
Mining the k-Most Interesting Frequent Patterns
 Tran MINH QUANG (*) Shigeru OYANAGI (*) Katsuhiro YAMAZAKI (*)

Ritsumeikan University – Graduate School of Science and Engineering

Abstract— The idea of mining top-k frequent patterns releases
users from the difficulty of guessing for a suitable minimum
support threshold when mining for a desired number of frequent
patterns. This idea is based upon an algorithm for mining
frequent patterns without a minimum support threshold, but
with a k number of strongest patterns. However, pursuing this
idea, algorithms have to identify the minimum support threshold
automatically by themselves, which causes slowing down their
performance. In this paper, we propose an explorative mining
algorithm, called ExMiner, to mine k-most interesting frequent
patterns from a large scale dataset efficiently and effectively. The
experiments on very large synthetic datasets reveal that our
method is superior to the existing ones.

Keywords- data mining; frequent patterns mining; k-most
interesting frequent patterns; top-k mining; explorative mining.

I. INTRODUCTION
Frequent pattern mining is a fundamental problem in data

mining and knowledge discovery. The discovered frequent
patterns are used as the input for analyzing association rules,
mining sequential patterns, recognizing clusters, and so on.
However, discovering frequent patterns in large scale datasets is an
extremely time consuming task. Various efficient algorithms have
been proposed and published on this problem in the last decade.
These algorithms can be classified into two categories: 1) the
“candidate-generation-and-test” approach in which the Apriori
algorithm [1] is the representative and the forerunner one; 2) the
“patterns-growth” approach in which the prominent one is the FP-
growth [2] algorithm. These algorithms, especially the FP-growth
extended ones, improve the mining performance significantly.

Other fundamental problems in frequent pattern mining are the
usability and user-friendliness. Conventional frequent pattern
mining algorithms require users to provide a minimum support
threshold, which is very difficult to identify without knowledge of
the dataset in advance. A large minimum support threshold results
in a small set of frequent patterns which users may not discover
any useful information. On the other hand, if the support threshold
is small, users may not be able to screen useful information from a
huge set of frequent patterns.

Regarding to the usability and user-friendliness, top-k mining
approach permits users to mine the k-most interesting frequent
patterns without providing a support threshold. In the real world,
users need to know the first k-most interesting frequent patterns,
and then examine them to extract useful information. If they fail to
discover useful information they can continue to mine the next k-
most interesting frequent patterns and so on.

Several top-k mining approaches were introduced in [3], [4],
[5]. These approaches tried to solve the difficulties of finding the

“inner” minimum support threshold from a given number, top-k.
The performance of mining top-k frequent patterns is improved
significantly, especially in Top-k FP-growth [5]. However, there
still remain some drawbacks in the manners of effectiveness and
efficiency. These problems should be studied more deeply.

This research aims to propose a new algorithm to mine top-k
frequent patterns, called “ExMiner”. In this algorithm an
explorative mining is performed first, before an actual mining is
taken. Because of the explorative mining, an optimal inner support
threshold is recognized and is provided as a support threshold for
the actual mining phase. This fact substantially improves the
effectiveness and efficiency of the algorithm. This research also
proposes the idea of “build once – mine anytime” by extending the
idea of the FP-growth algorithm. This idea provides a capacity of
increasing the performance for the real life applications.

II. EXMINER ALGORITHM
ExMiner algorithm proceeds from the observation of mineral

mining activities in the real life in which before taking an actual
mining some explorative mining activities should be performed.
The term ExMiner stands for the term “explorative miner”.
ExMiner algorithm extends the FP-growth to mine top-k frequent
patterns effectively and efficiently with following 2 points: a)
setting the internal threshold border_sup; b) taking an explorative
mining to recognize an effective final internal support threshold
which is used in the actual mining phase for discovering top-k
frequent patterns. Following is the pseudo code of the ExMiner
algorithm.

Figure 1. Pseudo code of the ExMiner algorithm

The pseudo code of the VirtualGrowth routine, in step 4, is
described in figure 2.

An example of VirtualGrowth routine for mining top-7
frequent patterns from a given FP-tree is illustrated in figure 3.
The queue, Q, is updated while traveling the tree following the
node-links of items f and c. At the time item a is reached minq is 3.
Since the support of a is 3, equals to minq, the routine stops. The
current minq=3 is the final internal support threshold to mine top-
7 patterns.

Input: Dataset D, number of patterns k
Output: top-k frequent patterns
Method:
1. Scan D to count support of all 1-itemsets
2. According to k, set border_sup and generate F-list
3. Construct an FP-tree according to F-list
4. Use VirtualGrowth(multiset<int>* supQueue, FP-tree) to

explore the FP-tree and set the final internal support
threshold θ to the smallest element, minq, of supQueue.

5. Mine the FP-tree with support threshold θ. This mining
phase outputs top-k frequent patterns.

* Graduate School of Science and Engineering,
Ritsumeikan University, Biwako-Kusatsu Campus Noji
Higashi 1 chome, 1-1 Kusatsu, 525-8577 Shiga-ken, JAPAN

3-281

7P-7

情報処理学会第68回全国大会

Figure 2. Pseudo code of VirtualGrowth routine

Figure 3. Example of a VirtualGrowth routine

III. BUILD ONCE MINE ANYTIME APPROACH
Using ExMiner algorithm to mine top-k frequent patterns, a

new FP-tree has to be rebuilt from the scratch whenever a given
top-k is changed. This algorithm contains three major tasks
requiring three corresponding amount of times say, t1, t2, t3. Those
are the time of scanning the dataset to find frequent items, t1; the
time of building the tree, t2; and the time of mining top-k frequent
patterns, t3. If a larger FP-tree is built first that it can be reused to
mine top-k frequent patterns with any different value of top-k, we
can save the times t1 and t2. If these two computation times are
reduced, the performance is increased significantly. The idea of
“build once mine anytime” allows us to do that. This idea is
described as following.

A “large” FP-tree is built and its information is saved into the
hard disk. When users want to mine top-k frequent patterns, the
original “large” FP-tree is rebuilt based upon the information read
from the hard disk. After handling the original FP-tree, the
ExMiner algorithm can be applied to mine for any top-k frequent
patterns. To mine top-k frequent patterns correctly, the original
“large” FP-tree must contain at least k items. For example, an FP-
tree with 10000 items can be used to mine any top-k frequent
patterns where top-k not greater than 10000. The original “large”
FP-tree can be built in the computer-free time.

IV. EXPERIMENTAL EVALUATION
In this section, the efficiency of the ExMiner algorithm and the

“build once mine anytime” approach (BOMA-ExMiner for short)
is compared to that of the Top-k FP-growth algorithm [5], the
optimal Aprior algorithm, and the optimal FP-growth. The
experiment was taken on the dataset D: T10I4D1000kN1000k
created by using the IBM quest synthetic data generation code [6].
This test was performed on a 3.2GHz Pentium 4 PC with 1 GB
RAM, Window XP, and MS. Visual C++ 6.0.

As in figure 4, the ExMiner algorithm outperforms the Top-k
FP-growth. Moreover, the interesting thing is that the BOMA-
ExMiner approach is even better than the optimal FP-growth (1).

to step 3.

0

100

200

300

400

500

600

1000 2000 3000 4000 5000 6000 7000

Num ber of patterns

C
om

pu
ta

tio
n

tim
e

(S
ec

.)

ExMiner TopK-FPGrow
Optimal FP-grow th Optimal Apriori
BOMA-ExMiner

Figure 4. Running time of ExMiner, BOMA-Exminer

V. CONCLUSIONS AND FUTURE WORK
This research proposed a new algorithm for mining top-k

frequent patterns efficiently and effectively: the ExMiner
algorithm. The combination of ExMiner algorithm with the
idea of “build once mine anytime” increases the performance
significantly. This approach is notably valuable in real life
applications where data structure (the large FP-tree) can be
prepared at the computer’s free time. To do so, the response
time in the mining phase is improved significantly. Applying
these approaches to mine top-k frequent patterns sequentially is
deferred to the future work.

REFERENCES
[1] Agrawal, R, and Srikant, R. Fast algorithm for mining association rules.

In proc. of VLDB ’94. pp. 487-499, Santiago, Chille, Sept. 1994.
[2] Han, J., Pei, J., and Yin, Y. Mining frequent patterns without candidate

generation. In proc. of ACM SIGMOD Conference on Management of
Data, pp. 1-12, 2000.

[3] Fu, A.W., Kwong, R.W., Tang, J. Mining N most interesting itemsets. In
proc. of ISMIS’00, 2000.

[4] Ly, S., Hong, S., Paul, P., and Rodney, T. Finding the N largest itemsets.
In Proc. Int. Conf. on Data Mining, Rio de Janeiro, Brazil, pp. 211-222.,
1998.

[5] Hirate, Y., Iwahashi, E., and Yamana, H. TF2P-growth: An efficient
algorithm for mining frequent patterns without any thresholds. In proc.
of ICDM., 2004.

[6] IBM Quest Data Mining Project. Quest synthetic data generation
http://almaden.ibm.com/software/quest/Resources/index.shtml

c:3

a:3

f:4

b:1

c:1

b:1

m:2

p:2

b:1

Root

m:1

p:1

Header table

f
c
a
b
m
p

Item Sup Head

4
4
3
3
3
3

4 4 3 3 3 3 3

Final internal support threshold
compare

Q
 (1) FP-growth algorithm runs on the exact value of minimum support

thre
Input: FP-tree, T; a queue of k empty items, Q
Output: k items in Q are fulfilled by the supports of potential
patterns and sorted by the descending order of their values.
Method:
1. Put supports of k elements in the header table, H, of T into

Q. Set minq to the smallest value in Q
2. Start traveling T from the top of H.
3. Let a is a considering item. If sup(a) > minq then go to step

4, else stop.
4. Recognize the supports of potential patterns. Let p is such a

support value. If minq < p then update minq by p. The Q is
then resorted automatically. Reach the next item in H and go
shold, corresponding to a given top-k value

	tyt_no:
	typ_page1: 3-282
	tyt_a:
	typ_page:
	tyt_head:
	tyt_head1: 情報処理学会第68回全国大会

