3E-3

携帯電話アプリケーションとマルチエージェント技術による WSN 簡易構築システム*

大林真人† 西山裕之‡ 溝口文雄‡

東京都立産業技術研究所 情報科学グループ[†] 東京理科大学 理工学部[‡]

1 はじめに

ワイヤレスセンサネットワーク (WSN) を構築する デバイスには,既に多くの種類が存在する.小型かつ 低消費電力性を基に設計されたセンサノードは,実環 境における様々な場所や物体に容易に設置することが できるだけでなく,内臓されたバッテリによって年単 位による長時間駆動も可能となる[1]. さらに,様々な センサやアクチュエータを組み合わせることによって, より多機能なセンサネットワークおよびロボティック ルームを簡便に構築することも可能となると思われる. これらより, センサネットワークは非常に興味深い特 徴を持ち,産業要素としての十分な可能性を持ってい ると考えられる.しかしながら,センサノードは,設 置する対象や場所,用途や接続するセンサの種類にし たがって、その動作を変更する必要があり、その設定 には,プログラミングに関する知識と技術が大きく必 要とされる、そのため、センサネットワーク技術が十 分な汎用性を持っているにも関わらず, エンドユーザ が要求する機能が提供されずに,限られた分野や事例 への適用のみに留まる恐れがある.また,屋外で使用 するためには,設置環境や現場における容易な開発が 行えることが望ましい.

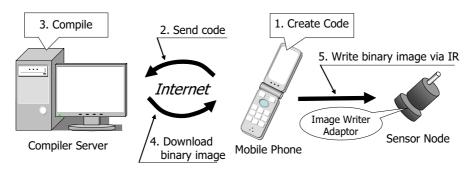
本研究では,上述した問題を解決するために,携帯電話アプリケーションによって,センサノードの開発環境を提供するシステムを開発する.これは,GUIベースによる開発環境を提供し「いつでも,どこでも」センサノードのプログラミングを提供することを可能とするものである.また,開発環境から,センサネットワークに対して一般化されたマルチエージェントとしての機能を提供することによって,異なる機能を持つセンサノード間の動的な認識を容易にし,柔軟なシステム構築を可能とする.

2 設計方針

2.1 携帯電話アプリケーションによる WSN 構築システム

現在,我が国における携帯電話の普及率は非常に高 いだけでなく,強力な通信インフラを使用したメール やネットブラウジング,ゲームなどの様々な用途への応 用が一般的に認知されている.したがって,現状では 携帯電話こそが、誰もが常に常備する情報端末機器と 考えられる.よって,携帯電話を使用することによって センサネットワークの設定および構築を簡便に行うこ とが可能となれば,普及の拡大および適用事例の開拓 に繋がると考えられる.図1に本研究におけるシステ ム構成を示す.ユーザは所有する携帯電話上で実装さ れた専用アプリケーションソフトウェアを使用するこ とによって,センサノードの動作を定義する.動作定 義ファイルは, ネットワークを介してコンパイラサー バに送信され、センサノード上で実行可能なバイナリ イメージが生成される. バイナリイメージは, コンパ イラサーバによって送信され,携帯電話上のメモリに 格納される.ユーザは,携帯電話に装備された赤外線 ポートを使用して、センサノードにバイナリイメージ の書込みを行う.

2.2 GUI ベースによるセンサノード動作定 義手法と視覚化技術の設計


携帯電話が一般の PC や PDA と比較して劣る点は,描画領域が狭く,操作インターフェースが貧弱であることである.このため,携帯電話上でプログラミングのようなコード記述作業を行うことは,大きな苦痛を伴う労働となりうる.よって,単純な操作によってセンサノードの動作を定義するためには,GUI をベースとした開発環境を使用することが,一つの解であると考えられる.ここで,本研究における動作定義 GUI は,以下の特徴を備えることを重点に設計を行った.すなわち,

携帯電話の限定された操作インターフェースによる 十分な操作性の実装, 限定された描画エリア内にお

 $^{^*{\}rm Mobile\ Phone\ Application\ using\ Multi-agent\ Framework\ for\ Developing\ WSN}$

[†] Makoto Obayashi, Tokyo Metropolitan Industrial Technology Reserch Institute, Information Science Group

[‡] Hiroyuki Nishiyama and Fumio Mizoguchi, Tokyo University of Science Faculty of Science and Technology

☑ 1: System Configuration of our Mobile WSN Developing Environment

ける効果的な視覚化,の2点である.本研究では,各センサノードの振舞いを GUI で定義するため,その動作を $\mathrm{UML}2.0$ に準じたステートマシン図によって表現した.ステートマシン図は,状態ノードと呼ばれる記号と,遷移の方向を示す矢印の集合によって構成される.ここで,携帯電話の限られた描画領域において,ステートマシン図の全体を効率的にユーザに伝達するために, $\mathrm{3D}$ による視覚化アルゴリズムを開発した.この手法は,ステートマシン図の全体を一画面内に表示する一方で,ユーザの注視領域を拡大して表示する. GUI 上における各状態ノードの描画変換位置は以下のアルゴリズムによって算出される.ここで,平面内に配置された,ある状態ノードの座標を (x_{pi},y_{pi},z_{pi}) $(i=1\dots n)$ とすると,3 次元座標 (x_{si},y_{si},z_{si}) に投影される変換式は以下のように表される.

$$(x_{si}, y_{si}) = C_s tan^{-1} Z_s(x_{pi}, y_{pi})$$

 $z_{si}^2 = R - (x_{si}^2 + y_{si}^2), \quad (z_i \ge 0)$

ここで, Z_s , C_s ,R は収束係数,描画領域係数,曲率係数であり,これらの係数を変更することによって,3次元に投影されたステートマシン図のバランス,注視領域の拡大率を変更することが可能である.

2.3 センサノード動作記述言語

GUIによって定義されたセンサノードの振舞いは、アプリケーション内部でプログラミング言語として変換される。本システムにおいては、TinyMRL[2]を使用することによって、GUIによる動作定義とコード生成のシームレスな変換を実現した。TinyMRLはルールベースによって状態を記述することが可能であり、GHC(Guarded Horn Clause)による記述形式と同様に、ルール名、条件節、実行節の3部から構成される。そして、実行可能状態にあり、かつ条件節の内容とセンサノードの内部状態が一致したルールが実行される。この構造により、UMLによるステートマシン図との対応が容易であり、さらにGUIベースでの編集に適している。また、ファシリテータを使用した、"subscribe"、"broker"、"recruite"、recommend"等の動的なサー

ビス発見機能をシステムコールとして実装しており, センサネットワーク上のノード構成の変化や新たな機 能の追加に対して柔軟なシステムを構築することが容 易である.

3 実装

DoJa-4.0 による i アプリ (901 iS およびその上位機種対応) によって実装を行い, N901 iS (NEC) 上で動作確認を行った.コンパイラサーバには, linux (Fedora core4)を使用しており, Tomcat+Servlet によってユーザからのリクエストが処理される.コンパイラサーバから携帯電話に送信されたセンサノードのバイナリイメージは,スクラッチパッドに保存される.よって,アプリケーションを終了しても端末上から消去されないため,コンパイル済みのバイナリイメージは何度でも使用することが可能である.携帯電話からセンサノードに対するバイナリイメージの書込みは,赤外線ポートによる IrOBEX プロトコルによって実現される.

4 まとめ

本研究では、携帯電話アプリケーションによってセンサネットワーク開発環境を実現した、携帯電話は、通常の計算機環境と比較して、描画領域および操作インターフェースに大幅な制約を受ける。このため、携帯電話に特化した視覚化手法を用いることにより、GUIベースでの開発環境を実現した。これにより、屋内外の様々な場所におけるセンサネットワークの簡便な構築および設定を実現した。

参考文献

- [1] B.Warneke, M.Last, B.Liebowitz, and K.Pister. "Smart dust: Communicating with a cubicmillimeter computer," IEEE Computer, pages 44-51, January 2001
- [2] M.Obayashi, H.Nishiyama and F.Mizoguchi, "Secured Cooperative Multi-Agent Framework in Limited Resources for Intelligent Sensor Network," Proceedings of the annual conference IECON, pp.2668-2673, Nov 2005.