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1 Introduction
In the analysis of multi-dimensional data, it is im-
portant to operate distances among the data, since
the distances characterize the data structure. For in-
stance, dimension reduction of the data with preserv-
ing the distances is effective in terms of data com-
pression. Data mapping to transform interpoint dis-
tances provides us a new interpretation for the data
in the meaning of the scaling given by the distances.

Conventionally, some approaches for distance op-
eration have been studied. Multi-dimensional scaling
[1] determines the coordinates of the data from the
given distances. Local linear embedding [2] provides
the low-dimensional coordinates of high-dimensional
data with preserving the distances among the neigh-
bor vectors. These approaches are not effective to
obtain the coordinate of the new given vector. A
neural-network based approach to transform the dis-
tances is proposed in [3], which overcomes this prob-
lems, however, has uncertainties over control of the
degree of freedom such as the number of the hidden
units, and selection of the mapping-space dimension.

In this research, we propose a new approach to
construct the map to transform distances among
data. As the element of the map, we use the Piece-
wise Linear Map (PLM) which consists of several
linear maps. The PLM has advantages in easy opti-
mization of their parameters due to linearity of the
map components, and the degree of freedom which
can be controlled intuitively by selecting the number
of piecewise regions. Consequently, we construct the
distance transformation map with PLMs to obtain
efficient low-dimensional coordinates, which satisfies
given distances. The constructed hierarchical map is
applicable to data retrieval based on subjective sim-
ilarity, and dimension reduction with preserving the
data structure in terms of distances.

2 Proposed Approach
2.1 Piecewise Linear Map
The PLM is defined as the nonlinear map which di-
vides input space into some piecewise regions and
performs linear mapping in the each region. For
the input vector x⃗ ∈ Rn and the output vector
y⃗ ∈ Rm, the linear map Li corresponding to the re-
gion Di(i = 1, ..., d) and the determinant function Si

of the corresponding region are defined as follows,

Li(x⃗) = Wix⃗ + w⃗i0, (1)
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Si(x⃗) = v⃗i · x⃗ + vi0, (2)
vi0 = −|v⃗i|2/2. (3)

Wi, w⃗i0 and vi0 are the coefficients. Hereafter, we
represent v⃗i as the reference of the Di. The PLM:
Φ integrating all regions is defined as the following
equations.

Φ(x⃗) = Lr(x⃗), (4)
r = ArgMaxi Si(x⃗), (5)

where Dr represents the region to which the input
vector x⃗ belongs. Under the constraint of Eq.(3), v⃗r

is the nearest reference of the x⃗ (The proof is skipped
here)

The Φ is evaluated by the following mean-squared
error function regarding the dataset {x⃗p, y⃗p}p=1,...,N :

E =
1
N

∑
p

E(x⃗p), E(x⃗p) = |y⃗p − Φ(x⃗p)|2. (6)

The parameters of the PLM are trained with the con-
ventional gradient method in the following manner.

∆wr
ij = −ηe

∂E

∂wr
ij

(x⃗p), ∆vr
j = +ηs

∂S

∂vr
j

(x⃗p), (7)

∆wk
ij = 0, ∆vk

i = 0 (k ̸= r), (8)

where ηe and ηs are set to small positives.
This optimization procedure lets x⃗ approach to the

nearest reference v⃗r and moreover lets the output
Φ(x⃗p) of the corresponding linear map Lr approach
to the expected output y⃗p. This procedure generates
the references distribution according to the density
of the input vectors.
2.2 Distance Transformation Map
Here, we formulate the distance transformation map:
Ψ which provides the new coordinates of the input
vectors with arbitrarily transforming the distances
among them. Let us define a pair of input vectors as
(x⃗p, x⃗q) and the corresponding pair of output vec-
tors as (y⃗p, y⃗q). The mean squared error function
regarding the expected distance: δpq in output space
are described as

E =
∑

p

∑
q

Epq, Epq = |δpq − dpq|2/2, (9)

dpq =
√

|y⃗p − y⃗q|2 =
√
|Ψ(x⃗p) − Ψ(x⃗q)|2. (10)

We construct the distance transformation map Ψ
to minimize the above-mentioned error. The quasi-
optimal parameters of Ψ are iteratively determined
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by the conventional gradient method as follows,

∆w = −η
∂Er

∂w
= η

(
δpq

dpq
− 1

)
·
∑

k

(yp
k − yq

k)(
∂yp

k

∂w
−

∂yq
k

∂w
), (11)

where the η is set to a small positive.
Until now, we have not assumed a concrete func-

tion form of the distance transformation map. Here,
let us formulate the distance transformation map Ψ
based on the above-mentioned PLM. For a pair of
input vectors (x⃗p, x⃗q), the respective regions of the
PLM are described as

rp = ArgMaxi Si(x⃗
p), rq = ArgMaxi Si(x⃗

q). (12)

In case of rp = rq(= r), the parameter optimization
of Eq.(11) results in
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∂wr
ij

(x⃗p) +
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∂wr
ij

(x⃗q)

}
, (13)
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i
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i
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}

, (14)

∆wk
ij = 0, ∆vk

i = 0 (k ̸= r). (15)

Otherwise (rp ̸= rq), it results in

∆wrp

ij = −ηe
∂Erp

∂wrp

ij

(x⃗p), ∆wrq
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∂Erq
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i
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∆wk
ij = 0, ∆vk

i = 0 (k ̸= rpand k ̸= rq). (18)

3 Experimental Results
To evaluate the proposed method, we assumed a
problem to map a pair of the input vectors: x⃗p =
(xp

1, x
p
2) and x⃗q = (xq

1, x
q
2) onto the pair of the out-

put vectors: y⃗p = (yp
1 , yp

2) and y⃗q = (yq
1, y

q
2) with

satisfying the following distance among the output
vectors:
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(19)

The output vector: y⃗ provided by the following equa-
tion is one of the theoretical solutions to satisfy the
distance constraint of the Eq.(19).

(y1, y2) =


(

x1x2
x1+x2

,
x2
2
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)
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(if x1 ≥ x2)

(20)
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Figure 1: Input
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Figure 2: Theoretical
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Figure 3: Output
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Figure 4: Reference

We solved this problem with the proposed distance
transformation map. We used the randomly gener-
ated samples inside the region of (0, 1)× (0, 1) as in-
put vectors when training, and the grid points shown
in Fig.1 as ones when testing. We useed the following
parameters: d = 50, ηe = 0.8, ηs = 0.2 in the experi-
ment and performed 10,000 iterations in training.

The x⃗p and the theoretical solution y⃗p are shown
in Fig.1 and Fig.2. The result is shown in Fig.3. As
show in the figure, the grid points are mapped onto
the triangle-like region which has a similar shape of
the theoretical solusion. The differences in the poi-
son and the direction of the triangle region are caused
by the redundancy of the distance transformation
map in translation and rotation. The Fig.4 suggests
that the references reflecting the distribution of the
input data are achieved by training.

4 Conclusion
We proposed a novel approach of the distance trans-
formation map based on the piecewise linear map.
The constructed hierarchical map is effective to
transform the high-dimensional data into the low-
dimensional coordinates with satisfying the given
distances. The piecewise linear map has some ad-
vantages that the parameters are easily optimized
due to linearity of the component maps, and degree
of freedom can be controlled intuitively by selecting
the number of piecewise regions.

The future works encompass the introduction of
hierarchy into the proposed approach to obtain less-
dimensional output space. Applications of the pro-
posed approach will be considered, e.g. data retrieval
based on subjective similarity, dimension reduction
with preserving the distances and etc.
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