR El T D Q R
1 0.40 0.80 ¢.75 0.85 0.95 o
2 0.90 0.65 0.40 0.60 8]
3 0.35 0.20 0.10 0.10 0.25 O
4 0.35 .30 0.00 0.15 0.25 0.5
5 0.65 0.685 0.95 0.85 0.70 0.75 o
6 0.65 Q.60 1.00 0.80 0.65 0.65 a
T 0.30 .40 0.00 0.25 0.35 0.30 o
8 0.30 .40 0.00 0.20 0.35 0.30 .
AR RF T M Y W G P
1 10.214 0.80 0.00 0.80 0.00 .45 0.75 .90 .30
2 13.580 2.90 0.95 .80 .95 0.20 0.40
3 13.771 0.90 0.90 0n.7s 1.00 .10 .80
4 14.151 0.80 0.90 0.65 1.00
5 16.838 0.95 0.80 .75 1.00
6 20,019 1.00 0.95 .75 .95
7 20,176 0.95 0.80 0.65 1.00
& 20, 488 1.00 0.85 0.70 1.00
AR S D Q H
1 0.25 0.20 0.75 .50 0.95
2 0,15 0.45 0.10 0.00 .25
3 .20 .45 0.05 0.085 .00 0.25
4 015 .50 n.10 010 .00 020
5 0.15 .40 G.05 0,00 0.00 0.25
6 0.10 0.25 0.00 .10 G.10 .30
7 0.05 0.25 .00 0.05 .10 0.30
& 0.10 .35 .00 0.15 .10 .30
(4) All data
AR RF M N Y W A
1 &.979 .05 10 0.35 0.40 0.15
2 : 0.85 0.70 . Q.85 1.00 0.45
3 13 428 .00 0.20 0.25 .40 0.25 0.05 0.55
4 13.521 0.00 0.20 0.30 0.40 .20 0.05 0.55
5 14.995 1.00 0.85 0.80 0.95 0.40
6 16 840 1.00 0.90 0.80 0.90 0.45
7 16.882 1.00 0.90 0.80 1.00 0.45
8 17.110 0.95 (.90 0.75 .95 0.45
AR T 5] 2] H R
1 0.25 .05 0.25 1.00 0.185
2 .40 .25 0.20 0.40 0.1
3 0.60 .70 0.80 0.55 .90
4 .60 .70 0.85 0.80 0.55
5 .30 0.20 0.05 0.10 0.35
6 0,30 0.10 0.05 0.10 0.35 0.00 0.70
7 0.30 0.10 0,08 0.10 0.35 0.00 0.60
s .35 0.10 0.05 0.10 0.35 0.10 0.00 0.65

31
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runs, although the fitness of the index was less
than those of the remaining four indices. The
representative amino acid indices for the AR
orders from 1 to 8 were obtained in the same
manner as described above, and are also listed
in Table 2 (4). The absolute values of the cor-
relation coefficients between the amino acid in-
dices for the AR orders > 2 were greater than or
equal to 0.965. Thus, the representative amino
acid indices for the AR orders > 2 were highly
correlated to each other, despite the difference
in the AR order, although the indices for the
AR orders = 2 and > 5, and those for the AR
orders = 3 and 4 were approximately symmetric
around an index value of 0.5. In contrast, the
representative amino acid index for the AR or-
der = 1 was different from those for the higher
AR orders, and the absolute values of the cor-
relation coefficients between the index for the
AR order = 1 and those for higher AR orders
were less than or equal to 0.049.

3.2 Relationship between the Repre-
sentative Amino Acid Indices and
the Known Amino Acid Indices

The correlation coefficient between every pair
of the representative amino acid indices de-
scribed above was calculated. In addition, the
correlation coefficients were calculated between
every pair of the indices and 402 known amino
acid indices available in an amino acid index
database, AAindex12-27_  All of the repre-
sentative indices, except for the four indices,
showed high correlations not only to each other,
but also to the known indices, which are clas-
sified into a group of hydrophobicity indices.
The four exceptional indices included the one
for the AR order = 1 from the mainly « class,
the one for the AR order = 2 from the mainly
3 class. the one for the AR order = 1 from the
a-3 class, and the one for the AR order = 1
from all data. Thev did not show prominent
similarity to any of the known amino acid in-
dices. Likewise, they were not similar to each
other (absolute values of correlation coefficients
< 0.439), except for the similarity between the
index from the mainly « class and all data (cor-
relation coefficient = 0.906).

"T'he relationship among the representative in-
dices and the known 149 hydrophobicity indices
was examined by a cluster analysis. The four
exceptional indices were not included in the
study. The result is summarized in a dendro-
gramn shown in Fig. 2. As described above, the
representative indices on a protein structural

class were similar to each other, despite the dif-
ference in the AR orders. Reflecting the simi-
larity, such amino acid indices formed a cluster
corresponding to each protein structural class
in the dendrogram.

The cluster on the mainly « class was distinct
from the other clusters, and showed high cor-
relation with four known indices classified into
a group of hydrophobicity indices, including an
index for the information value for accessibil-
ity (average fraction 35%)?®), an index about
the mean polarity 2, an index about the mean
fractional area loss3?, and an index about the
information value for accessibility (average frac-
tion 23%)?). The ID codes of these indices in
the AAindex1 are BIOV880101, RADAS&80108,
ROSG850102, and BIOV880102, respectively.
The averaged absolute value of the correlation
coefficient between the indices derived from the
mainly o class and the four hydrophobicity in-
dices described above was 0.952, as indicated at
the node X1 in the dendrogram.

The cluster of the mainly 8 class was also
distinct from the other clusters. In the clus-
ter, the index for the AR order = 1 was a lit-
tle distant from the other representative indices
from the mainly 3 class. The 19 known indices
belonging to the group of hydrophobicity in-
dices were close to the indices from the mainly
3 class in the dendrogram, which were different
from the indices closely related to the cluster of
the mainly « class. In this case, the 19 known
indices included an index about the optimal
matching hydrophobicity 31, an index about
the transfer energy between an organic sol-
vent and water3?), and an index about the hy-
drophobicity 3. The ID codes of these indices
in AAindex1 are SWER&30101, NOZY 710101,
and ARGP820101, respectively. The 19 indices
were relatively distant from the cluster of the
mainly 2 class. However, the averaged absolute
value of the correlation coefficients between the
indices derived from the mainly 3 class and the
19 indices described above was 0.700, as indi-
cated at the node Y in the dendrogram.

The cluster of the «-3 class occupied a posi-
tion between those of the mainly o and mainly
3 classes. This cluster was distinct from the
other two clusters, although it was relatively
close to the cluster of the mainly o class, rather
than that of the mainly 3 class. The cluster
of the a-3 class includes that of all data. As
shown in the dendrogram, the cluster of all data
is closely related to the indices for the AR or-
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Fig. 2 A dendrogram of the converged indices and the known hydrophobicity

indices. The name of the index corresponding to each leaf of the
dendrogram is shown at the right side of the dendrogram. The known
hydrophobicity indices are indicated by the ID code in the amino acid
index database, AAindex1. The structural class and the AR order are
shown as a combination of symbols corresponding to the structural
class and integers corresponding to the AR order. MA, MB, AB, and
ALL are the symbols indicating the mainly a, the mainly 3, the a-3
classes, and all data, respectively.
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ders from 5 to 7 of the «-3 class. The averaged
absolute value of the correlation coefficient was
0.949, as indicated at the node X2 in the den-
drogram. The representative indices included
in the clusters of the o-3 class and all data
showed high correlation with the four amino
acid indices about the normalized hydropho-
bicity scales3!) and an index about the infor-
mation measured for an a-helix®. The ID
codes in AAindex1 of the first four indices are
CIDH920102, CIDH920103, CIDH920104, and
CIDH920105, and the code for the last index is
ROBB790101. The averaged absolute value of
the correlation coefficient between the indices
from the o-3 class and all data and the five
known indices was 0.880, as indicated at the
node X3 in the dendrogram.

In this study, the GA operation was de-
signed to generate amino acid indices that can
efficiently distinguish a native sequence from
the corresponding random sequences. However,
there is no proof that the indices are optimal
for distinguishing between them, because GA is
just a heuristic approach. Although we can not
prove the optimality, we can approximately ex-
amine the efficiency for the distinction of a na-
tive sequence from the corresponding random
sequences by the obtained indices. The effi-
ciency of an amino acid index was evaluated as
follows. First, 100 random sequences were gen-
erated from a given native sequence. Here, four
native sequences used for the GA operation, the
mainly «, mainly 3, a-3 classes, and all data
were examined again. Then, the raw fitness of
the native sequence against the 100 random se-
quences was calculated with the given amino
acid index by the same manner as described in
the section of GA operation. The fitness is here
referred to as native raw fitness (NRF). Next,
the raw fitness of a random sequence against the
remaining 99 random sequences was calculated
with the same index by the same manner as de-
scribed above. The fitness is here referred to as
random raw fitness (RRF). The calculation was
applied to every random sequence. Then, 100
RRFs were obtained, and the mean (m) and the
standard deviation (o) of the RRFs were calcu-
lated. With m and o, the NRF was normalized
to z-score (£).

Z = (NRF —m)/o (15)
The larger the z-score is, the higher the effi-
ciency of the distinction is considered to be.
‘I'he calculation was applied not only to the in-
dices obtained by the GA operation, but also

to all of the amino acid indices available in
AAindex1. The calculation was performed un-
der the different AR orders ranging from 1 to
8. The results are summarized in Fig. 3. The

(1) Mainly o class
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(2) Mainly B class
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4 5 6 7 8
AR order
(3) o-B class
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1 2 3 4 5 6 7
AR order

(@) All data
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Fig.3 The plots of the z-scores of the obtained and
known indices against the AR orders. MA,
MB, AB, and ALL are the symbols indicating
the mainly a, the mainly 8, the a-8 classes,
and all data, respectively. The value “n” de-
notes AR order, which is ranged from 1 to &.
SA” B, «C”, “H”, “P”, and “O” denote six
groups of known indices, a and turn propensi-
ties, 3 propensity, composition, hydrophobicity,
physicochemical properties, and other proper-
ties, respectively. See details in the text.
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ordinate indicates the z-score, and the abscissa
indicates the AR order. Closed circles indicate
the plot of the z-score of the index obtained
by GA with the native sequence corresponding
to each graph as the function of the AR order.
As shown in the figure, for any native sequence
and for any AR order, the z-scores were greater
than 10.0 SD. The results suggest high effi-
ciency for the distinction between native and
random sequences by the amino acid indices
obtained by GA. The results of the calculation
with the indices available in AAindex1 were also
shown in the figure. To simplify the presenta-
tion, the indices were classified into six groups,
o and turn propensities, J propensity, compo-
sition, hydrophobicity, physicochemical prop-
erties, and other properties, according to the
study by Tomii and Kanehisa?. Then, for each
group, only the highest z-score among those of
the members in the group at an AR order was
plotted against the AR order. As expected from
the high correlation between our indices and the
known hydrophobicity indices, the differences,
the differences in z-score between our indices
and the hydrophobicity indices for the mainly
a class and all data were quite small, when the
AR order > 2. In the case of the -3 class,
the differences between the indices obtained in
this study and the hydrophobicity indices were
also small as the AR order > 6. In the case
of the mainly 3 class, the z-scores of the in-
dices obtained by GA were greater than those
of known indices at any AR order. For any na-
tive sequence and for any AR order, the high-
est z-scores for the groups other than the hy-
drophobicity group were less than those of the
indices generated by GA and the hydrophobic-
ity indices, although many of them were greater
than 3.0 SD.

4. Discussion

The question addressed in this study was
what is the difference between native amino
acid sequences and randomly shuffled ones. We
considered that such a difference is related to
the folding information within the native se-
quences. As described above, our GA opera-
tion, which was designed to maximize the dis-
tance between native sequences and shuffled se-
quences, generated amino acid indices related
to the hydrophobicity. "T'he results suggested
that the amino acid residues are arranged in
a hydrophobic order, and that the order is
degraded by the shuffling of the amino acid
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sequences. As described in the introduction,
there are many examples of the data analyses of
the primary structures of proteins. Some inves-
tigators consider that the design of the native
amino acid sequences is random, while others
find some periodicity or autocorrelation in the
primary structures. Our results strongly sup-
port the latter view. That is, the sequences
of the native proteins are not random, and the
hydrophobicity of amino acid residues is one of
the factors related to the design of native pro-
teins. Qur hydrophobicity indices were gener-
ated in a data—driven manner by the GA. In
other words, autocorrelation in hydrophobicity
is an intrinsic feature of native amino acid se-
quences, which was isolated from the sequences
by the GA operation.

When the AR order was low, 1 or 2, the cal-
culations sometimes did not converge in a given
generation number. For example, the GA op-
eration for the mainly o class did not converge
when the AR order = 1. Even if the calculations
converged, the obtained indices for the low AR
orders were different from each other depending
on the difference in the initial populations. For
example, in the case of the AR order = 2 for
the mainly 3 class, two different indices were
yielded after the GA operations with different
initial populations were converged. Similar be-
havior was observed in the case of the AR order
— 1 for all data. Moreover, the obtained indices
were not similar to either those for the higher
AR orders or the known amino acid indices. On
the other hand, the GA calculation for the -3
class with AR order = 1 converged to yield an
almost identical index in spite of the difference
in initial population. However, the index was
different from either those for the higher AR
orders or the known amino acid indices. Due
to the failure in convergence or the low correla-
tion to all of the known indices, we can’t further
discuss the indices corresponding to the low AR
orders. Such unstable behavior in convergence
may suggest that an AR order = 1 or 2 is too
low to express the autocorrelation in the native
amino acid sequence. Or, the indices may actu-
ally characterize the short-range interaction in
native amino acid sequences by unknown mech-
anisms represented by the indices. In this sit-
uation, however, further discussion would just
make a lot of speculative statements. There-
fore, we will exclude the four cases, the AR or-
der = 1 for the mainly o class, the AR order
= 2 for the mainly 3 class, the AR order = 1



36 IPSJ Transactions on Mathematical Modeling and Its Applications

for the a-3 class, and the AR order = 1 for all
data, from the next discussion about the AR
analysis.

Our study suggests that hydrophobicity is in-
volved in the design of primary structures of
native proteins, and the design in hydropho-
bicity is related to the secondary structures of
the proteins. Then, the next question is how
the amino acid sequences are designed in hy-
drophobicty. In this study, the amino acid se-
quences were expressed by the AR models (see
Eq. (1)), each of which is characterized by the
corresponding AR coeflicients. The number of
AR coefficients for an AR model is equal to the
AR order of the model. Let’s consider that b,
is an AR coefficient of the n-th order of an AR
model with the AR order = m, where n < m.
The absolute value of b, indicates the strength
of the correlation between a pair of residues n
sites apart in the primary structure. The sign
of b,, indicates the mode of the correlation. If
b, is positive, the residue pairs n sites apart
tend to share a similar feature, while the residue
pairs tend to have opposite features if b, is neg-
ative. The AR coefficients are, thus, regarded
as a measure for autocorrelation in the corre-
sponding primary structures. Therefore, we ex-
pressed the native amino acid sequences as AR
models using the converged amino acid indices,
and examined the relationship between the AR
coefficients and the structural class of the se-
quences.

Figure 4 (1) shows the AR coefficients of the
mainly « class. As shown in the figure, the re-
lationships between the AR coefficients and the
orders are similar to each other, although the
AR orders of the examined models were differ-
ent from each other. The AR coefficients for the
AR order = 1 were not included in the figure,
because the fitnesses for the case did not con-
verge within the 100 generations examined in
this study. The AR coeflicients, b; and by, had
negative values, which means that the residue
pairs one or two sites apart tend to have op-
posite features in hydrophobicity. The AR co-
efficients, bz, were approximately zero, which
means the residue pair three sites apart does
not have any correlation. The AR coefficients,
by, had positive values. That is, the residue
pairs four sites apart share similar hydropho-
bic features. All of the other AR coefficients,
except for those of the seventh order, b7, were
approximately zero. The AR coefficients, b7.
had posttive values, although they were rela-
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tively small. The pattern of the AR coefficients
is consistent with the periodicity of an a helical
structure, which is 3.6 residues.

Figure 4 (2) shows the AR coefficients of the
mainly @ class. Like the cases of the mainly
« class, the relationships between the AR co-
efficients and the orders for the models with
different AR orders are similar to each other.
The coefficients for the AR order = 2 were not
included in the figure, due to the reason de-
scribed above. As shown in the figure, by had
negative values. The AR coeflicients, by and
bs, were approximately zero. All of the remain-
ing AR coefficients had negative values, which
slowly decreased according to the increase of
the order. In contrast, the AR coefficients, b3,
bs, bg, and by, were approximately zero in the
cases of the mainly a class. Therefore, the slow
decrease in the AR coefficients is considered
to characterize the mainly 3 class. 'The neg-
ative values of b; and by seemed to correspond
to the alternative feature for the direction of
side-chains on 3 strands. However, there was a
further twist in the obtained results. The AR
coefficients for the AR orders = 1, and from 3
to 8. by, were approximately zero. This means
that the residue pair two sites apart does not
have any correlation, although the side-chains
of the two residues are expected to extend to-
ward the same direction. I'he weak coupling
of the residues two sites apart may be the rea-
son why the converged indices for the AR order
= 2 were not similar to the other indices. In
contrast, the AR coeflicients, by and bg, had
negative values, although the side chains of the
residue pairs four or six sites apart on a (-
strand are expected to face the same direction.
We cannot explain these results at this stage.
It is considered that a long range interaction is
involved in the formation of 3-strand. However,
AR model cannot deal with the long range in-
teraction greater than AR order. This may be
the reason that b, and by are negative.

Figures 4 (3) and (4) show a similar pattern of
AR coefficients. The former was obtained from
the analyses of the a-g@ class, while the latter
was from the studies of all data. Like the above
two cases, the difference of the AR orders did
not affect the relationship between the AR coef-
ficients and the orders. The relationship seemed
to be a mixture of that for the mainly o class
and that for the mainly 7 class. The observa-
tion is consistent with the result that the amino
acid indices for the a-3 class and those for all
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Fig.4 The relationships between the AR coefficients and the corresponding

order of the AR model.
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data were similar to each other, and occupied
a position between the indices for the mainly
« class and those for the mainly 3 class in the
dendrogram.

Our studies suggest that the amino acid se-
quences of native proteins intrinsicaly contain
autocorrelation in hydrophobicity, and that the
order in the primary structures is highly re-
lated to the secondary structures of the pro-
teins. In this study, we used the LPC cepstrum
distance to calculate the fitness. However, the
Euclidean distance with a set of the AR coef-
ficients was also efficient to converge the GA
operation (data not shown). In that case, the
converged indices are similar to those obtained
with the LPC cepstrum distance. In this study,
a random sequence was constructed by connect-
ing randomly shuffled sequences. However, sim-
ilar results were obtained when a random se-
quence with the same amino acid composition
as the corresponding native sequence was con-
structed and shuffled over the entire sequence
(data not shown). Here, we adopted a univari-
ate AR analysis, which suggests that hydropho-
bicity is the main factor constituting the order
of the amino acid sequences of native proteins.

Finally, we show a possible application of the
obtained indices. The difference among ob-
tained indices corresponding to the three struc-
tural classes, mainly « class, mainly 3 class, and
a-3 class, suggests a possibility to predict the
structural class of a given amino acid sequence
by the AR analysis with the indices. However,
the sequence length of a protein is too short
to be subjected to the AR analysis (see Sec-
tion 2.1). A possible trick to solve the prob-
lem may be to connect the given amino acid
sequence with the amino acid sequences of its
homologues that can be collected by database
searching. Here, we assume that homologous
proteins take a similar fold, according to an em-
pirical law of molecular evolution. The long se-
quence obtained by the connection is regarded
as a native sequence, and a large number of
random sequences corresponding to the native
sequence are generated. Then, the raw fitnesses
or z-scores of the native sequence correspond-
ing to the three indices are calculated by the
procedure described above. The given amino
acid sequence is judged to belong to a struc-
tural class, when an index corresponding to the
structural class shows the highest fitness or z-
score among the three indices. Comparison of
a native sequence with the corresponding ran-

Nov. 2000

dom sequence is a novel approach to extract
the structural information carried by the amino
acid sequence. Further development of this ap-
proach would provide us a great insight into the
relationship between sequences and structures
of proteins.
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