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This paper presents a theoretical analysis for a learning method of weights in linear com-
binaticn of multi-objective function. Although there are several learning methads proposed
in the literature 4)’9)‘11)>14)‘15)'19), none has yet been analyzed in terms of data complexity
and computational complexity. This paper steps toward this direction of giving a theoretical
analysis on learning method for multiple objective functions in the viewpoint of the computa-
tional learning theory. As the first step, this paper presents a theoretical analysis of learning

method of weights from pairwise comparisons of solutions

14).15) " Iy this setting, we show

that we can efficiently learn a weight which has an error rate less than e with a probability
more than 1 — & such that the size of pairs is polynomially bounded in the dimension, n for a

solution, and €1

1. Introduction

In engineering domain. it is frequent that
there are many objectives required to be op-
timal. For example, in making products, we
have at least the following objectives:

(1) Shortening a duration of making prod-
ucts.

(2) Having lesser workers to make products.
(3) Decreasing burden of workers.
(4) Decreasing stocks of materials.
(5) Making products as soon as requests

come.
However. it is rare that an optimal solution is
obtained in which every objective takes an opti-
mal value; we often encounter situations where
some of the objectives conflict each other. In
the above example, to shorten a duration of
making products and to have lesser workers, we
might have to increase burden of workers. and
to make products just in time, we might have
to store some stocks of materials beforehand.
In such situations. all we can hope is to obtain
a Pareto solution in which a value of an objec-
tive cannot be enhanced without sacrificing a
value of another objective. In other words. even
if a Pareto solution r takes a maximal value
f(x) of some objective function f. r does not
necessary take a maximal value g(z) of some
other objective function g and we cannot coni-
pare with other Pareto solution y such that g(y)
takes a maximal value and f(y) does not.
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and 6~ 1, and the running time is polynomially bounded in the size of pairs.

Therefore, there are usually many Pareto so-
lutions and therefore choosing a solution is not
a easy task. To solve this problem. we can
sometimes use user’'s preferences over objec-
tives. In other words. if there are conflicting
objectives, then we choose a preferable solution
based on these preferences.

This situation can be regarded as an op-
timization problem for combination of objec-
tives and preferences. But. this optimization
problem is different from the ordinal optimiza-
tion problem in operations research since in the
above situation, an object function is unknown.
Omne approach for this problem is to decide
a single-valued objective function from multi-
ple objective functions4):9)-11)-14).18).19) = Grjpj.
vasan and Shocker 14)-19) give a learning method
of weights of linear combination of multi-
objective functions from pairwise comparisons
of solutions. The method has been applied
to measurement of managerial success!®) and
preference of university administration”) and
they show that this method is effective to some
extent. Keeney and Raiffa® give an analysis
of multi-attribute utility functions under un-
certainty and show conditions when the util-
ity function has additive or multiplicative form
and propose a method of deciding additive or
multiplicative utility functions based on com-
parison of lottery. Dyer and Sarin 4 modify the
result by Keeny and Raiffa® to give necessary
and sufficient conditions of the form of multi-
attribute value functions without uncertainty
when the functions are additive or multiplica-
tive and propose a method of deciding multi-
attribute measurable value functions. Tamura
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and Hikita!® provide an interactive method
based on decomposing a multi-attribute mea-
surable value function into normalized condi-
tional value functions and structural difference
functions. Saaty!) proposes a method called
analytic hierarchy process (AHP) to decide a
weight for each attribute by assessing consis-
tency of preference value given by a user.

As far as we know, the above people only
provide methods and evaluate empirically and
there are no theoretical analyses in the view-
point. of data complexity and computational
complexity. Although their contributions are
important, it is also important to know whether
their approaches are computationally feasible
or not, since a system using the above methods
must learn in a permissible amount of data and
time.

This paper steps toward this direction of giv-
ing a theoretical analysis on learning method
for multiple objective functions in the viewpoint
of the computational learning theory. As the
first step. this paper presents a theoretical anal-
ysis of learning method of weights from pairwise
comparisons of solutions!4)-1%).  In the work
by Srinivasan and Shocker 14):15) although they
give a method which allows errors in compar-
ison information and show empirical results.
they do not give any theoretical results and
therefore. it is not clear that how many pair-
wise comparisons are needed to achieve some
accuracy of weights.

In this paper, imposing the condition that
there are no error in comparison information
and introducing probability distribution over
solutions, we give a formal analysis of this
method based on PAC (probably approximately
correct) learning?®). The contribution of this
paper is to show that the learning method of
weights in linear combination of objective func-
tions using pairwise comparison is polynomially
PAC-learnable.

The idea of the learning method of weights of
objective functions from pairwise comparisons
is as follows. Suppose that we have ¢ objective
functions uy(A), ... .u.(A) for a solution A and
the real function is a linear combination of these
functions, that is. Zle Wi *u;(A). We com-
pare two solutions A; and A, and whether it is
more desirable or not. Suppose that A; is more
desirable. 'I'his means that Zle Wixu,;(As) <
Zle W, xu,;(A1). Since each I¥;’s must be con-
sistent with these inequalities, possible range
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of W;’s will be limited as a set of inequalities
grows. We can calculate such consistent W;’s
by a linear programming algorithm.

Our analysis for the method is an extension
of the analysis in learning weights in similarity
function in case-based reasoning'?) and learn-
ing preference relation in cardinality-based cir-
cumscription ¥ . In the former work!?, we
use relative distance information which tells if
the distance between case A and case B is less
than the distance between case A and case C
and the algorithm learns weights in a weighted
Euclidean distance of the cases. In the latter
work 13, we apply the above idea to learning
preference relation for logical interpretations by
regarding an logical interpretation as a case and
a preference measure as a similarity measure be-
tween the interpretation and the most prefer-
able interpretation. In this paper. we extend
our previous results to learn weights of multi-
objective functions of the more general form
than those of both of previous works.

The paper is organized as follows. In Sec-
tion 2, we informally explain the considered
learning method and discuss the range of learn-
able preference functions. In Section 3. we give
a formal definition of learning method and a
theoretical analysis of the method in data com-
plexity and computational complexity. In Sec-
tion 4, we give a preliminary experimental re-
sult. In Section 5. we give conclusions and dis-
cuss future works.

2. Learning Preference Function by
Pairwise Comparison

We explain the learning method by the fol-
lowing simple example. Suppose that every so-
lution is represented as a point in K2 and the
preference function is represented as the dis-
tance from an ideal point / in some weighted
Euclidean distance. that is. weighted additive
measure for two objective functions where one
objective function is the distance between the
r component of I and that of the solution and
the other is the distance between y component
of 1 and that of the solution. The nearer solu-
tion to the ideal point is more preferable in this
example.

In Fig. 1, we show two solutions and we as-
sume that a user says that A is preferable to B.
This information can be represented as A < B.
If we use a usual (non-weighted) Euclidean dis-
tance function:

FIA(L D) = (A~ 1))+ (A — 1))
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information A < B.

where (1.1) is a weight vector for objective
functions, then F(A.{1.1)) > F(B,(1.1)) is
true and the information from the user is con-
tradictory. However. if we shrink Y dimension
to a half, that is, we use the following distance
function:

1
P (1)
, 1 .
= (Aw — @) + (A = 1)

then the information from the user becomes
consistent (Fig.2). This distance function
means that the importance of the objective

function (A, — l(y))2 is a quarter of that of

the objective function (A, —1(,))?. We would
like to find such a proper transformation con-
sistent with pairwise comparison. This corre-
sponds with finding proper weights for objec-
tive functions.

In order to find proper weights. we set the
following inequalities for every pairwise com-
parison.

For A < B.
((Bta) = 10))* = (A = 1)) x Wiy +
((By) — ](y)) = (A = I(y))7) * Wiy 2 0.
and for B < A.
(A I)_]r)) (B(f)—l(x)) )+ Wi+

((A(y) —1())? = (B(y) = 1(y))?*) * Wy > 0.

Note that a solution for W(zy and W, for the
above inequalities is identical to a solution for

Vol 42 Neo. SIG 5(TOM 4) PAC Learnability of Weights 3
Y 4 Y
o
9(4)
B
X
o)
10
1
9(I)
Fig.1 Original space: inconsistent with the distance Fig.2 Transformed space shrinked half in the Y-

dimension: consistent with the distance infor-
mation A < B.

Wiz and W,

For A < B.
(Bay = 1(n))* = (A(z) - 1(1)
((B(y) - ](y))2 ( )
and for B < A.
(A) = 1()* = (Bay = 1())?) * Wiy +
(Ay = T))? = (Bryy = 1())*) ¥ Wiyy > 1.

Therefore, by using linear programming. we can
efficiently learn weights W) and W, which
are consistent with the above information of the
comparisons.

We extend learnable preference functions by
the above method step by step. We can change
the form of an objective function for each com-
ponent as follows

ZM * fi(A

Therefore, f;(A i) can be a Euclidean distance
from the ideal solution (A; — /;)2 or a Man-
hattan distance |A; — I;]. This is the form
of distance function considered in our previous
work 12).13)

We further extend the above objective func-
tion so that an objective function can be any
arbitrary function u;(A) mapping a solution A
to the real number

ZH *u;

y for the following inequalities.

)%) * Wiy +
2) * H(y) Z 0,

F(A. W)

FA W)
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Note that it is possible that t # n.

We can also consider the arbitrary combina-
tion of objective function for a preference func-
tion such as:

FA. W) ZM * U

+ Z Vij *ui(A) * u;(A).
1<i<j<t
As a general form F(A. W) can be:
F(A W) ZW * Fi(ui(A). ... . u(A)).

If we allow a preprocess of a preference func-
tion, we can make the following extension as
well. For a preference function defined by the
Minkowski metric:

FA W)= <Z WilA; — )

we consider the following function +’(A. W) for
making inequalities

(A W) ZW|A -1

Moreover, for a preference function of multi-
plicative form: )
FA W) =TI A — ;|
we take the logarithm of the above function and
consider the following functions F'(A. W) for
making inequalities:
FI(ATV)
= log(F(A, W) ZW xlog |A; —
3. Formal Analysis of the Learning
Method

Let A € R" be a solution and w;(A) (1 <i <
t) be objective functions such that ¢ is bounded
by a polynomial of n and u;(A) are calculated
in the time bounded by a polynomial of n. Let
preference function F'(A. W) be of the form

m

F(A W) Z” w Fi(up(A). . ug(A))

where m is l)ouuded by a polynomial of n,

and W' is a weight vector (W;.. ., W), and
F; is a polynomially evaluatable function of
up(A). ... u(A).

Note that since ui(A)... .. uy(A) are calcu-

lated in the time bounded by a polynomial of

n. each Fi(ui(A),.. . ,ui(A)) can be calculated
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in the time bounded by a polynomial of n. We
assunie that there exists a true weight vector
W*=(Wpr. . ... Wx).

Then. the learning problem is to find a hypo-
thetical weight vector W which approximates
W* as possible. To do that. we provide our
version of “approximation” of the true weight
as follows.

We firstly define a set of difference pairs be-
tween W and W* as follows:

diff (W.W*) Y [(A,B) € R x R"|
(F(A,W)>F(B.W)
AF(A, W) < F(B.W*)V
(F(A,W)<F(B.W)
AF(A.W*)> F(B. W)

The above set consists of solution pairs (A. B)

such that (1) a solution A is actually preferable

to the other solution B. but from the hypothet-
ical weight W, B is preferable to A or, (2) vice
versa.

Let P be any probability distribution over
n-dimensional Euclidean space. R". 'I'hen, W
is said to be an e-approximation of W* w.r.t.
difference pairs for P?. if the probability of
P2(diff (W. W*)) is at most € where P? is a dis-
tribution over R" x R™ such that P2(S x 1)
is calculated from P(S) x P(1') for sets S C
R and I' C R™ and P2?(diff (W.W*)) is cal-
culated by 2°°OP2(S x T;) where we deco-
mose diff (W. W*) into a union of small sets
S; x1; (0<1i<oc). Wecall € an error rate.

The following theorem shows that this frame-
work is polynomially PAC-learnable.

Theorem 1 There exists a learning algo-
rithm which satisfies the following conditions
for any probability distribution over R". P.
and an arbitrary constants € and d in the range
(0.1):

(1) The teacher selects a true weight vector
W* from [0,0c)™.

(2) The teacher gives the definition of a pref-
erence function F(A.W) with W uu-
known and gives N pairs according to P2
with the results of pairwise comparison
defined by W* to the algorithm.

(3) The algorithm outputs a hypothetical
weight vector W and the following hold.

e The probability that W is not an
e-approximation of W* w.r.t. differ-
ence pairs for P2 is less than 6. We
call 6 a confidence.

e The size of required pairs N for
learning is bounded by a polynomial
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inn, e! and 671, and so is its run-
ning time.
Proof: We firstly need the following definition.
Definition 1 Let w be a vector in [0.00)™
and P’ be a probability distribution over R™.
We say that w is an e-approzimation of w*
w.r.t. difference points for P’ if

P{reRMw r<Oandu*-z>0}U{re
R™w-r>0and w* -z <0}) <e

where - is the inner product of vectors.
According to the result by Blumer, et al. ») for
learning half-spaces separated by a hyperplane,
there exists a learning algorithm which satisfies
the following conditions for every distribution

P’ on R™ and every € and 4 in the range of

(0,1),

(1) The teacher selects w* in [0.00)™.

(2) The teacher gives a set X of N points ac-
cording to P’ with dichotomy (X*.X ™)
of X defined helow:

for every r € X*.w* -1 <0, and
for every r € X~ w* - x > 0.

(3) The algorithm outputs a vector w such
that the probability that w is not an
e-approximation of w* w.r.t. difference
points for P’ is less than 9.

Since the VC dimension of this problem is m,

according to Theorem 2.1 in Blumer et al’s

work 1), the number of required points N is at
most

(1)

Note that since m is bounded by a polynomial
of n. N is bounded by a polynomial of n, €1
and 671,

Any algorithm which produces consistent val-
ues of w with the following constraints:

foreveryre X*, w-x<0, and
foreveryre X—, w-r>0.
can be a learning algorithm.

We can use a linear programming algorithm
(for example, Karmarkar’s algorithm ®)) for the
above algorithm by considering the following
constraints:

for every r € X+, w-2 < 0. and 3)
foreveryre X, w-r>1.
Since X~ is a finite set, if there exists a solu-
tion for the constraints (2). then there should
be some positive number d such that for every
r € X .w-x >d. Since the solution is not

max élo E@lo E
¢ B2y T 0BT

(2)

changed even if we multiply c]_l for both sides of

PAC Learnability of Weights 5

w-x > d, we can get the above constraints (3).
Therefore. there exists a solution for the con-
straints (3) if and only if there exists a solution
for the constraints (2) and the time of finding w
is bounded by a polynomial of m, and therefore
bounded by a polynomial of n.

Now. we consider the following function g :
R x R* — R™,

g(A.B) = (21, ... 2m)
where z; = Fj(ui(A). .. .. us(A))
—Fi(ur(B)... . u(B)) (1<i<m),

Let a set function P” over R™ be the follow-

ng:
P7(8') = P2(g71(5")).

Then. P” is a probability distribution over R™.

Then. information of the pairwise comparison
is equivalent to the following conditions:

for A< B,W* . ¢g(A.B) <0 and (4)
for A> B,WW* . g(A.B) > 0.

Note that since each F; is calculated in the time
bounded by a polynomial of n. each z; is also
calculated in the time bounded by a polyno-
mial of n. Therefore. the set of above inequal-
ity is constructed in the time bounded by the
size of N and a polynomial of n. and therefore
bounded by a polynomial of n, e=! and 6~1.

From the above discussion. by using a lin-
ear programming algorithm, we can find W
such that the probability that W is not an e-
approximation of W* w.r.t. difference points for
P” is less than ¢ with required points bounded
by Eq. (1) and the time of finding W is bounded
by a polynomial of n. e~! and 0~!. Since if W
Is an e-approximation of W* w.r.t. difference
points for P” then W is an e-approximation of
W* w.r.t. difference pairs for P2, W is a wanted
weight for the original problem. ]

Figure 3 shows a learning algorithm of
weights by binary comparison.

4. Experimental Results

We now show an experimental result under
the following setting.
(1) F(A W) is defined as follows:

FAW) = Z W, * A;.
i=1
In other words, t = 1. u1(A) = A, m = n.
and 1",(u1(A)) = A,‘.
(2) Weuse arandomized function to produce
n values ranging over (0, 1) and regard it
as a true weight vector W*.
(3) We use arandomized function to produce
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Learn(e,d,m)
€: accuracy, é: confidence, m: the number of
weights in the preference function
begin
Receive the definition of the preference
function F(A, W) with W unknown,
and max(% log, % E‘Tm log, 1—33) pairs
of solutions and the results of
comparison from the teacher.
for every pair (A, B)
if A < B then add the following
inequality t~ the constraint set:
F(A, W) < F(B.W)
if B < A then add the following
inequality tc the constraint set:
F(B.W)+ 1< F(AW)
Get consistent values for the above
constraint set by linear programming
and output W.
end

Fig. 3 Learning algorithm.

n values ranging over (0. 1) and regard it
as a solution. We repeat this 2 /N times
to produce N pairs of solutions. We vary
N from 1000 to 1000 in order to see in-
fluence of sample size over error rate.

(4) Using the above algorithm, we learn a
weight vector by using a linear program-
ming system, CPLEX ).

(5) For the learned weight. we produce
10,000 test pairs randomly and calculate
an error rate.

(6) We repeat 100 times above and take the
average of error rates.

We use UltraSPARC-IIi (440 MHz) processor
with 1 GB memory for experiments.

Figure 4 shows relationship between the
number of objective functions and the square
root of learning time of weights. Since the
graph is almost linear, the order of the learning
time is O(n?) where n is the number of objec-
tive functions. Readers should be aware that
this result is not necessarily applicable for any
distribution.

Figure 5 shows relationship between the
number of objective functions and the error
rate. The number of objective functions is al-
most proportional to the error rate.

Figure 6 shows relationship between the size
of training pairs and the inverse of error rate.
This graph is almost linear. so the size of train-
ing pairs is almost inversely proportional to the
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o #(training pairs)=1000
15 o #(training pairs)=2000
# #(training pairs)=3000
o #(training pairs)=4000
4 #(training pairs)=5000
& #(training pairs)=6000
+ #(training pairs)=7000
< #(training pairs)=8000
x #(training pairs)=9000
104  * #(training pairs)=10000

sqrt(Learning Time) [sqrt(sec)]

0 T T T T T
0 20 40 60 80 100

Number of Objective Functions
Fig.4 Relationship between n and \/Learninglime.

o #(training pairs)=1000
© #(training pairs)=2000
® j(training pairs)=3000
O #(training pairs)=4000
0.04- 4 #(training pairs)=5000
4 #(training pairs)=6000
+ #i(training pairs)=7000
© #(training pairs)=8000
* #(training pairs)=9000
+ #(training pairs)=10000

Error Rate

0.024

T T T

0 2 40 60 80 100
Number of Objective Functions
Fig.5 Relationship between n and e.

error rate.
Figure 7 indicates that the required total

size of training pairs is almost on aver-

age in order to obtain the averagg error rate.
€, where C is a constant. From the graph.
C =~ 0.488. This size for training pairs is
smaller than the size in our PAC-learning anal-
ysis. Actually, this is consistent with average-
case analysis of the learning linear threshold
function ®-9)-18) " For any fixed probability dis-
tribution of samples. Haussler, et al. 5):"') show

. n
that the average error is bounded by N and
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Relationship between number of training pairs

10000 oo e

8000 L)

Training Pair Size
(2]
8
o
1
h

I
8
2

2000

0
0 5000 10000 15000 20000

(Number of Propositions) / (Error Rate)
Fig. 7 Relationship between n/e and number of
training pairs.

Takahashi and Gu!®) shows that the average
error is bounded by N1 if n < N. Since
our algorithm originates JErom a learning linear
threshold function. the above result is very en-
couraging since the average sample pair size is
bounded linearly to % for any fixed probability

distribution.
5. Conclusion

The contribution of this paper is a computa-
tional analysis of a learning method for weights
in multi-objective functions which uses pair-
wise comparisons. ‘I'he analysis shows that

PAC Learnability of Weights 7

the learning method can polynomially PAC-
learn the weight. Therefore, we can say that
the learning method is feasible in terms of the
worst-case analysis in computational learning
theory.

We would like to pursue the following as fu-
ture works.

e We would like to applying our method to real
application domain to evaluate our analysis.

e Our analysis is based on the algorithin to get
consistent hypothetical weights with compar-
ison information. Therefore. if training data
contains error or false comparison information,
we cannot apply our analysis. Therefore, we
need to extend our framework to consider er-
rors on comparison to apply our analysis to real
domain.

To solve the problem, we may use findings
of Gu and Takahashi!”. and Cohen®. In
the work of Gu and Takahashi!”), using their
ill-disposed algorithm. they analyze the aver-
age error rate for any distribution of learn-
ing a linear threshold function with noisy data
where the classification label of each example
is flipped with some probability between 0 and

3)

—. In the work of Cohen®), they show that

learning a linear threshold function with a ran-
dom classification noise is actually polynomially
PAC learnable.

We would like to apply these methods for an-

alyzing robust learning of weights.
e Speeding up of our algorithm is another direc-
tion of the research. In stead of using linear pro-
gramming method. we may use the weighted-
majority algorithm!®) or the support vector
machine21) . Analysis of learning weights us-
ing these methods is also an important future
work.
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