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Greedy Genetic Algorithms for Symmetric and Asymmetric TSPs

Hung Dinh Nguyen,† Ikuo Yoshihara,†† Kunihito Yamamori††

and Moritoshi Yasunaga†††

This paper presents new enhancements to a multi-population GENITOR-type Genetic Al-
gorithm (GA) for solving symmetric and asymmetric Traveling Salesman Problems (TSPs).
First, improvements to the greedy subtour crossover are proposed so that it works more ef-
fectively at the stage of highly fit individuals. Next, local search heuristics are combined with
GA to compensate for its lack of local search ability. The powerful Lin-Kernighan heuristic is
used for symmetric TSPs and the fast 3-Opt heuristic is used for asymmetric TSPs. Various
symmetric and asymmetric TSP benchmarks taken from the TSPLIB are used to validate the
method. Experimental results show that the proposed method can find optimal solutions for
problems ranging in size up to 3795 cities in a reasonable computing time. From the viewpoint
of quality of solution, these results are the best so far obtained by applying GA to the TSP.

1. Introduction

The Traveling Salesman Problem (TSP) is
one of the most important and representative
combinatorial optimization problems, because
it is simple but fundamental and widely appli-
cable. The TSP has applications in many fields
such as vehicle routing, robot control, and crys-
tallography etc. For example, the problems of
collecting coins in automatic vending machines,
scheduling jobs in a single machine, and order-
ing drill holes in a circuit board can all be for-
mulated as TSPs.
The TSP is simple to state. In the TSP, lo-

cations of all the cities are given and the sales-
man’s task is to find the minimum cost route
connecting them all, with each city visited only
once and return to the city of origin. The cost
here can be distance, time, or money etc. If
all the costs between any two cities are equal in
both directions the problem is called a symmet-
ric TSP (STSP), otherwise it is an asymmetric
TSP (ATSP).
Since the TSP is an NP-complete problem,

any method of finding the true optimal solu-
tion has a search space that expands no less
than exponential order of the number of cities.
Therefore, they are impractical for large prob-
lems. So far, many efforts have been concen-
trated on the development of practical algo-
rithms that do not always aim at finding the
best solution but at quickly finding a reason-
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ably good solution. They can be roughly di-
vided into two categories: local search algo-
rithms that use problem-specific knowledge and
global search algorithms that are problem inde-
pendent. One of the global search algorithms is
Genetic Algorithm (GA), which is an optimiza-
tion and search method inspired by the evolu-
tionary process of nature 1),2).
There have been a lot of attempts to ap-

ply GA to solve the TSPs. One of the im-
portant parts of GA is the crossover (recombi-
nation) operator. Many crossover operators 3)

have been proposed for solving the TSP, for ex-
ample, partially matched crossover (PMX) 4),
cycle crossover (CX) 5), order crossover (OX) 6),
maximal preservative crossover (MPX) 7), edge
recombination (ER) 8)∼14), greedy subtour
crossover (GSX) 15),16), distance preserving
crossover (DPX) 18), edge assembly crossover
(EAX) 21), and natural crossover 22).
Although GA is a robust search algorithm

suitable for problems having huge search spaces
such as the TSP, it is often outperformed by lo-
cal search heuristics when applying to the TSP.
This is because GA is lack of local search abil-
ity, or in other words, it does not utilize the
problem-specific knowledge. It seems that the
only way to develop a high performance GA-
based method for the TSP is to incorporate
problem-specific knowledge into GA. All of the
best-so-far GA-based methods for the TSP used
problem-specific knowledge19)∼22).
Merz and Freisleben 19) proposed the Genetic

Local Search, which stresses on the use of the
powerful Lin-Kernighan heuristic. The GA part
of their algorithm, however, applied an ex-
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Fig. 1 The original GSX (GSX-0).

tremely small population size (20 individuals
for the STSP). On the other hand, Gorges-
Schleuter 20) proposed a method that uses a
powerful hierarchy population GA with a rel-
atively weak local search heuristic. She com-
pared her method with Merz and Freisleben’s
method and pointed out that for large prob-
lems, the strategy of using many times a weaker
but faster local search can be as effective as us-
ing few times of a more powerful but slower
local search. Unfortunately, both methods did
not clearly demonstrate the potential of com-
bining GA with local search as expected. Their
results reported for large problems are still not
convincible.
Nagata and Kobayashi 21) incorporated the

TSP-specific knowledge directly into the
crossover operator, which they named edge as-
sembly crossover. They did not use any other
local search heuristics. In order to find high
quality solutions for large problems, however,
their method needs a big population size (1,200
individuals for a 2,392-city problem), which
makes their method rather slow.
Recently, Jung and Moon 22) proposed a GA-

based method that uses the natural crossover
and involves the Lin-Kernighan heuristic for the
STSP. However, their crossover is only applica-
ble for Euclidean problems and their method
does not have impressive quality of solutions.
The goal of our research is to develop a more

effective GA-based method for the TSPs. To
achieve this goal, we first propose new improve-
ments to the GSX operator to make our GA
more effective at the stage of highly fit indi-
viduals. GA is then combined with heuristics
to compensate for its lack of local search abil-
ity. Local search heuristics for both STSP and
ATSP are investigated and a way of incorpo-
rating them into GA is proposed. Various prob-
lems from the TSPLIB 26), which contains stan-
dard benchmarks for testing TSP algorithms,

are used to validate the method.
The paper is organized as follows. Section

2 presents the improvements of GSX. Section
3 describes the hybrid GA. In Section 4, ex-
periments and results for TSP benchmarks are
presented. Section 5 concludes the paper and
briefs works for future research.

2. Improvements of the Greedy Sub-
tour Crossover

Desirable characteristics of the optimal so-
lution of the TSP are embedded in subtours,
which consist of connecting relations of edges.
Therefore, an appropriate crossover for the TSP
should transmit as much connecting relations of
edges as possible from parents to offspring. The
GSX is designed for such purpose. In this sec-
tion, the conventional versions of GSX operator
and its newly improvements are presented.

2.1 The Original Greedy Subtour
Crossover (GSX-0)

The original GSX (GSX-0) was proposed by
Sengoku and Yoshihara 15). It consists of three
steps as follows.

Step 1: a city is randomly chosen as the
crossover city and copied to the offspring.

Step 2: cities from parents are alternately
copied to the offspring, with each parent be-
ing extended from one direction of the crossover
city, until a city that has already been included
in the offspring is met.

Step 3: all of the remaining cities are filled in
the offspring at random order.

Figure 1 shows an example of the GSX-0
operator. First, city B is randomly chosen as
the crossover city and copied to the offspring.
Next, other cities are alternatively copied from
parents, with parent 1 from the right and par-
ent 2 from the left of city B. In this example,
first city A from parent 1 and city C from par-
ent 2 are added to the partially built offspring.
The process is repeated until city F from par-
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Fig. 2 Takeda’s improved GSX (GSX-1).

ent 1 is added to the partially built offspring
and city E from parent 2 is attempted. How-
ever, since city E has already been included
in the offspring, the above process is stopped
without adding city E to the offspring. Finally,
the remaining cities are filled to the offspring
at random order as shown in Fig. 1. Note that
there are three foreign edges (edges are inher-
ited from neither parent) KO, OD, and LN in
the offspring.

2.2 Takeda’s Improved GSX (GSX-1)
Takeda, et al. 16) modified only the final step

of the operator. They proposed to fill the re-
maining cities at the order that they appear in
one of the parent, skipping all the cities that
have been included in the offspring. In the
above example, since before the stop of adding
cities the algorithm attempted to add city E
from parent 2, so the remaining cities will be
filled to the offspring from the left according to
the order that they appear in the parent 2, skip-
ping all cities that have already been included
in the offspring. That order is “N K M O L”
and the offspring becomes as shown in Fig. 2.
There is only one foreign edge ND in the off-
spring.
Despite of minor modification, the effective-

ness of the operator is improved fairly well, es-
pecially when combining GA with local search
heuristics. The reason why GSX-1 is superior
to GSX-0 can be explained as follows. When
combining with local search heuristics, the pop-
ulation rapidly converges to a stage of highly fit
individuals. At this stage, the edges that com-
pose the parents should involve in subtours with
desirable characteristics. Therefore, even a sin-
gle randomly created foreign edge may degrade
the fitness of the offspring. The improved GSX-
1 fills in the remaining cities in the order of one
of the parent so it can reduce the number of
foreign edges introduced into the offspring, and
therefore it is able to produce better offspring

at this stage.
2.3 Newly Improved GSX (GSX-2)
We observed that the GSX-1 operator has a

drawback when being applied to the STSP. For
the STSP, there are two ways of representing
a tour (an inversion of a tour represents also
that tour). For example, tour “A B C D E”
and tour “A E D C B” are the same for the
STSP. Therefore, the population may contain
individuals that share a common subtour but in
inverse order. Let consider the case that parent
1 partially contains the subtour “A B C” and
parent 2 contains the subtour “C B A”, and
B is chosen as the crossover city. In this case
GSX-1 will stop step 2 immediately after city
C of parent 1 is added to the partially built off-
spring. The offspring is then filled in with the
remaining cities at the order of parent 2, thus
it is almost identical to parent 2. The conse-
quence is that the operator’s ability of creating
diversity for the population is degraded.
Our solution to this problem is as follows. Be-

fore adding cities from both parents (step 2),
the direction of adding cities from parent 2 is
decided according to the crossover city and its
four neighbors. Let assume that parent 1 and
parent 2 are as follows.

Parent 1: “. . . x B y . . .”,
Parent 2: “. . . p B q . . .”.

Where B is the crossover city, x and y are its
two neighbors in parent 1, and p and q are its
two neighbors in parent 2. The following frag-
ment of pseudo-code will decide the direction 2
for adding cities of parent 2. Note that GSX-1
always adds cities of parent 2 from the left side
of the crossover city.

if (x == q || y == p) then
direction 2 = right;

else
direction 2 = left;

As we know that random foreign edges intro-
duced in the offspring may degrade the fitness of
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Fig. 3 Newly improved GSX (GSX-2).

the offspring, we propose another modification
in order to reduce further the number of foreign
edges. This modification is applicable to both
STSP and ATSP. Only the step 2 is modified.
Cities are alternately added from the parents to
both sides of the crossover city until either a city
that has been included in the offspring is met
or exchangeable subtours are found. Exchange-
able subtours are defined as two subtours, one
from each parent, that consist of the same set of
cities but in different order and have the same
two end cities.
In our example, the subtour “B A H G” of

parent 1 and the subtour “B H A G” of parent
2 are exchangeable subtours. Therefore, the op-
erator will stop adding cities from both parents
after city G of parent 1 is added. Then the
offspring is filled in with the remaining cities
according to the order that they appear in par-
ent 2, starting from J. The final offspring is as
shown in Fig. 3. We can easily see that if ex-
changeable subtours are found, all the edges of
the offspring are inherited from parents (i.e.,
there is no foreign edge in the offspring). When
properly implemented, checking for exchange-
able subtours can be done in a time order of
O(N). Therefore, the time complexity of the
newly improved crossover remains O(N), which
is the same with GSX-0 and GSX-1.

3. The Hybrid GA

3.1 Hybridizing GA with Heuristics
In TSP applications, many studies have in-

dicated that pure GA methods are outper-
formed by the conventional heuristics, partic-
ularly when the problem size increases. There-
fore, many researchers have tried to combine
local search heuristics with GAs to gain better
performance15)∼22). The hybrid method com-
bines the global search ability of GA with the
local search ability of heuristics, thus it possibly

Procedure HybridGA
Begin
For each subpopulation do
Initialize subpopulation by tour
construction heuristic;

Repeat {
For each subpopulation do {
If (rand() < mutation rate) {
Select one parent p using linear ranking;
Mutation(p, c);

} Else {
Select two parents p1, p2 using linear
ranking;
Crossover(p1, p2, c);

}
Tour improvement heuristic(c);
Replace c to the worst parent if fitter;

}
At predefined migration interval do
Migration between subpopulations

}
Until converged;

End

Fig. 4 Pseudo-code of the hybrid GA.

becomes a more robust search algorithm. In our
hybrid GA, a tour construction heuristic is used
to generate the first population and a tour im-
provement heuristic is used after the crossover
and mutation operators to improve the quality
of individuals during the search. The pseudo-
code in Fig. 4 illustrates our hybrid GA.
The mutation operator performs a special

kind of non-sequential 4-Opt move or the
double-bridge move (Fig. 5) 27). This kind of
move has been proven to be very effective when
working with local search heuristics such as 2-
Opt, 3-Opt or Lin-Kernighan since it is not easy
to undo this kind of move by these heuristics.

3.2 Genetic Algorithm
A multi-population GENITOR-type GA is

used in our algorithm. The GENITOR was
originally proposed by Whitley and is available
on the Internet 23). It has some distinguished
characteristics, which are (i) using the steady-
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Fig. 5 A double-bridge move.

state update strategy, (ii) using linear rank-
ing for selecting parents, and (iii) replacing the
worst individual in the population. The reason
for choosing the GENITOR-type GA is because
Whitley has pointed out that the GENITOR al-
gorithm is very effective. It needs less number
of evaluations than canonical GAs (e.g., SGA,
Genesis) in order to gain the same quality of so-
lutions. We choose the multi-population model
because it is very easy to implement in parallel,
which we want to do in the future to speed up
the method.
Our algorithm, however, has one point differ-

ent from the GENITOR algorithm. It uses a re-
placement scheme of replacing the worst parent.
This replacement scheme causes slower conver-
gence but it can maintain a more diversity pop-
ulation. In every generation and for each sub-
population, only one offspring is created either
from two parents by crossover or from one par-
ent by mutation. If the offspring is better than
the worst parent, it is immediately inserted into
the subpopulation to replace the worst parent.
However, duplicate individuals are not allowed
in each subpopulation. In order to avoid pre-
mature convergence, the population is divided
into a number of subpopulations and after a
pre-defined number of generations, some best
individuals are exchanged between these sub-
populations. The algorithm halts either after
a fixed number of generations or after a fixed
number of generations that the best individual
cannot be improved.

3.3 Heuristics
(a) Heuristics for Tour Construction
The random insertion heuristic is used to gen-

erate the initial population of GA for both types
of TSPs. It can be described as follows. At first,
three cities are randomly picked to form a tri-
angle tour. Then the remaining cities are ran-
domly chosen one by one and sequentially in-
serted into the tour at the position that causes
the minimum increase in the length of the tour.
Using this heuristic, a population with fairly
good quality can be obtained and at the same
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Fig. 6 A 3-Opt move (ATSP).

time a diversity of the population needed for
GA can be produced.

(b) Heuristics for Tour Improvement
The Lin-Kernighan heuristic is used as tour

improvement heuristic for the STSP. For the
asymmetric case, we use a version of fast 3-Opt
heuristic.
Lin-Kernighan is a very effective heuristic for

the STSP 24),25). It repeatedly checks for a se-
quential r-opt move (r is variable) that can pro-
duce a shorter tour and performs the move if
such move exists. In our implementation, we
limit the search to 12-quadrant nearest neigh-
bors (3 nearest neighbors for each quadrant)
for Euclidean distance problems or 12 nearest
neighbors for others. The maximum value of r
is set to 25. The don’t look bit idea 28) is used to
speed up the algorithm. Each city has a don’t
look bit and it is investigated as the first city
for an improving move only if its don’t look
bit is turned off. Initially, every city has its
don’t look bit turned on and after the crossover
or mutation operators, only cities at the two
ends of foreign edges have their don’t look bits
turned off. (For the mutation operator, the for-
eign edges are the four bridge edges.) Using the
don’t look bit, though the quality of tour each
time the Lin-Kernighan heuristic is applied may
be a little worse, the heuristic runs much faster
and allows our method to process more genera-
tions and ends up with a better final results. To
make the heuristic more robust, our implemen-
tation also performs a limited check for non-
sequential 4-Opt moves.
Since the Lin-Kernighan heuristic cannot be

applied to the ATSP, a version of fast 3-Opt is
used for this case 25). A 3-Opt move (Fig. 6)
causes a 3-edge change at a time, a minimum
change for the ATSP. It first removes three
edges of a tour to form three separate subtours,
and then reconnects them in the other order,
such that the direction of each subtour is not
reversed. A 3-Opt heuristic checks if there is
any 3-Opt moves that can reduce the length of
the tour. If such move is found, it performs
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the move and repeats the procedure. Fast 3-
Opt heuristic limits the cities investigated to K
nearest neighbors and uses the don’t look bits
to reduce the computational time. In our im-
plementation, the value K is set to 12.

4. Experiments and Discussions

All the experiments were run on a com-
puter running Windows 98 with a Pentium-
III 700MHz processor and 128MB of memory.
The program is written in C language and com-
piled using Microsoft Visual C++ 6.0.

4.1 Comparing GSX Operators
The first set of experiments was performed to

measure the effectiveness of the newly improved
operator. We ran the program with three ver-
sions of the GSX, namely, GSX-0, GSX-1, and
GSX-2. Three benchmarks, gr96, d198, and
pcb442 were chosen from the TSBLIB. For each
benchmark, we set the population size to 1,000,
which is equally divided into 10 subpopulations
with each subpopulation having 100 individu-
als. The selection bias was set to 1.0 (i.e., ran-
dom selection) and the mutation rate to zero
(i.e., no mutation).
To see the differences between the crossovers

more clearly, the tour improvement heuristic
was not used. The tour construction heuris-
tic, however, was used to generate the initial
population because we want to know how each
crossover works at the stage of highly fit indi-
viduals. The migration interval was set to 1,000
generations and 5 best individuals of each sub-
population are exchanged at each migration in-
terval. The program stopped after 50,000 gen-
erations. The results are averages of 20 runs
and are given in Fig. 7, Fig. 8, and Fig. 9.
For all three problems, GSX-2 always con-

verges fastest and gives the best final results.
GSX-0 converges slowest and has the worst fi-
nal results. For the pcb442 benchmark, the
operator could not improve the best individ-
ual of the population after 50,000 generations.
This shows that the number of foreign edges of
an operator has very strong effect at the stage
when the quality of individuals is high. Three
benchmark experiments lead us to the conclu-
sion that the newly improved GSX-2 is greed-
ier than conventional ones, especially when the
problem size is large.

Table 1 shows the CPU times of the method
for each of the GSX operators. We can notice
that the CPU times of all three operators are
proportional to the number of cities. GSX-2 is
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slightly faster than GSX-0 and slightly slower
than GSX-1. GSX-2 is slower than GSX-1 be-
cause it has to spend time for checking ex-
changeable subtours. However, since the run-
ning time of our hybrid GA is largely occu-
pied by local search heuristics, the extra run-
ning time of GSX-2 over GSX-1 has almost no
effect to the overall running time of our hybrid
algorithm.
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Table 1 CPU times of GSX operators (sec).

Operator gr96 d198 pcb442
GSX-0 7.65 22.48 54.29
GSX-1 4.36 15.76 36.76
GSX-2 6.14 19.96 42.31

Table 2 Measured AoC and AoD values
of GSX operators.

Operator gr96 d198 pcb442
GSX-0 28.720 21.384 13.270

AoC GSX-1 97.627 98.608 99.293
GSX-2 97.943 98.671 99.212
GSX-0 75.172 82.568 89.459

AoD GSX-1 7.081 5.787 3.694
GSX-2 7.992 7.069 5.036

The second set of experiments was performed
to address the question why GSX-2 is better
than GSX-0 and GSX-1. We define two values,
AoC and AoD, for each crossover. These values
are calculated by the following equations.

AoC = 100
(
1−

∑
fe(O, A, B)

ncross × ncities

)
(1)

AoD = 100
∑

min
(
d(O, A), d(O, B)

)
ncross × ncities

(2)

AoC is the average number of edges inher-
ited from parents, per crossover per edge. It
shows the ability of inheriting characteristics
from parents. AoD is the average hamming dis-
tance between the offspring and the nearest par-
ent, per crossover per edge. It shows the ability
of preserving diversity for the population.
The function fe(O, A, B) here returns the

number of foreign edges in the offspring O cre-
ated by crossover from two parents A and B.
The function d(O, A) returns the number of dif-
ferent edges of the offspring O and parent A.
ncross is the number of times crossover is per-
formed and ncities is the number of cities of
the problem. (In the TSP, the number of edges
in a tour equals to the number of cities.) The
same three problems above were used for exper-
iments. Experimental parameters were set as
the same with the first set of experiments, ex-
cept that each crossover was performed 100,000
times. The results are given in Table 2.
We can see from the results that GSX-0 has

much smaller AoC and much bigger AoD com-
pared to GSX-1 and GSX-2 operators. This
means that GSX-0 has quite small ability of in-
heriting characteristics from parents while its
ability of preserving diversity for the popula-
tion is big. However, at the stage of highly fit
individuals, the ability of inheriting character-

istics has more strong effect than the ability of
preserving diversity. This explains why GSX-0
is the worst operator.
On the other hand, GSX-1 and GSX-2 oper-

ators have very high AoC and quite small AoD
values. They can transmit more than 99% of
edges from the parents to the offspring in the
pcb442 problem. GSX-2 has slightly higher
AoC in the two small problems and slightly
smaller AoC for the biggest problem. How-
ever, its AoD values are consistently higher
than those of GSX-1 operator. This shows that
GSX-2’s superior ability of preserving diversity
is the main reason why it performed better than
GSX-1, especially for the pcb442 problem.

4.2 Validating the Hybrid GA
We performed another set of experiments for

measuring the performance of the hybrid GA.
The newly improved operator GSX-2 was used
as the crossover of the method. This time,
due to tour improvement heuristics are used,
a smaller population size of 500 individuals was
employed. The population was divided into
10 subpopulations, each having 50 individuals.
Other parameters were set empirically. For all
problems, the selection bias for selecting par-
ents was set to 1.25 and the mutation rate to
0.1. After every 500 generations, three best in-
dividuals of each subpopulation are exchanged
between subpopulations. The program stopped
after 50,000 generations or after 3,000 (STSP)
or 1,000 (ATSP) generations of non-improving
of the best individual. Both symmetric and
asymmetric TSP benchmarks taken from the
TSPLIB with sizes up to 3,795 cities were used
for experiments. All benchmarks were per-
formed 20 runs. Table 3 and Table 4 show
the results of symmetric and asymmetric bench-
marks, respectively.
In these tables, Name is the problems file

names in TSPLIB. Except for some asymmetric
problems, the suffix number of a problem name
indicates the number of cities of that problem.
For example, the lin318 problem has 318 cities.
Optimum denotes the optimal tour length. Best
quality, Avg. quality, and Worst quality show
the percentages excess over the optimum of the
best, the average and the worst tour length of
20 runs, respectively. These qualities are calcu-
lated using equation (3). Avg. gen. displays the
average number of generations needed until the
program converged. Ratio of opt. shows the
number of times an optimal solution is found
within 20 runs. CPU time indicates the run-
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Table 3 Results of STSP benchmarks.

Problem Optimum Best Avg. Worst Avg. Ratio CPU
quality quality quality gen. of opt. time

lin318 42,029 0.000% 0.000% 0.000% 3,179 20/20 57.42
pcb442 50,778 0.000% 0.000% 0.000% 3,405 20/20 41.61
att532 27,686 0.000% 0.000% 0.000% 3,808 20/20 88.86
gr666 294,358 0.000% 0.000% 0.000% 4,052 20/20 187.39
rat783 8,806 0.000% 0.000% 0.000% 3,659 20/20 70.14
pcb1173 56,892 0.000% 0.000% 0.000% 4,135 20/20 167.95
fl1577 22,249 0.000% 0.004% 0.031% 5,556 17/20 299.45
d2103 80,450 0.000% 0.000% 0.000% 4,155 20/20 433.38
pcb3038 137,694 0.000% 0.008% 0.034% 7,449 8/20 1,200.85
fl3795 28,772 0.000% 0.001% 0.007% 6,274 18/20 1,034.38

Table 4 Results of ATSP benchmarks.

Problem Optimum Best Avg. Worst Avg. Ratio CPU
quality quality quality gen. of opt. time

ry48p 14,422 0.000% 0.000% 0.000% 1,156 20/20 0.27
ft53 6,905 0.000% 0.000% 0.000% 1,133 20/20 0.43
ftv64 1,839 0.000% 0.000% 0.000% 1,198 20/20 0.32
ft70 38,673 0.000% 0.000% 0.000% 1,321 20/20 0.94
kro124 36,230 0.000% 0.000% 0.000% 1,318 20/20 0.54
ftv170 2,755 0.000% 0.000% 0.000% 1,640 20/20 1.42
rgb323 1,326 0.000% 0.000% 0.000% 1,069 20/20 29.49
rgb358 1,163 0.000% 0.000% 0.000% 1,126 20/20 27.87
rgb403 2,465 0.000% 0.000% 0.000% 1,106 20/20 26.88
rgb443 2,720 0.000% 0.000% 0.000% 1,105 20/20 34.67

ning time for one run in seconds.
quality(%) = 100

(len − opt)
opt

(3)

For the symmetric problems, Table 3 shows
that all optimal solutions are found within 20
runs. All of the optimal solutions except for
the fl1577, pcb3038, and fl3795 problems are
found in all runs. The average qualities of so-
lution for these three problems are also very
high (0.004% for fl1577, 0.008% for pcb3038,
and less than 0.001% for fl3795). From the
viewpoint of quality of solutions, these results
are the best so far obtained by applying GA to
the TSP. Merz and Freisleben 19) reported an
average tour length of 28,868.5 (0.335% above
the optimum) for the fl3795 problem using the
Genetic Local Search, which also uses the Lin-
Kernighan heuristic as the local search. Gorges-
Schleuter 20) reported an average tour length
of 28,850 (0.271% above the optimum) for the
fl3795 problem using a hierarchy population
GA with the maximal preservative crossover
and a weaker local search heuristic. Both
methods could not find the optimal solution
for this problem within 20 runs. Nagata and
Kobayashi 21), using a GA with the complicated
edge assembly crossover, found an average tour
length of 0.029% above the optimum for the
pcb3038 problem and found the optimal solu-
tion once within 20 runs. Jung and Moon 22)

found an average tour length of 0.052% excess
over the optimum for the pcb3038 problem by
using a GA with the natural crossover and Lin-
Kernighan heuristic. Their method could not
find the optimum for this problem even within
100 runs. So far, all of these methods are con-
sidered to be the state-of-the-art algorithms for
solving the STSP by using GA-based methods.
From the viewpoint of running time, our

method is also quite fast compared to some
other methods. In average, it needed about 17
minutes to solve the biggest 3,795-city prob-
lem. Merz and Freisleben’s method needed
about 5 hours of a DEC Alphastation 255 run-
ning Digital Unix V4 to solve the same prob-
lem. Gorges-Schleuter reported an average
CPU time of more than 5 hours of a SUN Ultra-
Sparc with 170MHz for this problem. Nagata
and Kobayashi’s method needed 8,707 seconds
of an Intel Pentium 200MHz processor for the
pcb3038 problem while ours CPU time for this
problem was 1,200 seconds. Although differ-
ent computer types were used, it seems that
our method is at least as fast as these methods.
The only method that is faster than ours is Jung
and Moon’s method. It needed 816 seconds of
a Pentium III 450MHz processor to solve the
pcb3038 problem.
Table 4 summarizes the results for ATSP

benchmarks. Note that in this table, problems
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prefixed with ftv have sizes equal to their suffix
numbers plus one. For example, the size of the
ftv64 problem is 64+1 = 65. The kro124 prob-
lem has a size of 100 cities. The results show
that the proposed method is capable of find-
ing always the optimal solutions for each of the
ATSP benchmarks. Obviously, no any methods
could be better than ours from the viewpoint of
quality of solution. The running time of ATSP
benchmarks is slightly faster than that of STSP
benchmarks, given the same problem size. In
average, our method needed only 35 seconds
to solve the biggest 443-city problem. Nagata
and Kobayashi’s method spent 286 seconds (In-
tel Pentium 200MHz processor) for this prob-
lem. Merz and Freisleben’s method reported
spending 100 seconds (DEC Alphastation 255
running Digital Unix V4) to solve the ftv170
problem while the running time of our method
for this problem was 1.42 seconds.
It is notable that the running time of our

method does not depend only on the problem
size. For example, the CPU time of the gr666
problem is more than two times slower than the
CPU time of the rat783 problem. The aver-
age number of generations required to converge
shows the difficulty of problem. Here, the hard-
est symmetric and asymmetric problems for our
method were pcb3038 and ftv170, respectively.
The number of calls to the mutation and

crossover operators can be approximately cal-
culated as follows:

Nm = avg gen × sub pop × mu rate (4)
Nc = avg gen × sub pop − Nm (5)

Here, Nm and Nc denote the number of calls to
mutation and crossover, respectively. avg gen
denotes the average number of generations
needed to converge. sub pop is the number of
subpopulations (in this paper, 10) and mu rate
is the mutation rate applied (0.1). The num-
ber of calls to the tour improvement heuristics
(Lin-Kernighan or fast 3-Opt) does not neces-
sary equal to the sumNm+Nc. This is because
the crossover sometimes produces an offspring
with no foreign edge. For the tested problems,
the number of calls to the tour improvement
heuristics is about (Nm+Nc)/3.
Finally, one may ask whether the genetic

search approach is more efficient than the it-
erative search approach, if both approaches use
the same local search heuristic. We performed
one more experiment to address this question.
Actually, the iterative search approach is a spe-

cial case of our method, in which the popu-
lation size is just one and the mutation rate
is 1.0. The symmetric att532 problem was
used for experiment. Since the genetic search
approach needed roughly 4,000 generations to
converge and there are 10 subpopulations, we
set both the maximum number of generations
and the maximum number of non-improving
generations to 40,000 for the iterative search
approach. That is, 40,000 calls will be made
to both the mutation operator and the local
search heuristic (Lin-Kernighan, in this case).
As expected, the iterative search approach did
not find the optimum in all runs. There were
four times the algorithm got stuck with a lo-
cal minimum of 27,703, leading to an average
tour length of 0.012% above the optimum. The
genetic search approach found the optimum for
this problem in all runs. It is also not surpris-
ing that the running time of the iterative ap-
proach was 187 seconds, more than two times
slower than the genetic search approach, if we
remember that the number of calls to the tour
improvement heuristic for the genetic approach
is only one third of that for the iterative search
approach. The result confirms that the genetic
search approach is more efficient than the iter-
ative search approach.

5. Conclusions

This paper presents a GA-based method
for solving both symmetric and asymmetric
TSPs. The method is a multiple population
GENITOR-type GA, which uses the newly im-
proved versions of the GSX and involves lo-
cal search heuristics. New improvements to
the GSX are proposed so that it can work
more effectively at the stage of highly fit in-
dividuals. The random insertion heuristic is
used to generate the initial population and the
Lin-Kernighan heuristic (STSP) or fast 3-Opt
heuristic (ATSP) is applied after the crossover
and mutation operators to improve the quality
of individuals during the search.
The method has been validated on a num-

ber of symmetric and asymmetric TSP bench-
marks, ranging in size up to 3,795 cities, taken
from the TSPLIB. The benchmark tests that all
optimal solutions have been found in a reason-
able computing time lead us to the conclusion
that the improved operators work very well in
the hybridizing environment and the method is
powerful for solving both types of TSPs, which
have many applications in the real world.
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The general framework of the method can
help to develop competent GA-based meth-
ods for other combinatorial optimizations tasks.
By extending this method, we have succeeded
in developing a high performance GA-based
method for the multiple-sequence-alignment
problem in genome informatics, which is also
NP-hard 29).
There are several issues for future works.

First, since the running time of our algorithm is
largely occupied by the local search heuristics,
we want to investigate them further to improve
the time-quality tradeoff of our algorithm. Sec-
ond, we want to extend the method so it can
be run in parallel. Third, we want to test the
method with some bigger problems.
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