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1. Introduction

Many real-world search and optimization
problems are naturally posed as non-linear pro-
gramming problems having multiple objectives.
Due to lack of suitable solution techniques, such
problems are artificially converted into a single-
objective problem and solved. The difficulty
arises because such problems give rise to a set
of Pareto-optimal solutions, instead of a single
optimum solution. It then becomes important
to find not just one Pareto-optimal solution but
as many of them as possible. Classical methods
are not quite efficient in solving these problems
because they require repetitive applications to
find multiple Pareto-optimal solutions and in
some occasions repetitive applications do not
guarantee finding distinct Pareto-optimal solu-
tions. The population approach of evolution-
ary algorithms (EAs) allows an efficient way to
find multiple Pareto-optimal solutions simulta-
neously in a single simulation run.

In this paper, we discuss one implementa-
tion of an EA which uses the non-domination
concept!™. Simulation results on a number of
test problems show the efficacy of the method.
It is clear from the discussions that evolu-
tionary search methods have a niche in solv-
ing multi-objective optimization problems com-
pared to classical approaches. This is why
multi-objective optimization using EAs is get-
ting a growing attention in the recent years.
This paper also suggests two other purposes
of studying with evolutionary multi-objective
optimization. The motivated readers may ex-
plore current research issues and other impor-
tant studies from various texts?:%:7) confer-
ence proceedings'? ') and numerous research
papers®.
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2. Multi-Objective Optimization Prob-
lem

A multi-objective optimization problem in-
volves a number of objective functions which
are to be either minimized or maximized. As
in the single-objective optimization problem,
the multi-objective optimization problem usu-
ally has a number of constraints which any fea-
sible solution (including the optimal solution)
must satisfy. In the following, we state the
multi-objective optimization problem (MOOP)
in its general form:

Minimize/Maximize
fm(x)7 m = 1727‘ 7Ma
subject to
(X)>0, j=1,2,....J;
g;(x) =0, j 1)
ho(x) =0, k=1,2,...,K;
s <a <2 i=12,.. n

A solution x is a vector of m decision vari-
ables: x = (x1,79,...,2,)T. The last set
of constraints are called variable bounds, re-
stricting each decision variable x; to take a
value within a lower xEL) and an upper xEU)
bound. The solutions satisfying the constraints
and variable bounds constitute a feasible de-
cision wvariable space S, or simply the deci-
sion space. One of the striking differences be-
tween single-objective and multi-objective op-
timization is that in multi-objective optimiza-
tion the objective functions constitute a multi-
dimensional space, in addition to the usual de-
cision variable space. This additional space is
called the objective space, Z. For each solu-
tion x in the decision variable space, there ex-
ists a point in the objective space, denoted by
f(x) = z = (21,29,...,2m)7. The mapping
takes place between an n-dimensional solution
vector and an M-dimensional objective vector.
Figure 1 illustrates these two spaces and a
mapping between them.
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Fig.1 Representation of the decision variable space
and the corresponding objective space.

3. Principles of Multi-Objective Opti-
mization

Most real-world search and optimization
problems naturally involve multiple objectives.
The extremist principle of finding the optimum
solution cannot be applied to one objective
alone, when the rest of the objectives are also
important. Different solutions may produce
trade-offs (conflicting scenarios) among differ-
ent objectives. A solution that is extreme (in a
better sense) with respect to one objective re-
quires a compromise in other objectives. This
prohibits one to choose a solution which is opti-
mal with respect to only one objective. Clearly,
there are two goals of multi-objective optimiza-
tion:

(1) Find a set of solutions close to the opti-
mal solutions, and

(2) Find a set of solutions which are diverse
enough to represent the spread of the
true optimal solutions.

4. The Ideal Multi-Objective Opti-
mization

Although the fundamental difference between
single and multiple objective optimization lies
in the cardinality in the optimal set, from a
practical standpoint a user needs only one so-
lution, no matter whether the associated opti-
mization problem is single-objective or multi-
objective. In the case of multi-objective opti-
mization, the user is now in a dilemma. Which
of these optimal solutions must one choose?
This is not an easy question to answer. It in-
volves many higher-level information which are
often non-technical, qualitative and experience-
driven. However, if a set of many trade-off so-
lutions are already worked out or available, one
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Fig.2 Schematic of an ideal multi-objective
optimization procedure.

Higher-level
information

can evaluate the pros and cons of each of these
solutions based on all such non-technical and
qualitative, yet still important, considerations
and compare them to make a choice. Thus, in a
multi-objective optimization, ideally the effort
must be made in finding the set of trade-off op-
timal solutions by considering all objectives to
be important. After a set of such trade-off solu-
tions are found, a user can then use higher-level
qualitative considerations to make a choice. In
view of these discussions, we suggest the fol-
lowing principle for an ideal multi-objective op-
timization procedure:

Step 1 Find multiple trade-off optimal solu-
tions with a wide range of values for objec-
tives.

Step 2 Choose one of the obtained solutions
using higher-level information.

Figure 2 shows schematically the principles
in an ideal multi-objective optimization proce-
dure. In Step 1 (vertically downwards), multi-
ple trade-off solutions are found. Thereafter, in
Step 2 (horizontally, towards the right), higher-
level information is used to choose one of the
trade-off solutions. With this procedure in
mind, it is easy to realize that single-objective
optimization is a degenerate case of multi-
objective optimization. In the case of single-
objective optimization with only one global op-
timal solution, Step 1 will find only one solu-
tion, thereby not requiring us to proceed to
Step 2. In the case of single-objective optimiza-
tion with multiple global optima, both steps are
necessary to first find all or many of the global
optima and then to choose one from them by us-
ing the higher-level information about the prob-
lem.
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Fig.3 A set of solutions and the best non-dominated front.

In the next section, we present an evolution-
ary multi-objective optimization algorithm to
find a set of Pareto-optimal solutions, instead
of just one of them.

5. Elitist Non-Dominated Sorting GA
(NSGA-II)

The NSGA-II procedure'® for finding mul-
tiple Pareto-optimal solutions in a multi-
objective optimization problem has the follow-
ing three features:

(1) Tt uses an elitist principle,

(2) Tt uses an explicit diversity preserving
mechanism, and

(3) It emphasizes the non-dominated solu-
tions.

In NSGA-II, the offspring population Q) is first

created by using the parent population P; and

the usual genetic operators!'®)19). Thereafter,

the two populations are combined together to

form R; of size 2N. Then, a non-dominated

sorting is used to classify the entire population

R;. The domination between two solutions is
defined as follows™-17):

Definition 1 A solution x) is said to domi-

nate the other solution x?), if both the following

conditions are true:

(1) The solution x™V) is no worse than x2
i all objectives.

(2) The solution xV) is strictly better than
x(3) in at least one objective.

For a given set of solutions (for example, those
shown in Fig.3(a)), a pair-wise comparison
can be made using the above definition and
whether one solution dominates the other can
be established. All solutions which are not
dominated by any other members of the set are
called the non-dominated solutions of level one.

Non-dominated Crowding
sorting distance P
sorting £+l

]
|:| —~-Rejected
| —

R t
Fig.4 Schematic of the NSGA-II procedure.

These solutions (3, 5, and 6 in the figure) are
also said to lie on the best non-dominated front.
By temporarily discounting these solutions, the
above principle can be followed again and the
next non-dominated front (solutions 1 and 4 in
the figure) can be identified. Figure 3 (b) shows
how the given set of six solutions are classified
into three non-dominated fronts. Once the non-
dominated sorting is over, the new population
is filled by solutions of different non-dominated
fronts, one at a time. The filling starts with the
best non-dominated front and continues with
solutions of the second non-dominated front,
followed by the third non-dominated front, and
so on. Since the overall population size of R;
is 2N, not all fronts may be accommodated in
N slots available in the new population. All
fronts which could not be accommodated are
simply deleted. When the last allowed front is
being considered, there may exist more solu-
tions in the last front than the remaining slots
in the new population. This scenario is illus-
trated in Fig. 4. Instead of arbitrarily discard-
ing some members from the last front, the so-
lutions which will make the diversity of the se-
lected solutions the highest are chosen.

The crowding-sorting of the solutions of front
i (the last front which could not be accommo-
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Fig.5 The crowding distance calculation.

dated fully) is performed by using a crowding
distance metric, which we will describe a little
later. The population is arranged in descend-
ing order of magnitude of the crowding distance
values. In Step 4, a crowding tournament se-
lection operator, which also uses the crowding
distance, is used.

5.1 Crowded Tournament Selection

Operator

The crowded comparison operator (<.) com-
pares two solutions and returns the winner of
the tournament. It assumes that every solution
i has two attributes:
(1) A non-domination rank r; in the popula-

tion.

(2) A local crowding distance (d;).
The crowding distance d; of a solution i is a
measure of the search space around 7 which is
not occupied by any other solution in the popu-
lation. Here, we simply calculate this quantity
d; by estimating the perimeter of the cuboid
formed by using the nearest neighbors as the
vertices (we call this the crowding distance). In
Fig. 5, the crowding distance of the i-th solu-
tion in its front (marked with filled circles) is
the average side-length of the cuboid (shown by
a dashed box). Based on these two attributes,
we can define the crowded tournament selection
operator as follows.

Definition 2 Crowded Tournament Selection

Operator: A solution i wins a tournament with

another solution j if any of the following con-

ditions are true:

(1) If solution i has a better rank, that is,
Ty <Tj.

(2) If they have the same rank but solution i
has a better crowding distance than solu-
tion j, that is, r; = r; and d; > d;.

The first condition makes sure that chosen solu-
tion lies on a better non-dominated front. The
second condition resolves the tie of both solu-
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Fig.6 NSGA-II on ZDT2.

tions being on the same non-dominated front by
deciding on their crowded distance. The one
residing in a less crowded area (with a larger
crowding distance d;) wins.

5.2 Sample Simulation Results

In this subsection, we show the simulation re-
sults of NSGA-IT on two test problems. The
first problem (SCHI1) is simple two-objective
problem with a convex Pareto-optimal front.

Minimize
fl(x) =,
Minimize

_ _ 2
where
g(x) =1+ % Z?:z Ty
—103 <z < 10%.

The second problem (KUR) has a disjointed set
of Pareto-optimal fronts:

Minimize
fi(x) =

2 [—10exp(—0.2, [a? + 22 ],

KUR : Minimize
fa(x) =
E?:l [|xi|0'8 + 5sin(:rz3)] ,

i=1,2,3.

3)
NSGA-II is run with a population size of 100
and for 250 generations. Figures 6 and 7 show
that NSGA-II converges on the Pareto-optimal

front and maintains a good spread of solutions
on both test problems.
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5.3 Constraint Handling

The constraint handling method modifies the
binary tournament selection, where two solu-
tions are picked from the population and the
better solution is chosen. In the presence of
constraints, each solution can be either feasible
or infeasible. Thus, there may be at most three
situations: (i) both solutions are feasible, (ii)
one is feasible and other is not, and (iii) both
are infeasible. We consider each case by simply
redefining the domination principle as follows
(we call it the constrain-domination condition
for any two solutions x(9 and x()):

Definition 3 A solution x®) s said to

‘constrain-dominate’ a solution x\9) (or x(¥) <

x)), if any of the following conditions are true:

(1) Solution x) is feasible and solution xU)
15 not.

(2) Solutions x and x\9) are both infeasi-
ble, but solution x has a smaller con-
straint violation.

(3) Solutions x¥ and x\9) are feasible and
solution x9 dominates solution x\9) in
the usual sense (Definition 1).

The above change in the definition allows a
minimal change in the NSGA-II procedure de-
scribed earlier. Figure 8 shows the non-
dominated fronts on a six-membered popu-
lation due to the introduction of two con-
straints (the problem is described as Constr-Ex
in the next subsection). In the absence of the
constraints, the non-dominated fronts (shown
by dashed lines) would have been ((1,3,5),
(2,4,6)), but in their presence, the new fronts
are ((4,5), (6), (2), (1), (3)). The first
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Fig. 8 Non-constrain-dominated fronts.

non-dominated front is constituted with the
best feasible solutions in the population and
any feasible solution lies on a better non-
dominated front than an feasible solution.

5.3.1 Sample Simulation Results

In the following, we show simulation re-
sults of NSGA-IT applied with the above con-
straint handling mechanism to two test prob-
lems (CONSTR and TNK):

Min.  fi(x) = 1,
Min.  fo(x) = 222,
st. g1(x) = x2 + 921 > 6,

Min.  fi(x) = z1,
Min. f2( )
st. 2?4+ 22 —1—0.1cos (16tan™
Z 0, ($1 — 05)2 + (IIZQ — 05)
0 f; 1 f; T,
0< 2y <.

With identical parameter settings as before,
NSGA-II finds a good distribution of solutions
on the Pareto-optimal front in both problems
(Figs. 9 and 10, respectively).

zz—2>
<0.5,

6. How are Evolutionary Multi-Objec-
tive Optimization Useful?

It is amply demonstrated above and in the
EMO literature® that there exist a number
of evolutionary multi-objective optimization
(EMO) algorithms for finding a well-converged
and a well-distributed set of solutions near the
true Pareto-optimal front. In this section, we
stress three different purposes for using EMO
algorithms in practice:
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Fig.9 Obtained non-dominated solutions with NSGA-
II on the constrained problem CONSTR.
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Fig.10 Obtained non-dominated solutions with
NSGA-II on the constrained problem TNK.

(1) Aid in choosing a compromised solution,
(2) Aid in understanding the optimality
properties of solutions better, and
(3) Aid in solving other optimization prob-

lems.
We discuss each of the above issues in the fol-
lowing subsections.
6.1 In Choosing a Compromised Solu-
tion
There is no doubt that the availability of a
number of compromised solutions is always use-
ful to a decision-maker in choosing a particular
solution. Although specific systematic proce-
dures must be outlined to help choose a so-
lution, the task of concentrating in a particu-
lar region on the Pareto-optimal front based on

Feb. 2004

some pre-defined weight information or other
means and without a prior exploration of var-
ious trade-off options may not be a desirable
procedure. Although a number of subjective
considerations can occur in certain applica-
tions, here, we show a couple of generic tech-
niques can be adopted to concentrate near a
particular region on the Pareto frontier. We il-
lustrate these techniques through a mechanical
component shape design problem.

A common approach for shape optimization
using evolutionary algorithms is to divide a re-
gion into many small elements and treat the
presence or absence of these elements as bi-
nary decision variables'®). This way different
shapes can be evolved by making elements on
or off. The task of an evolutionary algorithm
is to find which elements should be kept and
which should be sacrificed so that the resulting
shape is optimal with respect to one or more
objectives. Two conflicting objectives are cho-
sen here: the weight of the resulting compo-
nent and the maximum deflection anywhere in
it. The maximum stress and deflection values
are restricted to lie within specified limits of
the design by using them as constraints. For
details on the representation technique and the
evaluation procedure, readers may refer to the
original study™™).

A rectangular plate (1.2 x 2 m?) is fixed at
one end and a 100 kN load is applied to the
center element of the opposite end. NSGA-IT is
applied for 100 generations with a population
size of 54 and crossover probability of 0.95. In
order to increase the quality of the obtained so-
lutions, we use an incremental grid-tuning tech-
nique. The NSGA-II and the first local search
procedure are run with a coarse grid structure
(6 x 10 or 60 elements). After the first local
search procedure, each grid is divided into four
equal-sized grids, thereby having a 12 x 20 or
240 elements. The new smaller elements inherit
its parent’s status of being present or absent.
After the second local search is over, the ele-
ments are divided again, thereby making 24 x40
or 960 elements. In all cases, an automatic
mesh-generating finite element method is used
to analyze the developed structure.

Figure 11 shows the obtained front with
eight solutions. The trade-off between the
weight and deflection is clear from the figure.
Figure 13 shows the shape of these eight so-
lutions. The solutions are arranged according
to increasing weight from left to right and top
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Fig.11 Obtained front with eight clustered solutions
are shown for the cantilever plate design prob-
lem. The pseudo-weight for each solution is
also shown.

to bottom. Thus, the minimum-weight solu-
tions the top-left solution and the minimum-
deflection solution is the right-bottom solution.
The transition from a simple thin two-armed
cantilever plate having a minimum-weight solu-
tion to a complete plate with edges rounded off
having a minimum-deflection solution proceeds
by discovering a vertical stiffener connecting the
two arms and then by widening the arms and
then by gradually thickening the stiffener. Such
a transitional trade-off in optimal designs is use-
ful to a decision-maker in arriving at a solution.
We show two procedures which are generic and
can help a decision-maker to choose a region of
importance.

6.1.1 Pseudo-Weight Method

The location of the obtained solutions in the
objective space is used to derive a pseudo-
weight vector for each solution. The following
procedure can be used for this purpose for min-
imization problems:

kU= B0
T = )/ (e = fminy
(4)
where f]mi“ and f;"** are the minimum and
maximum values of the k-th objective in the
set. Figure 11 also marks the pseudo-weight
vector for each of the eight obtained solutions.
In a sense, these weight vectors indicate a rel-
ative importance of each objective associated
with a solution. If the decision-maker had a
pre-conceived notion of arriving at a solution
having a specific importance vector (say wq),
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Fig.12 The marginal gain to loss ratio is shown from
each solution.

the solution having the closest pseudo-weight
vector can be chosen as a representative solu-
tion. For example, in this example case, if the
decision-maker is interested in arriving at a so-
lution providing the weight objective (f1) twice
as important than the deflection objective (f2),
the desired weight vector is wg = (0.67,0.33).
Clearly, the solution 3 produces a similar trade-
off among all the other solutions. The decision-
maker can now explore the solution and its
neighborhood for a more detail and desired so-
lution.

6.1.2 Gain-to-Loss Ratio Method

In this approach, for each obtained solution
a gain-to-loss ratio is calculated. We calcu-
late this ratio here by first comparing a so-
lution with its neighboring solutions and cal-
culating the ratio between the gain achieved
in one objective for a loss in another objec-
tive by remaining to the current solution (and
not selecting the neighboring solution). Since
in a two-objective problem, there will be two-
neighboring solutions, except the extreme solu-
tions, we compute both such ratios and work
with the minimum of the two ratios. It is need-
less to write that before such calculations are
performed, the objective values can be normal-
ized using the extreme solutions. The solu-
tion having the maximum value of this ratio
will indicate it as providing a good compromise
between the objectives on the Pareto-optimal
front.

Figure 12 shows the two-sided ratios for
each solution (except for the extreme solutions,
where there is only one ratio). Interestingly,
the solution 5 makes two-sided ratios each of
which is greater than one. In a sense, this solu-
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Fig.13 Eight trade-off solutions

tion indicates that for a unit loss in one objec-
tive there is a larger than unity gain in another
objective in either direction on the normalized
objective space. Without the desire of any spe-
cific relative importance among the objectives
as shown in the previous method, this method
can be used a generic procedure for choosing
well-compromised regions on the Pareto fron-
tier.
6.2 In Capturing Insights about the
Problem
Through a number of multi-objective opti-
mization problems, a recent study? has discov-
ered the following two interesting properties of
the Pareto-optimal solutions:
e There exist some common properties
among all Pareto-optimal solutions, and
e There exist some other properties which
cause the trade-off between the Pareto-
optimal solutions.
Although the above observations are purely
based on simulation results derived using the
NSGA-II algorithm on a number of case stud-
ies, there exist a number of mathematical opti-
mality criteria™-'7) which every Pareto-optimal
solution must satisfy. Putting it otherwise,
since all Pareto-optimal solutions have to sat-
isfy some criteria, it may not be surprising that
the computer simulations using NSGA-II have
discovered such commonality properties among
the obtained optimal solutions. What we stress

of the cantilever plate design problem.

here is that if there exist commonality proper-
ties among optimal solutions, they would pro-
vide useful information about the problem at
hand. Since the mathematical conditions in-
volve gradient computations and involves solv-
ing a number of non-linear equations, they may
not be of much use in practice. The only way to
discover such useful information is to first apply
an EMO to find a number of solutions close to
the true Pareto-optimal solutions and then an-
alyze them for discovering any such properties.
In the following, we describe the procedure to
a simple truss-structure optimization problem.

The objective in a truss-structure design
(with all three design considerations — sizing,
configuration and topology) is to find which
optional nodes are necessary in a truss, what
are the coordinates of these optional nodes,
which members must be present and what are
their cross-sectional areas, so that certain ob-
jectives (usually the weight of the truss and
the maximum deflection in the truss) are min-
imized by satisfying certain constraints (often
the stresses in the members and the displace-
ments of nodes). The problem details can be
found in the original study”.

Figure 14 shows the three-bar truss with
three loading cases considered in the study. The
NSGA-II is run for 150 generations and the
50 obtained population members are plotted in
Fig. 15. The following important observations
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Fig.15 Obtained non-dominated solutions using the
NSGA-IL

can be made from the solutions:

(1) First, out of all possible topologies, the
three topologies shown in the figure are
found to be Pareto-optimal.

(2) Secondly, each Pareto-optimal topology
has a particular miche on the obtained
front. The solutions on a region of
the Pareto-optimal front has all have
the same topology. Neighboring solu-
tions under each topology vary only in
their cross-sectional sizes. This prop-
erty among neighboring solutions was
certainly not intuitively known before-
hand. An investigation of the obtained
solution reveals this property.

(3) For a smaller trade-off in solutions, a
cross-sectional change in an appropri-
ate manner is adequate, whereas for a
larger trade-off among objectives, both
topology and cross-sectional sizes must
be changed.

A similar observation is obtained from another

Weight (1b)

Fig.17 Obtained non-dominated solutions for the
10-bar truss.

10-bar truss-structure design (Fig. 16) with re-
sults shown in Fig. 17.

7. In Solving Other
Problems

Optimization

The principle of evolutionary multi-objective
optimization is also used to solve a number
of other kinds of optimization problems, such
as single-objective constrained optimization'®
diversity preservation in a GAY1%) reducing
bloating in a GP application®), goal program-
ming problems® . The presence of an additional
objective allows an EA to have a more flexi-
ble search. For example, in the usual penalty
function approach of handling constraints, the
choice of specific penalty parameters to handle
constraint violations distorts the search space in
a specific way® and restricts a particular way
a solution can become feasible and reach near
the optimum. On the other hand, by keep-
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ing the constraint violation as the second ob-
jective, solutions having a small constraint vi-
olation and solutions having a better objective
values can coexist in a population. A recom-
bination of these solutions may with in a GA
may lead more flexible ways to reach near the
true constrained optimum. For details, readers
may refer to the above references.

8. Conclusions

The paper objects the usual practice of treat-
ing multi-objective optimization problems by
scalarizing them into a single objective and
optimizing it. The presence of multiple ob-
jectives results in a number of Pareto-optimal
solutions, instead of a single optimum solu-
tion. In this paper, we have shown how
an evolutionary algorithm (NSGA-II) can be
suitably used to keep the meaning of multi-
objective optimization and find a number of
Pareto-optimal solutions on a number of prob-
lems in a single simulation run. For a C im-
plementation of NSGA-II procedure described
in this paper, interested readers may visit
http://www.iitk.ac.in/kangal /soft.htm.

Besides finding the multiple Pareto-optimal
solutions, the suggested ideal multi-objective
optimization procedure has two other unique
advantages. Once a set of Pareto-optimal so-
lutions are found, they can be analyzed. The
transition from the optimum of one objective to
that of another optimum can be investigated.
Since all such solutions are optimum, the tran-
sition should show interesting trade-off infor-
mation of sacrificing one objective only to get
a gain in other objectives. Moreover, the use
of auxiliary objectives may help provide a more
flexible search in a number of other optimiza-
tion tasks than the usual way of treating them.

The field of multi-objective evolutionary al-
gorithms is fairly new. There exists a number
of interesting and important research topics”)
which must be investigated before their full po-
tential is discovered. Hopefully, this paper has
shown some usefulness in this direction to mo-
tivate the readers to pay further attention to
this growing field of interest.
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