3B－4

ON THE COMPLEXITY OF THREE－DIMENSIONAL CHANNEL ROUTING

TAKAFUMI YAMAGUCHI SATOSHI TAYU SHUICHI UENO
DEPT．OF COMMUNICATIONS AND INTEGRATED SYSTEMS，TOKYO INSTITUTE OF TECHNOLOGY

1 INTRODUCTION

The 3－D channel routing is a fundamental problem on the physical design of 3－D integrated circuits．Many results on the problem can be found in the literature $[1],[3],[6],[7]$ ．
The 3－D channel is a 3－D rectilinear grid G consisting of columns，rows，and layers which are rectilinear grid planes defined by fixing x－，y－，and z－coordinates at integers，respectively．The numbers of columns，rows，and layers are called the width，depth，and height of G ，respectively．（See Fig．1．）G is called a（ W, D, H ）－channel if the width is W ，depth is D ，and height is H ．A vertex of G is a grid point with integer coordinates．We assume without loss of generality that the vertex set of a (W, D, H)－channel is $\{(x, y, z) \mid 1 \leq x \leq W, 1 \leq y \leq D, 1 \leq z \leq H\}$ ．A terminal is a vertex of G located in the top or bottom layer．A net is a set of terminals to be connected．The object of the 3－D channel routing problem is to connect the terminals in each net with a tree in G using as few layers as possible in such a way that trees spanning distinct nets are vertex－disjoint．A set of nets is said to be routable in G if G has vertex－disjoint trees spanning the nets．

This paper considers the complexity of the following decision problem．

Fig． 1 Three－dimensional channel．

3－D CHANNEL ROUTING

INSTANCE：Positive integers W, D, H ，a set of terminals

$$
T=\left\{\left(a_{i}, b_{i}, H\right) \mid 1 \leq a_{i} \leq W, 1 \leq b_{i} \leq D, 1 \leq i \leq p\right\} \cup\left\{\left(c_{j}, d_{j}, 1\right) \mid 1 \leq c_{j} \leq W, 1 \leq d_{j} \leq D, 1 \leq j \leq q\right\}
$$

and a partition of T into nets N_{1}, \ldots, N_{m} ．
QUESTION：Is a set of nets $\left\{N_{1}, \ldots, N_{m}\right\}$ routable in a (W, D, H)－channel？
We have two well－known problems as subproblems of 3－D CHANNEL ROUTING，namely，PLANAR CHANNEL ROUTING and TWO－ROW CHANNEL ROUTING．These problems can be stated as follows．

PLANAR CHANNEL ROUTING

INSTANCE：Positive integers W, H ，a set of terminals

$$
T=\left\{\left(a_{i}, 1, H\right) \mid 1 \leq a_{i} \leq W, 1 \leq i \leq p\right\} \cup\left\{\left(c_{j}, 1,1\right) \mid 1 \leq c_{j} \leq W, 1 \leq j \leq q\right\}
$$

and a partition of T into nets N_{1}, \ldots, N_{m} ．
QUESTION：Is a set of nets $\left\{N_{1}, \ldots, N_{m}\right\}$ routable in a $(W, 1, H)$－channel？

TWO－ROW CHANNEL ROUTING

INSTANCE：Positive integers W, H ，a set of terminals

$$
T=\left\{\left(a_{i}, 1, H\right) \mid 1 \leq a_{i} \leq W, 1 \leq i \leq p\right\} \cup\left\{\left(c_{j}, 1,1\right) \mid 1 \leq c_{j} \leq W, 1 \leq j \leq q\right\}
$$

and a partition of T into nets N_{1}, \ldots, N_{m} ．
QUESTION：Is a set of nets $\left\{N_{1}, \ldots, N_{m}\right\}$ routable in a $(W, 2, H)$－channel？
It should be noted that TWO－ROW CHANNEL ROUTING has been called＂UNRESTRICTED＂TWO－LAYER CHANNEL ROUTING in the literature．The complexity of TWO－ROW CHANNEL ROUTING is a longstanding open question posed by Johnson［4］，while PLANAR CHANNEL ROUTING can be solved in polynomial time as shown by Dolev，Karplus，Siegel，Strong，and Ullman［2］．

The purpose of this paper is to show the following．
THEOREM：3－D CHANNEL ROUTING is NP－complete．
The complexity of TWO－ROW CHANNEL ROUTING is still open．Also，the complexity of the following problem is open for any fixed integer $k \geq 2$ ．

2．5－D CHANNEL ROUTING

INSTANCE：Positive integers W, H ，a set of terminals

$$
T=\left\{\left(a_{i}, b_{i}, H\right) \mid 1 \leq a_{i} \leq W, 1 \leq b_{i} \leq k, 1 \leq i \leq p\right\} \cup\left\{\left(c_{j}, d_{j}, 1\right) \mid 1 \leq c_{j} \leq W, 1 \leq d_{j} \leq k, 1 \leq j \leq q\right\}
$$

and a partition of T into nets N_{1}, \ldots, N_{m} ，where $k \geq 2$ is a fixed integer．
QUESTION：Is a set of nets $\left\{N_{1}, \ldots, N_{m}\right\}$ routable in a (W, k, H)－channel？

2 PROOF OF THE THEOREM（SKETCH）

It is easy to see that 3－D CHANNEL ROUTING is in NP．We show a polynomial time reduction from 3SAT，a well－known NP－complete problem，to 3－D CHANNEL ROUTING．Let

$$
\phi\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{i=1}^{r} C_{i}
$$

be a Boolean function in conjunctive normal form in which each clause C_{i} has three literals for $1 \leq i \leq r$ ． We employ a natural extension of Szymanski＇s reduction used to prove the NP－completeness of MANHATTAN CHANNEL ROUTING［5］．We first construct a $(13,2,6 n+2)$－channel，called a clause block，for each clause C_{i} ． We next construct $r+1$ copies of a $(5 n, 24 n+2,6 n+2)$－channel，called an enforcing block，which are introduced at the both sides of each clause block to avoid interactions between clause blocks．We finally construct two copies of a $(6 n+2,2,6 n+2)$－channel，called an end block，which are introduced at the both ends of a chain of the blocks above．Combining all the blocks together，we obtain a（ $5 r n+13 r+17 n+4,24 n+2,6 n+2$ ）－channel with $84 n^{2} r+372 n^{2}+322 n r+112 n-2$ nets for ϕ ．We can prove that ϕ is satisfiable if and only if the nets are routable in the 3－D channel．Since the channel and nets can be constructed in polynomial time，we obtain the theorem．

REFERENCES

［1］M．L．Brady，D．J．Brown，and P．J．McGuinness，＂The Three－Dimensional Channel Routing Problem，＂in Algorithmic Aspects of VLSI Layout，World Scientific，pp．213－244， 1993.
［2］D．Dolev，K．Karplus，A．Siegel，A．Strong，and J．D．Ullman，＂Optimal wiring between rectangles，＂Proc．13th Ann．ACM Symposium on Theory of Computing，pp．312－317， 1981.
［3］R．Enbody，G．Lynn，and K．Tan，＂Routing the 3－D Chip，＂Proc．the 28th Design Automation Conference，pp．132－137，1991．
［4］D．S．Johnson，＂The NP－Completeness Column：An Ongoing Guide，＂Journal of Algorithms，vol．3，No．4，pp．381－395，Dec．1982．
［5］T．G．Szymanski，＂Dogleg Channel Routing is NP－Complete，＂IEEE Trans．Computer－Aided Design，vol．CAD－4，No．1，pp．31－41， Jan． 1985.
［6］S．Tayu，P．Hurtig，Y．Horikawa，and S．Ueno，＂On the Three－Dimensional Channel Routing，＂Proceedings of the IEEE Interna－ tional Symposium on Circuits and Systems，pp．180－183，． 2005.
［7］C．C．Tong and C．L．Wu，＂Routing in a Three－Dimensional Chip，＂IEEE Trans．Computers，Vol．44，pp．106－117， 1995.

