
SHA Implementation on Soft Core Processor for Hardware/Software
Optimization

Hoang Anh Tuan†, Katsuhiro Yamazaki † and Shigeru Oyanagi †

1. Introduction
The FPGA technology allows an application can be

implemented into both in Hardware or Software. It
helps to increase speeds of the applications, aims to
the real time applications. In that scene, the
optimization and tradeoff among hardware, software,
speedup and memory are important. This research
aims to optimize hardware and software for the co-
design system, which helps the applications
effectively implemented onto the FPGA. The research
utilizes the MicroBlaze soft core processor and the
user designed hardware, mounted into many patterns
for the SHA-1 algorithm.

2. Hardware/Software Optimization Overview
The Hardware/Software optimization is based on

the implementation and analysis of variable patterns
of applications. An application will be implemented in
both hardware and software in several modules,
mounted on the MicroBlaze soft CPU to form some
patterns. Hardware costs, memory size and speedup
are analyzed to give the tradeoff among those factors.
The MicroBlaze soft core processor works with
software while variable hardware modules are
implemented in hardware.

3. System Hardware Architecture
Figure 1 shows the hardware architecture used in

the research. The MicroBlaze is configured as a 32 bit
Harvard soft core processor architecture with pipeline.
It contains 32 general purpose registers, instruction
buffer, PC, decoder, an optimal ALU and 3 buses
interfaces. The local memory bus is used for the data
transfer between the CPU and RAM, the On-chip
Peripheral Bus (OPB) is used for standard in/out ports
such as RS232. Besides, there are 8 Fast Simplex Link
(FSL) interface, which used for the data transfer
among the general purpose registers and the user
peripherals using a FIFO memory.

4. SHA-1 algorithm
Figure 2 shows the SHA-1 algorithm which

contains preprocessing and hash computation. There
are 2 input data for the algorithm: the original data

stream that can be understood as original keys and the
digest numbers A~E that constantly started. The
preprocessing assure the length of the data stream be
multiple of 512 by adding 1, 0s and the original length
into it. The hash computation is operated based on the
logic operation, plus and shift, divided into four main
modules. The lowest level of the calling tree, the
function of previous digest values and loop number
(F), is called by the intermediate value calculation (T).
The constant generation module Kt generates a
constant depends on the loop number. The keys can be
separately generated from the input data by the key
generation (W). Hash computation stays at the top of
the tree reuses the calculated values of T and W. It
also controls the 80 times of loop for 512 bit data
hashing computation. The implemented SHA-1 is
separated into modules based on their functions above.

5. User Hardware Implementation Modules

5.1 Computational modules
The computational modules are F and T, which

require a very small amount of memory for input,
output and intermediate data. Figure 3 shows the
design of those computational modules. The state
controller controls hardware to receive data from the
master FSL interface for several times before writing
result back into slave FSL interface. The computation
controller is added into the design, making the
calculation process became pipelined and parallel with
the reading/writing process in order to reduce the
circuit delay.

Abstract This paper describes a research on hardware/software division optimization for the SHA algorithm using MicroBlaze
soft core processor. Nine designed patterns are given with different hardware/software rates, which affect the hardware size, used
memory size and the computation time of the SHA. The tradeoff among those factors and the suitable hardware modules are
analyzed and given. The results show that the speedup of the algorithm significantly depends on speed of computational modules
with small memory. The results show that the effect of hardware implementation increases correspondingly to the hardware size and
decrease correspondingly to the number of data transfer between hardware and software.

Figure 1. MicroBlaze Soft Core Processor Architecture
MicroBlaze Processor Core

Inst DecodeInst Buffer

Program counter Execution unit
(Add/Sub,

Logical, Multiply)Special purpose
registers

Register
file (32x32)

Instruction Bus
Interface

O
P

B

Softw
are m

odules
on BR

A
M User’s

hardware
modules on

FPGA
FSL

DDR SDRAM

I/O
GPIO

MicroBlaze Processor Core
Inst DecodeInst Buffer

Program counter Execution unit
(Add/Sub,

Logical, Multiply)Special purpose
registers

Register
file (32x32)

Instruction Bus
Interface

O
P

B

Softw
are m

odules
on BR

A
M User’s

hardware
modules on

FPGA
FSL

DDR SDRAM

I/O
GPIO

Figure 2. SHA-1 algorithm overview
Hash computation

Pre-
processing

T

A B C D E

F

Shift

+

+

Shift +

+

…

D
ata stream

W
 t

Kt

W15

W14

W13

W2

W1

W0

M
essage Padding

A B C D E

Loops for

80tim
es

Hash computation

Pre-
processing

T

A B C D E

F

Shift

+

+

Shift +

+

…

D
ata stream

W
 t

Kt

W15

W14

W13

W2

W1

W0

M
essage Padding

A B C D E

Loops for

80tim
es

† Ritsumeikan University, Graduate School of
Science and Engineering

1-157

1L-5

情報処理学会第69回全国大会

Figure 4. Key generation
module (W) architecture

FS
L interface

Key register (512 bits)

Output register

Input keys / loop number

FS
L interface

State
controller

XOR, circle
shift

Key
controller

FS
L interface

Key register (512 bits)

Output register

Input keys / loop number

FS
L interface

State
controller

XOR, circle
shift

Key
controller

FSL interface

Input registers

State
controller

Output register

Computation
controllerFS

L interface

+, logics
operation

FSL interface

Input registers

State
controller

Output register

Computation
controllerFS

L interface

+, logics
operation

Figure 3. Computational
modules (F/T) architecture

5.2 Key generation module
The key generation module (W) is shown in Figure

4, used to generate the 32-bit child keys from the 4
others. It contains 512-bit memory for the original and
child keys. The state controller controls the 16 times
original 32-bit keys receiving from the FSL interface
and 64 times child key generation. The oldest key
(W0) is replaced after usage using FIFO manner by the
child key generated by Wt computation. The key
controller makes the memory access (read,
computation and write processes) became pipelined.

5.3 Block hashing controller architecture
The hashing module is the combination of the

computational and the key generation modules,
controlled by a state controller. It controls not only the
accessing process of hashed data for the temporary
computation module (T) but also the key accessing in
the key generation module. The design of T and W
allows them to work in parallel with one clock delay
overall. In this module, the data transfer is improved
using buses or register, making its operation
completely independent with the software.

6. Experiment Results and Discussion
The changes from Software (-) into Hardware (H)

of the 4 modules of F, T, key generation and hashing
controller forms 9 patterns as shown in Table 1. The
patterns are ranged from software only in pattern 1 to
almost hardware implementation in pattern 9.

 Table 2 shows the implementation results of those
patterns in terms of hardware size, memory size,
execution time and hardware increase effectiveness.
Figure 5 shows the relationship among hardware size,
memory size and speedup of the application. The best
speedup as a whole can be recognized in pattern 9
with the hardware hash computation, in which, 1% of
hardware increase results into 0.12 times of speedup,
makes the final speedup achieves 16.8 times. Pattern 8
with parallel computation using 2 communication

parallel using several communication ports, the
hardware effectiveness will be increased significantly
due to the changes in the data transmission
methodology, which allows data transfer through wide
buses or registers and the parallel execution
methodology. Besides, the number of communication
ports between soft core processor and user hardware
can be reduced in combined hardware module.

7. Conclusion and Future work
This paper described 9 implementation patterns of

SHA algorithm for the Hardware/Software division
optimization on MicroBlaze. The results show that the
effect of hardware implementation increases
correspondingly to the hardware size and decreases
correspondingly to the number of data transfer
between hardware and software. Other algorithms
such as MD5, matrix inversion should be implemented
into MicroBlaze board in the same manner.

References
[1] Federal Information Processing Standards (FIPS)
Publication 108-2, Secure Hash Standard (SHS), U.S.
DoC/NIST, Aug, 2002.
[2] Microblaze Processor Reference Guide from
Xilinx UG081 (v6.0) June 1, 2006.

Table 2. Patterns implementation results

163.7 %
160.3 %
141.3 %
119.7 %
47.9 %
48.7 %
28.9 %
28.7 %

0 %
Increase

1,469
1,450
1,344
1,224
824
828
718
717
557

Slices

Memory
(Flip-Flops)

1 : 0.12 16.81,393 137.7 %220,176 (9)
1 : 0.03 2.947,967 85.8 %172,063 (8)
1 : 0.02 1.8112,927 82.6 %169,133 (7)
1 : 0.03 1.5215,393 51.2 %140,061 (6)
1 : 0.041.3816,957 33.2 %123,384 (5)
1 : 0.041.2518,76932.4 %122,596(4)
1 : 0.06 1.121,10919.8 %110,989 (3)

1 : 0123,489 17.3 %108,623 (2)
-123,409 0 %92,623 (1)

SpeedupTimeIncreaseHardware

Hardware
increase

effectiveness

Execution time
(clocks)Number of gates

P
atterns

163.7 %
160.3 %
141.3 %
119.7 %
47.9 %
48.7 %
28.9 %
28.7 %

0 %
Increase

1,469
1,450
1,344
1,224
824
828
718
717
557

Slices

Memory
(Flip-Flops)

1 : 0.12 16.81,393 137.7 %220,176 (9)
1 : 0.03 2.947,967 85.8 %172,063 (8)
1 : 0.02 1.8112,927 82.6 %169,133 (7)
1 : 0.03 1.5215,393 51.2 %140,061 (6)
1 : 0.041.3816,957 33.2 %123,384 (5)
1 : 0.041.2518,76932.4 %122,596(4)
1 : 0.06 1.121,10919.8 %110,989 (3)

1 : 0123,489 17.3 %108,623 (2)
-123,409 0 %92,623 (1)

SpeedupTimeIncreaseHardware

Hardware
increase

effectiveness

Execution time
(clocks)Number of gates

P
atterns

1.00

3.00

5.00

7.00

9.00

11.00

13.00

15.00

17.00

0 20 40 60 80 100 120 140 160

ports also achieves 3 times of speedup. Other patterns
from 3 to 7 also have good speedup correspondingly
to the hardware size increase.

In general, the small computation modules with
many data movement between hardware and software
have small effect to the speedup of the system due to
the latency of huge amount of data transfer through
port. However, when those modules are combined
together into a united hardware module or working in

HHHHHH(9)
-HHHHH(8)
-H--HH(7)
-H----(6)
--HHHH(5)
---H-H(4)
----HH(3)
-----H(2)
------(1)

Loop checkedTLoop checkedF
Hashing
controller

Key
generation

Temporary (T)Function (F)Patterns

HHHHHH(9)
-HHHHH(8)
-H--HH(7)
-H----(6)
--HHHH(5)
---H-H(4)
----HH(3)
-----H(2)
------(1)

Loop checkedTLoop checkedF
Hashing
controller

Key
generation

Temporary (T)Function (F)Patterns

Table 1. Hardware/Software division patterns

Speedup

0.90

1.10

1.30

1.50

1.70

1.90

2.10

2.30

2.50

2.70

2.90

0 20 40 60 80 100 120 140 160

Hardware increase (%)

Memory increase
Gates increase

(9)(9)

(1)
(2)

(3) (4)
(5)

(6) (6)
(7) (7)

(8) (8)

(5)
(4)

1.00

3.00

5.00

7.00

9.00

11.00

13.00

15.00

17.00

0 20 40 60 80 100 120 140 160

Speedup

0.90

1.10

1.30

1.50

1.70

1.90

2.10

2.30

2.50

2.70

2.90

0 20 40 60 80 100 120 140 160

Hardware increase (%)

Memory increase
Gates increase

(9) (9)

(8) (8)

(7) (7)
(6) (6)

(5)

(1)
(2)

(3) (4)
(5)

(4)

Figure 5. Relationship between hardware increase and speedup

	tyt_no:
	typ_page1: 1-158
	tyt_a:
	typ_page:
	tyt_head:
	tyt_head1: 情報処理学会第69回全国大会

