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A Theoretical Analysis of Tree Edit Distance Measures

Tetsuji Kuboyama,† Kilho Shin†† and Tetsuhiro Miyahara†††

The notion of the tree edit distance provides a unifying framework for measuring distance
and finding approximate common patterns between two trees. A diversity of tree edit distance
measures have been proposed to deal with tree related problems, such as minor containment,
maximum common subtree isomorphism, maximum common embedded subtree, and align-
ment of trees. These classes of problems are characterized by the conditions of the tree
mappings, which specify how to associate the nodes in one tree with the nodes in the other.
In this paper, we study the declarative semantics of edit distance measures based on the tree
mapping. In prior work, the edit distance measures have been not well-formalized. So the re-
lationship among various algorithms based on the tree edit distance has hardly been studied.
Our framework enables us to study the relationship. By using our framework, we reveal the
declarative semantics of the alignment of trees, which has remained unknown in prior work.

1. Introduction

A tree is a mathematical abstraction which
plays a significant role in the efficient orga-
nization of information. In particular, the
problem of comparing tree structures emerges
across a wide range of applications in compu-
tational biology 4),9),20), image analysis 13),14),
pattern recognition 1), natural language pro-
cessing 17), information extraction 5) or wrapper
induction 10) from Web pages, and many others.

A tree edit distance method provides a gen-
eral framework in comparing trees, measuring
similarities, finding common tree patterns, and
merging trees. The tree edit distance between
two trees is basically defined as the minimum
cost of edit operations to transform one tree
into the other. The standard set of operations
includes: (1) relabeling a node x; (2) inserting
a new node x right under a node y (and mov-
ing a consecutive y’s children and all their de-
scendants under x); (3) deleting a node x (and
contracting the edge between x and its parent).

Selkow 11) and Tai 12) first introduced edit
distance measures for trees. Zhang and
Shasha 22) gave an efficient algorithm for the
tree edit distance measure due to Tai 12) as
a natural generalization of string edit dis-
tance 3),18). These early works show that the
study of the tree edit distance has a long his-

† Center for Collaborative Research, the University of
Tokyo

†† Research Center for Advanced Science and Technol-
ogy, the University of Tokyo

††† Faculty of Information Sciences, Hiroshima City
University

tory. These studies, however, did not have a
firm theoretical foundation.

Many algorithms for calculating a tree edit
distance are described and characterized by tree
edit operations. A lot of those algorithms have
been proposed independently in various fields,
and the lack of a unifying framework has lead to
confusion. That is, the relationship among var-
ious algorithms based on the tree edit distance
has hardly been studied.

In this paper, we propose a new mathematical
model as a unifying framework for describing
tree edit distance measures. This model pro-
vides not only the operational semantics but
also the declarative semantics of the tree edit
distance. The declarative semantics enables us
to study the relationship among existing tree
edit distance measures. As a direct result of
our model, we show the tree mapping condi-
tion of the alignment of trees, which has been
unknown for the past decade.

Our model clarifies the meaning of similar-
ity in the tree edit distance measures. There-
fore, our model provides a useful framework for
choosing appropriate algorithms of the tree edit
distance in applying them to practical problems
in various fields.

The rest of this paper is organized as follows:
the next section describes the tree edit distance
in an operational way, followed by reviewing ex-
isting distance measures in Section 3. Before
taking up the main part, we give an overview
of our contributions in Section 4. In Section 5,
we propose a new formulation of the tree edit
distance. In Section 6, we show the tree map-
ping condition of the alignment of trees by using
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our formulation. In Section 7, we conclude.

2. Tree Edit Distance

In this section, we review the tree edit dis-
tance.

Trees we consider in this paper are labeled
rooted trees, in which each node is labeled from
a finite alphabet Σ. We denote by r(T ) the root
of a tree T , and by T (x) the maximum subtree
of T rooted at a node x. An ancestor of a node
is recursively defined as follows: an ancestor of
a node is either the node itself, or an ancestor
of the parent of the node. We denote by x ≤ y
that a node y is an ancestor of a node x, by
lca(X) the least (or nearest) common ancestor
of all nodes in a set of nodes X, and by x� y
the least common ancestor of x and y.

An ordered tree is a tree in which the left-
to-right order among siblings is given. In an
ordered tree, we say that a node x is to the left
of a node y if x�y is a proper ancestor of both
x and y, and the child of x � y on the path
to x is to the left of the child of x� y on the
path to y. An unordered tree is a tree with no
order among siblings. We refer to unordered
trees simply as trees unless otherwise stated.

2.1 Operational Definition
The tree edit distance between two trees is

defined as the minimum cost of elementary edit
operations to transform one tree into the other.
In general, the following edit operations are
used 12),22).

Let l be a labeling function which assigns a
label from a set Σ = {a, b, c, . . .} to each node.
Let λ denote the unique null symbol not in Σ.
Let d be a cost function d : (Σ ∪ {λ}) × (Σ ∪
{λ}) → N, where N is the set of non-negative
integers.
Definition 1. An edit operation on a tree T is
any of the following three operations:
relabeling of the label of a node x in T with

the label of a new node y in T ; the cost is
denoted by d(l(x) → l(y)),

insertion of a new node x into T as a child
of a node y in T , moving a subset (a con-
secutive subsequence in the case of ordered
trees) of y’s children and their descendants
right under the new node x; note that this
is the complementary operation of deletion;
the cost is denoted by d(λ→ l(x)), and

deletion of a non-root node x from T , moving
all children of x right under the parent of
x; the cost is denoted by d(l(x) → λ).

We assume, without loss of generality, that

Fig. 1 Three elementary edit operations: (1) Relabel-
ing of the node label a to b. (2) Inserting the
node labeled with b. (3) Deleting the node la-
beled with b.

the root of a tree is not to be deleted or inserted.
We refer to each cost factor as its edit operation
when there is no confusion; i.e., α→ β, λ→ β,
and α → λ for α, β ∈ Σ are referred to as
the edit operations of relabeling, insertion, and
deletion, respectively. Figure 1 illustrates the
three edit operations.

The cost function d is defined to be a metric;
i.e., for any α, β, γ ∈ Σ ∪ {λ},
( 1 ) d(α→ β) ≥ 0, d(α→ α) = 0,
( 2 ) d(α→ β) = d(β → α), and
( 3 ) d(α→ γ) ≤ d(α→ β) + d(β → γ).
If a sequence of edit operations E transforms
a tree T into a tree U , there exists a sequence
of trees 〈T0, . . . , Tn〉 (n ≥ 1) such that T0 = T ,
Tn = U , and the i-th edit operation ei = (αi →
βi) transforms Ti−1 into Ti for i ∈ {1, . . . , n}.
The cost function d for an edit operation is gen-
eralized to that for a sequences of edit opera-
tions E = 〈e1, . . . , en〉 by letting

d(E) =
n∑

i=1

d(ei).

Let E be the set of all possible sequences of
edit operations to transform T into U . The
edit distance δ between two trees T and U is
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defined 12) as
δ(T, U) = min

E∈E
{d(E)}.

2.2 Declarative Definition and Tree
Mapping

The effect of a sequence of edit operations is
reduced to a structure called tree mapping 12),
which is a comparable notion to trace 18) in
string edit distance. We also refer to the tree
mapping as mapping if the context is clear.
A tree mapping depicts node-to-node corre-
spondences between two trees according to the
structural similarity, or shows how nodes in
one tree are preserved after transformed to the
other.
Definition 2. A tree mapping from a tree T to
a tree U is a set M ⊆ V (T ) × V (U) such that,
for all (x1, x2), (y1, y2) ∈M ,
( 1 ) x1 ≤ y1 ⇔ x2 ≤ y2, and
( 2 ) (only for ordered trees) x1 is to the left

of y1 ⇔ x2 is to the left of y2.
For example, Fig. 2 shows a tree mapping,

in which all nodes connected with dashed lines
preserve the tree mapping condition of Defi-
nition 2. Note that the original definition of
the tree mapping by Tai 12) includes the con-
dition x1 = y1 ⇔ x2 = y2 for all (x1, x2),
(y1, y2) ∈M . We omit this condition since it is
implied by the condition ( 1 ). For a tree map-
ping M from T to U , we define:

MD = V (T ) \ {x|(x, y) ∈M}, and
MI = V (U) \ {y|(x, y) ∈M}

The cost of M is defined as
d(M) =

∑
(x,y)∈M d(l(x) → l(y))

+
∑
x∈MD

d(l(x) → λ)
+

∑
y∈MI

d(λ→ l(y)).

The following theorem due to Tai 12) shows
that the edit distance δ between T and U is
given in two ways.
Theorem 1 (Tai 12)). Let M be the set of all
possible tree mappings from T to U .

δ(T, U) = min
E∈E

{d(E)} = min
M∈M

{d(M)}.
This theorem plays the role of a bridge be-

tween an operational definition and a declara-
tive definition for the tree edit distance.

3. Tai Distance and Alignment of
Trees

In this section, we give a cursory review of
related work.

Fig. 2 An example of a tree mapping: relabeling the
node label h with d, deleting the node labeled
with g, and inserting the node labeled with b.

3.1 Tai Distance
The tree edit distance stated in the previ-

ous section is considered to be the most gen-
eral form of distance measures. We refer to this
measure and the tree mapping as the Tai dis-
tance and Tai mapping respectively.

For ordered trees, a polynomial-time algo-
rithm for computing Tai distance and Tai map-
ping was given by Zhang and Shasha 22). For
similar ordered trees, an efficient algorithm was
proposed 15). As for unordered trees, this prob-
lem is known to be NP-complete 23) (in fact
MAX-SNP hard 21)), even for binary trees with
an alphabet of two size for node labels.

3.2 Alignment of Trees
The alignment of trees was introduced by

Jiang, et al. 7) as a natural extension of
alignment of strings. For ordered trees, a
polynomial-time algorithm was introduced by
Jiang et al. 7). For unordered trees, this prob-
lem is known to be MAX-SNP hard 7). An ef-
ficient algorithm for similar trees was proposed
for ordered trees 6), and for unordered trees 2).
The definition of the alignment of trees has been
given in an operational way 7),16),19) as follows.
Definition 3 (Jiang, et al. 1995 7)). Let T and
U be two trees. An alignment of T and U is
obtained by first inserting nodes labeled with λ
into T and U such that the two resulting trees
T ′ and U ′ have the same structure, i.e., they
are identical if the labels are ignored, and then
overlaying T ′ on U ′. The cost of the alignment
is the sum of the costs of all overlaid pairs of la-
bels, where the cost of a pair of labels is defined
by a cost function d : (Σ∪{λ})×(Σ∪{λ}) → N.
The alignment distance is defined as the mini-
mum cost of the alignment.

An example of the alignment of trees is shown
in Fig. 3.

It is well-known, in strings, that the align-
ment distance and the edit distance are two
equivalent notions 3). This equivalence, how-
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Fig. 3 An alignment of trees between T and U .

ever, does not hold for trees. Hence, the tree
mapping condition for the alignment of trees is
different from Tai mapping. In fact, the tree
mapping condition for the alignment of trees
has been unknown in spite of its significance.

4. Our Contributions

Before moving ahead with the formulation of
the tree edit distance, we mention our contri-
butions and the overview of our model.

Our contributions are as the followings:
• We give the tree mapping condition for

alignment of tree, which has been unknown
in prior work. This implies that we obtain
the declarative definition for alignment of
trees.

• This implies that finding a common subtree
pattern between two trees under the tree
mapping condition is equivalent to finding
a common supertree pattern between two
trees in terms of minor containment 8).

• Both the edit distance and the alignment
distance have been introduced as natural
generalizations of those for strings. Al-
though these two measures are the same
originally in strings, these are not the same
in trees. We show the confluent point be-
tween the tree edit distance and the align-
ment distance.

The rest of paper is devoted to prove the main
theorem.

In our formulation, we first introduce a gen-
eral mapping between trees called tree homo-
morphism. Starting with the notion of the tree
homomorphism, we tighten the mapping gradu-

Fig. 4 The schematic view of our model.

ally to fit in existing edit operations. Figure 4
shows the schematic view of our model.

5. Formulation of Tree Edit Distance

5.1 Rooted Trees
We formulate trees as ordered sets of nodes.

In the course of the formulation, we redefine a
few of the notions given in Section 2.

We adopt a standard notation < to denote
a strict partial order, that is, for a non-empty
finite set V ,
( 1 ) ∀x, y, z ∈ V [x < y ∧ y < z ⇒ x < z],
( 2 ) ∀x ∈ V [x < x].
We denote by x ≤ y that x < y or x = y for all
x, y ∈ V . We say that two elements x, y ∈ V
are comparable if x < y, x = y or y < x holds.
Definition 4. A rooted tree T = (V,<) is a
nonempty, finite, and strict partially ordered
set with the maximum element r(T ) ∈ V called
the root, and such that {y ∈ V |x ≤ y} is a
totally ordered set for every x ∈ V .
Remark. A rooted tree is called an ordered tree
if and only if another partial order ≺ is defined
over V and the followings hold.
( 1 ) x ≺ y ∨ y ≺ x⇔ x ≤ y ∧ y ≤ x,
( 2 ) x ≤ x′ ∧ y ≤ y′ ∧ x′ ≺ y′ ⇒ x ≺ y.

Although all the definitions, propositions,
lemmas and theorems stated in this paper also
hold for the ordered tree with no or slight mod-
ification, this paper does not mention all of
them.

We call the elements of V the nodes of
T , and denote the set of all nodes in T by
V (T ). We define the set of edges in T by
E(T ) = {(x, y) ∈ V (T ) × V (T )|(x < y) ∧
�z ∈ V (T ) such that x < z < y}. An ancestor
of x is a node y such that x ≤ y. In particu-
lar, if x < y, then y is called a proper ancestor.
The parent of a node x is the minimum node of
the proper ancestors of x, and denoted by p(x).
The children of a node x is the set of nodes
such that {y|(y, x) ∈ E(T )}, and is denoted by
ch(x). We call the elements of ch(x) a child of
x. A leaf of a tree T is a minimal node in T .
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We redefine the notion of the least common
ancestor as follows.
Definition 5. For an arbitrary rooted tree T =
(V,<), a common ancestor of a set of nodes
V ′ ⊆ V is an element x ∈ V such that y ≤ x
for all y ∈ V ′. A common ancestor x of V ′ is the
least common ancestor of V ′ if, for any common
ancestor x′ of V ′, x ≤ x′ holds. We denote the
least common ancestor of V ′ by lca(V ′), and
lca({x, y}) by x�y.
Lemma 2. The following properties hold in
terms of the least common ancestor:
( 1 ) x�x = x,
( 2 ) x�y = y�x,
( 3 ) (x�y)�z = x�(y�z),
( 4 ) x ≤ y ⇔ x�y = y,
( 5 ) x�y < x�z ⇒ y�z = x�z,
( 6 ) x�y = x�z ⇒ y�z ≤ x�y.
Proof. ( 1 ) to ( 4 ) are all easy to prove.
( 5 ): Since y < x� z by the premise, we have
y � z ≤ x � z. On the other hand, if x �
y < y � z, then we have x < y � z, therefore,
y� z ≥ x� z. If y� z ≤ x� y, then z ≤ x� y,
therefore, x� z ≤ x� y, as is contradictory to
the premise.
( 6 ): The assertion immediately follows x ≤ x�
z and y ≤ y�z. �

Corollary 3. For any three nodes x, y, z, any
of the following properties holds:
( 1 ) x�y < x�z, and x�z = y�z,
( 2 ) x�y = x�z, and y�z ≤ x�z, or
( 3 ) x�y > x�z, and x�y = y�z.
Proof. It follows straightforwardly from
Lemma 2–( 5 ), and ( 6 ). �

5.2 Formulation of Edit Operations
This section is preliminary towards formulat-

ing the edit operations in the tree edit distance
and the alignment of trees.

5.2.1 Tree Homomorphism
We first introduce the notion of tree homo-

morphism to represent structural similarities
between trees.
Definition 6 (Tree Homomorphism). Let T
and U be two trees. A tree homomorphism from
T to U is a set-theoretic mapping ϕ : V (T ) →
V (U) such that ϕ(x) ≤ ϕ(y) if x < y for all x,
y ∈ V (T ).

When a mapping ϕ : V (T ) → V (U) yields a
tree homomorphism, we simply denoted it by
ϕ : T → U .
Remark. To extend the definition of a tree ho-
momorphism to ordered trees, it suffices to add

the condition:
ϕ(x) � ϕ(y) if x ≺ y for all x, y ∈ V (T ).

Definition 7. For a tree homomorphism ϕ :
T → U , the image of ϕ is the tree �(ϕ) =
(V (�(ϕ), <�(ϕ))) such that
( 1 ) V (�(ϕ)) = {x ∈ V (U)|∃(y ∈ V (T ))[x ≤

ϕ(r(T ))]}, and
( 2 ) ∀x, y ∈ V (�(ϕ))[x <�(ϕ) y ⇔ x < y].
Remark. Let U be an ordered tree with a
sibling partial order ≺. A sibling partial or-
der ≺�(ϕ) for �(ϕ) is defined by ∀x, y ∈
V (�(ϕ))[x ≺�(ϕ) y ⇔ x ≺ y] as well.

It is obvious from these definitions that a
composition of tree homomorphisms is a tree
homomorphism.
Definition 8 (Isomorphism). Let T and U be
two trees. An isomorphism from T to U is a
bijection ϕ from V (T ) to V (U) such that (x, y)
is an edge of T if and only if (ϕ(x), ϕ(y)) is an
edge of T .
Proposition 4. An isomorphism ϕ and its in-
verse ϕ−1 are both tree homomorphisms.
Proposition 5. Let T and U be two trees.
Suppose that a tree homomorphism ϕ is a bi-
jection from V (T ) to V (U). Then the following
properties are equivalent:
( 1 ) ϕ is an isomorphism, and
( 2 ) x < y if ϕ(x) < ϕ(y) for all x, y in V (T ).
Proof. ( 1 )⇒( 2 ): This is straightforward from
Definition 8.
( 2 )⇒( 1 ): Let η be a mapping η : (x, y) �→
(ϕ(x), ϕ(y)) for all (x, y) ∈ E(T ). We show that
the mapping η : E(T ) → E(U) is well-defined,
and bijective, i.e. ϕ is an isomorphism, under
the condition ( 2 ). For any edge (x, y) ∈ E(T ),
let z be a node in V (U) such that ϕ(x) ≤ z <
ϕ(y). Then we have x ≤ ϕ−1(z) < y. It follows
that x = ϕ−1(z) since (x, y) is an edge of T .
Therefore we have z = ϕ(x). So (ϕ(x), ϕ(y))
is an edge of U , and hence η is well-defined.
Since the condition ( 2 ) implies that ϕ−1 is also
a tree homomorphism, we also have η−1 is well-
defined. Therefore, η is bijective. �

Remark. For a bijective tree homomorphism
of ordered trees, the following properties are
equivalent:
( 1 ) ϕ is an isomorphism,
( 2 ) x < y if ϕ(x) < ϕ(y) for all x, y in V (T ),
( 3 ) ϕ(x) ≺ ϕ(y) if x ≺ y for all x, y in V (T ).
Proposition 6. Let T and U be two trees. For
any tree homomorphism ϕ : T → U , and x,
y ∈ V (T ), it holds that ϕ(x)�ϕ(y) ≤ ϕ(x�y).
Proof. From the facts that x ≤ x � y and
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Fig. 5 An example of an embedding ϕe.

y ≤ x � y, we obtain ϕ(x) ≤ ϕ(x � y) and
ϕ(y) ≤ ϕ(x � y), respectively. Hence ϕ(x) �
ϕ(y) ≤ ϕ(x�y). �

Even if x � y < x � z for x, y, z ∈ V (S),
this proposition implies that, for a homomor-
phism ϕ : T → U , any of the following three
conditions may hold:
( 1 ) ϕ(x)�ϕ(y) < ϕ(x)�ϕ(z),
( 2 ) ϕ(x)�ϕ(y) = ϕ(x)�ϕ(z), and
( 3 ) ϕ(x)�ϕ(y) > ϕ(x)�ϕ(z).

5.2.2 Embedding
We introduce an important subclass of the

tree homomorphism, called embedding, which
is a mapping from a tree T to a tree U such
that it preserves the Tai mapping condition,
and V (T ) ⊆ V (U).
Definition 9 (Embedding). Let T and U be
two trees. A tree homomorphism ϕ : T → U
is an embedding if the following conditions are
satisfied:
( 1 ) ϕ is injective, and
( 2 ) x < y if ϕ(x) < ϕ(y) for all x, y ∈ V (T ).
We refer to red(ϕ) = |V (�(ϕ)) \ ϕ(V (T ))| as
the redundancy of ϕ : T → U .

Figure 5 shows an example of embeddings.
Proposition 7. Let S, T and U be trees. Sup-
pose that ϕ : S → T and ψ : T → U are tree
homomorphisms,

then the following properties hold:
( 1 ) If ϕ and ψ|�(ϕ) are embeddings, ψ ◦ ϕ

is also an embedding. Moreover, red(ψ ◦
ϕ) = red(ϕ) + red(ψ|�(ϕ)) holds.

( 2 ) If ψ ◦ ϕ is an embedding, ϕ is also an
embedding.

Proof. (1) ψ ◦ ϕ is injective. By Definition 9,
for any x, y ∈ V (S), if ψ(ϕ(x)) < ψ(ϕ(y)),
then ϕ(x) < ϕ(y), and if ϕ(x) < ϕ(y), then
x < y. Therefore ψ ◦ ϕ is an embedding.

Also, red(ψ ◦ ϕ) = |V (�(ψ ◦ ϕ))| − |V (S)| =
(|V (�(ψ|�(ϕ)))| − |V (�(ϕ))|) + (|V (�(ϕ))| −
|V (S)|) = red(ψ|�(ϕ)) + red(ϕ). (2) It is ob-
vious that ϕ is injective. It suffices to show
that x < y holds assuming ϕ(x) < ϕ(y). Since
ψ is a tree homomorphism and ψ◦ϕ is injective,
we have ψ(ϕ(x)) < ψ(ϕ(y)). Therefore, x < y
since ψ ◦ ϕ is an embedding.

�

Proposition 8. Let S, T , and U be three trees.
For an embedding ϕ : S → U , and a tree homo-
morphism ψ : T → U , if ψ(V (T )) ⊆ ϕ(V (S)),
then there exists a unique tree homomorphism
η : T → S such that ψ = ϕ ◦ η;

Proof. Let us choose the unique mapping η :
V (T ) → V (S) so that ψ = ϕ ◦ η. We show
that η is a tree homomorphism. Let x and y
be two nodes in V (T ). From the definition of
η, it follows that ψ(x) = ϕ(η(x)) and ψ(y) =
ϕ(η(y)). Assume that x < y. Then we have
ψ(x) = ψ(y) or ψ(x) < ψ(y). Since ϕ is an
embedding, if ϕ(η(x)) = ϕ(η(y)), then η(x) =
η(y), and if ϕ(η(x)) < ϕ(η(y)), then η(x) <
η(y). Hence η(x) ≤ η(y). �

An embedding is uniquely determined except
for the isomorphism as shown in the following.
Corollary 9. Let S, T , and U be three trees.
Let ϕ : S → U and ψ : T → U be two embed-
dings with ϕ(V (S)) = ψ(V (T )). There exists
a unique isomorphism η : T → S such that
ψ = ϕ ◦ η.
Proposition 10. For an embedding ϕ : S → T
and x, y ∈ V (S), the minimum node ϕ(z) in
T such that ϕ(x) �ϕ(y) < ϕ(z) is identical to
ϕ(x�y). Furthermore, the following conditions
are equivalent.
( 1 ) ϕ(x)�ϕ(y) < ϕ(x�y).
( 2 ) ϕ(x)�ϕ(y) ∈ ϕ(V (S)).
Proof. Suppose that ϕ(x) �ϕ(y) ≤ ϕ(z). By
Definition 9, we have x� y ≤ z. Hence ϕ(x�
y) ≤ ϕ(z). This implies that ϕ(x � y) is the
minimum ϕ(z) such that ϕ(x) � ϕ(y) ≤ ϕ(z).
The equivalence between (1) and (2) immedi-
ately follows this property. �

Corollary 11. For an embedding ϕ : T → U , if
x�y < x�z, then ϕ(x)�ϕ(y) < ϕ(x)�ϕ(z).
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Proof. ϕ(x) � ϕ(y) ≤ ϕ(x � y) < ϕ(x � z)
holds. ϕ(x � y) and ϕ(x) � ϕ(z) are com-
parable since both are ancestors of ϕ(x). If
ϕ(x) � ϕ(z) = ϕ(x � z), then there is noth-
ing to prove. If ϕ(x) � ϕ(z) ≤ w < ϕ(x� z),
then w ∈ ϕ(V (T )) by Proposition 10. There-
fore, we have ϕ(x�y) < ϕ(x) ∪ ϕ(z). �

5.2.3 Logical Expressions and Embed-
dings

We introduce a useful expression for filtering
nodes of trees. For a tree T , let π(x) : V (T ) →
{t, f} denote a unary predicate with a predicate
variable x.
Definition 10 (logical expressions). T [π(x)] =
(V [π(x)],≤π) as follows:
( 1 ) V [π(x)] = {x|x ∈ V (T ) and π(x) = t},
( 2 ) x ≤π y if and only if x ≤ y for all x,

y ∈ V [π(x)].
For example, T [x ≤ x] is equivalent to T (x).

Note that T [π(x)] is not necessarily a tree since
it may not have a root.

By Eπ(x), we denote a natural inclusion
Eπ(x) : V (T [π(x)]) → V (T ).
Proposition 12. For x, y ∈ V (T [π(x)]), x < y
if and only if Eπ(x)(x) < Eπ(x)(y).
Corollary 13. If T [π(x)] is a tree, Eπ(x)

is an embedding with red(Eπ(x)) = |{x ∈
V (T )|π(x) = f}|.

5.2.4 Insertion
Now we are ready to give a declarative defi-

nition of the insertion operation.
Definition 11 (Insertion). Let T and U be
two trees. An embedding ϕ : T → U with
red(ϕ) = 1 is called an insertion. In particu-
lar, if ϕ(V (T )) = V (U) \ {x} for x = r(U), an
insertion ϕ is called an x-insertion.
Proposition 14. For an arbitrary x ∈ T such
that x = r(T ), there exists an x-insertion ϕ into
T . Furthermore, an x-insertion is unique up to
an isomorphism.
Proof. Defining π(x) = (x = x), Eπ(x) :
T [π(x)] → T is an x-insertion into T by Propo-
sition 12. By Corollary 9, an x-insertion is
uniquely determined up to an isomorphism. �

We denote the unique x-insertion by Ix.
The following proposition shows that Defini-

tion 11 of the insertion is equivalent to the op-
erational definition of the insertion.
Proposition 15. Let T and U be two trees.
For x ∈ V (U), Ix : T → U satisfies the follow-
ing properties (See Fig. 6):
( 1 ) for any y ∈ ch(x), Ix : T (I−1

x (y)) → U(y)

Fig. 6 Relationship between an insertion mapping
and an operational definition.

is an isomorphism, and
( 2 ) Ix : T [

∧
y∈ch(x) x ≤ I−1

x (y)] → U [x ≤ x]
is an isomorphism.

Proof. Without loss of generality, we may
assume that T = U [x = x]. It follows from
Proposition 12 that
U [x = x ∧ x ≤ y] = U [x ≤ y], and
U [x = x ∧ ∧

y∈ch(x) x ≤ I−1
x (y)] = U [x ≤ x].

Hence, we obtain the assertions. �

Theorem 16 (Decomposition of embedding).
Let ϕ be an embedding from T to U with
V (�(ϕ)) \ ϕ(V (T )) = {x1, . . . , xn}. There ex-
ist a sequence of trees T0, T1, . . . , Tn, and a
sequence of insertions ϕi : Ti → Ti−1 (i ∈
{1, . . . , n}) such that
( 1 ) T0 = U ,
( 2 ) Tn = T ,
( 3 ) ϕ1 ◦ · · · ◦ ϕi(V (Ti)) = V (�(ϕ)) \

{x1, . . . , xi}, and
( 4 ) ϕ = ϕ1 ◦ · · · ◦ ϕn;

Proof. We apply induction on n = red(ϕ).
For n = 1, ϕ is an insertion by definition.
Now assume that n ≥ 2. Let ϕ1 be the x1-
insertion into �(ϕ). Note that ϕ1 can be nat-
urally regarded as an insertion from T1 to U
(Proposition 7). By Proposition 8, there ex-
ists ϕ′ : T → T1 such that ϕ = ϕ1 ◦ ϕ′. ϕ′
is an embedding by Proposition 7. Further-
more, since ϕ1 is injective and V (�(ϕ1)) =
V (�(ϕ)), V (�(ϕ′)) = V (T1), and therefore
red(ϕ′) = n−1 by Proposition 7. By the induc-
tion hypothesis, there exist a sequence of trees
T2, T3, . . . , Tn, and a sequence of insertions
ϕi : Ti → Ti−1 (i ∈ {2, . . . , n}) such that
( 1 ) Tn = T ,
( 2 ) ϕ2 ◦ · · · ◦ ϕi(V (Ti)) =
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Fig. 7 An example of a degeneration.

V (T1) \ {ϕ−1
1 (x2), . . . , ϕ−1

1 (xi)}, and
( 3 ) ϕ′ = ϕ2 ◦ · · · ◦ ϕn.
Hence, the assertion of this theorem is proved
as follows:

ϕ1 ◦ · · · ◦ ϕi(V (Ti))
= ϕ1(V (T1) \ {ϕ−1

1 (x2), . . . , ϕ−1
1 (xi)})

= ϕ1(V (T1)) \ {x2, . . . , xi}
= V (�(ϕ)) \ {x1, x2, . . . , xi}

�

5.2.5 Degeneration
We introduce the complementary notion of

embedding, called degeneration as follows.
Definition 12 (Degeneration). Let T and U
be two trees. A homomorphism ϕ : T → U
is a degeneration if the following conditions are
satisfied:
( 1 ) ϕ is surjective onto V (�(ϕ)),
( 2 ) for all x, y ∈ V (T ), if ϕ(x) = ϕ(y), then

ϕ(x�y) = ϕ(x), and
( 3 ) for all x, y ∈ V (T ), if ϕ(x) < ϕ(y), then

there exists z ∈ V (T ) such that ϕ(y) =
ϕ(z) and x < z.

We refer to Dup(ϕ) = {x ∈ V (T )|ϕ(x) =
ϕ(p(x))} as the duplication of the degeneration
ϕ : T → U .

Figure 7 shows an example of embeddings.
Proposition 17. Let T and U be two trees.
For any degeneration ϕ : T → U , the following
properties hold:
( 1 ) (ϕ(x), ϕ(y)) ∈ E(U) or ϕ(x) = ϕ(y) if

(x, y) ∈ E(T ),
( 2 ) for all x ∈ ϕ(V (T )), lca(ϕ−1(x)) ∈

ϕ−1(x), and
( 3 ) Dup(ϕ) =⋃

x∈ϕ(V (U))

{
ϕ−1(x) \ lca(ϕ−1(x))

}
.

Proof. ( 1 ): Assume ϕ(x) < ϕ(z) ≤ ϕ(y). By
Definition 12, we may assume x < z. Since
(x, y) ∈ E(T ), we have y ≤ z and therefore
ϕ(y) = ϕ(z). This implies that (ϕ(x), ϕ(y)) ∈
E(U)
( 2 ): Choose y ∈ ϕ−1(x) so that y < z for
all z ∈ ϕ−1(x). Let z be an arbitrary node

of ϕ−1(x). By Definition 12, we have ϕ(y �
z) = x, and hence y � z = y. We conclude
y = lca(ϕ−1(x)) since z ≤ y.
( 3 ): Assume that ϕ(x) = y and x <
lca(ϕ−1(y)). Then, for all z such that x <
z ≤ lca(ϕ−1(y)), ϕ(z) = y. It follows that
Dup(ϕ) ⊇ ⋃

x∈ϕ(V (T )) ϕ
−1(x) \ lca(ϕ−1(x)).

On the other hand, if ϕ(x) = y, then x ≤
lca(ϕ−1(y)). Therefore, lca(ϕ−1(y)) ∈ Dup(ϕ).

�

Proposition 18. Let S, T , and U be three
trees. For a degeneration ϕ : T → S, let ψ :
T → U be a homomorphism such that if ϕ(x) =
ϕ(y), then ψ(x) = ψ(y). There exists a unique
homomorphism η : �(ϕ) → U such that ψ =
η ◦ ϕ;

Proof. Without loss of generality, we may as-
sume that �(ϕ) = S. By the premise of the
theorem, we then have the unique set-theoretic
mapping η such that η ◦ ϕ = ψ. x = ϕ(x′) ∈
V (S). We show that η is a homomorphism. Let
x = ϕ(x′) and y = ϕ(y′), and x < y. By Def-
inition 12, we may assume x′ < y′. Therefore,
we have η(x) = ψ(x′) ≤ ψ(y′) = η(y). �

Corollary 19. Let S, T and U be three trees.
For any degeneration ϕ : T → S and ψ :
T → U , there exists a unique isomorphism
η : �(ϕ) → �(ψ) such that ψ = η ◦ ϕ if the
following condition is satisfied: ϕ(x) = ϕ(y) if
and only if ψ(x) = ψ(y).
Lemma 20. Let T and U be two trees. For an
arbitrary degeneration ϕ : T → U , there exists
a unique embedding ψ : �(ϕ) → T such that
ϕ ◦ψ is the identity map on V (�(ϕ)) and ψ ◦ϕ
is the identity map on V (T ) \ Dup(ϕ).
Proof. Without loss of generality, we may as-
sume that U = �(ϕ). Let T ′ = T [x ∈ Dup(ϕ)],
and η : T ′ → T an embedding defined by Corol-
lary 13. We show that ϕ ◦ η is an isomor-
phism. Since ϕ ◦ η : T ′ → U is a bijective
homomorphism by the definition of T ′, accord-
ing to Proposition 5, it suffices to show that,
if ϕ(η(x)) < ϕ(η(y)), then x < y. By the def-
inition of degeneration, there exists z ∈ V (T )
such that η(x) < z and ϕ(η(y)) = ϕ(z). Since
η(y) = lca(ϕ−1(ϕ(η(y)))), we have η(x) < z ≤
η(y). Hence x < y since η is an embedding.
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Therefore, by letting ψ = η ◦ (ϕ◦η)−1 : U → T ,
we have the identity map ϕ ◦ ψ.

The rest of the assertion is proved as follows.
For an arbitrary x ∈ V (T ) \Dup(ϕ), y ∈ V (T ′)
such that η(y) = x is uniquely determined by
definition. Hence, we have
ψ(ϕ(x)) = η((ϕ ◦ η)−1(ϕ(η(y))) = η(y) = x. �

Proposition 21. For any degeneration ϕ :
T → U , ϕ(x�y) = ϕ(x)�ϕ(y).
Proof. We first show that, if ϕ(x) = ϕ(x′), then
ϕ(x�y) = ϕ(x′�y) for any x, x′, y ∈ V (T ). It
follows from the definition of degeneration that
ϕ(x� x′) = ϕ(x) = ϕ(x′). So we may assume
x ≤ x′. Note that x � y and x′ are compa-
rable. If x′ ≤ x � y, then x � y = x′ � y.
If x � y < x′, then x′ � y = x′. Therefore
ϕ(x) ≤ ϕ(x� y) ≤ ϕ(x′ � y) = ϕ(x′). Hence
ϕ(x�y) = ϕ(x′�y).

We next show that ϕ(x � y) = ϕ(x) � ϕ(y)
for all x, y ∈ V (T ). According to Lemma 20,
we choose ψ : U → T so that ϕ ◦ ψ is the
identity map. If x = ψ(x′) and y = ψ(y′),
then x � y ≤ ψ(x′ � y′). Hence we have
x′ � y′ = ϕ(x) � ϕ(y) ≤ ϕ(x� y) ≤ ϕ(ψ(x′ �
y′)) = x′ � y′. Therefore ϕ(x � y) = ϕ(x) �
ϕ(y). If v = ψ(ϕ(x)) and w = ψ(ϕ(y)) for
any x, y ∈ V (T ), then ϕ(x � y) = ϕ(v �
w) = ϕ(v) � ϕ(w) = ϕ(x) � ϕ(y). Hence
ϕ(x�y) = ϕ(x)�ϕ(y). �

Corollary 22. Let ϕ : T → U be a degenera-
tion. For any x, y, z ∈ V (T ), if x�y < x�z,
then the following conditions hold:
( 1 ) ϕ(x)�ϕ(y) ≤ ϕ(x)�ϕ(z),
( 2 ) ϕ(x)�ϕ(y) = ϕ(x)�ϕ(z) if and only if

ϕ(x�y) = ϕ(x�z), and
( 3 ) ϕ(y)�ϕ(z) = ϕ(x)�ϕ(z).
Proof. Straightforward from Proposition 21.

�

Proposition 23. Let S, T , and U be three
trees. For two homomorphisms ϕ : S → T and
ψ : T → U , the following properties hold:
( 1 ) if ϕ and ψ|�(ϕ) are both degenerations,

then ψ ◦ ϕ is also a degeneration. In
particular Dup(ψ ◦ ϕ) = Dup(ϕ) ∪
ϕ−1(Dup(ψ|�(ϕ))) holds.

( 2 ) if ϕ is surjective onto V (�(ϕ)) and ψ ◦ϕ
is a degeneration, then ψ|�(ϕ) is also a
degeneration.

Proof. ( 1 ): Without loss of generality, we
may assume that �(ϕ) = T . It is obvious that
ψ◦ϕ is surjective onto V (�(ψ)). First, we show

ψ(ϕ(x � y)) = ψ(ϕ(x)) holds for arbitrary x,
y ∈ V (S) such that ψ(ϕ(x)) = ψ(ϕ(y)). This
is because ψ(ϕ(x � y)) = ψ(ϕ(x) � ϕ(y)) =
ψ(ϕ(x)) � ψ(ϕ(y)) = ψ(ϕ(x)) according to
Proposition 21. Next, we show that there ex-
ists y′′ ∈ V (S) such that ψ(ϕ(y′′)) = ψ(ϕ(y))
and x < y′′ for arbitrary x, y ∈ V (S) such that
ψ(ϕ(x)) < ψ(ϕ(y)). There exists y′ ∈ V (S)
such that ψ(ϕ(y′)) = ψ(ϕ(y)) and ϕ(x) < ϕ(y′)
since ψ is a degeneration. In the same way,
there exists y′′ ∈ V (S) such that ϕ(y′′) = ϕ(y′)
and x < y′′ since ϕ is a degeneration. Obvi-
ously, ψ(ϕ(y′′)) = ψ(ϕ(y′)) = ψ(ϕ(y)) holds.

According to Proposition 17, either (ϕ(x),
ϕ(y)) ∈ E(T ) or ϕ(x) = ϕ(y) holds for any
(x, y) ∈ E(S). Therefore that ψ(ϕ(x)) =
ψ(ϕ(y)) holds is equivalent to that either x ∈
Dup(ϕ) or ϕ(x) ∈ Dup(ψ) holds. Hence
Dup(ϕ ◦ ψ) = Dup(ϕ) ∪ ϕ−1(Dup(ψ)).

( 2 ): Without loss of generality, we may as-
sume that �(ϕ) = T . It is obvious that ψ is sur-
jective onto V (�(ψ)) = V (�(ψ ◦ ϕ)). First, we
show ψ(ϕ(x)�ϕ(y)) = ψ(ϕ(x)) holds for arbi-
trary x, y ∈ V (S) such that ψ(ϕ(x)) = ψ(ϕ(y)).
Although ψ(ϕ(x)) � ψ(ϕ(y)) ≤ ψ(ϕ(x) �
ϕ(y)) ≤ ψ(ϕ(x � y)) generally holds, accord-
ing to Proposition 21, ψ(ϕ(x)) � ψ(ϕ(y)) =
ψ(ϕ(x � y)) = ψ(ϕ(x)) since ψ ◦ ϕ is a de-
generation. Next, we show that there exists
y′ ∈ V (S) such that ψ(ϕ(y′)) = ψ(ϕ(y)) and
ϕ(x) < ϕ(y′) for arbitrary x, y ∈ V (S) such
that ψ(ϕ(x)) < ψ(ϕ(y)). There exists y′ ∈
V (S) such that ψ(ϕ(y′)) = ψ(ϕ(y)) and x < y′
since ψ◦ϕ is a degeneration. Moreover, we have
ϕ(x) < ϕ(y′) since ϕ is a homomorphism. �

5.2.6 Logical Expressions and Degen-
erations

For a tree T , let π(x) : V (T ) → {t, f} denote
a unary predicate with a predicate variable x.
Definition 13. If π(r(T )) = t, Dπ(x) :
V (T ) → V (T [π(x)]) is defined as Dπ(x)(x) = x
if π(x) = t and Dπ(x)(x) = Dπ(x)(p(x)) if
π(x) = f.
Proposition 24. Dπ(x) is a degeneration with
Dup(Dπ(x)) = {x ∈ V (T )|π(x) = f}.
Proof. For simplicity, we denote Dπ(x) by ϕ.
Obviously, ϕ is surjective.

Let x, y be arbitrary nodes of V (T ). By def-
inition, there exist x′, y′ ∈ V (T ) such that
x ≤ x′ ∧ ϕ(x) = x′ and y ≤ y′ ∧ ϕ(y) = y′.
Note that x′ (y′) is the minimum ancestor of x
(y) such that π(x′) = t (π(y′) = t, resp.).

If x < y, we have x′ ≤ y′ and therefore ϕ is a
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tree homomorphism.
If ϕ(x) = ϕ(y), then x′ = y′. Therefore, we

have ϕ(x�y) = x′ = y′ since x�y ≤ x′ = y′.
Next, assume ϕ(x) <π(x) ϕ(y). By definition

of T [π(x)], x′ < y′ holds. Obviously, we have
x < y′ and ϕ(y) = ϕ(y′). �

5.2.7 Deletion
Definition 14 (Deletion). Let T and U be two
trees. A degeneration ϕ : T → U is called a
deletion from T if |Dup(ϕ)| = 1. In particular,
if a deletion ϕ is surjective and Dup(ϕ) = {x},
ϕ is called an x-deletion and denoted by Dx.

The following proposition shows that Defini-
tion 14 of the deletion is equivalent to the oper-
ational definition of the deletion. We omit the
proof because it is similar to that of Proposi-
tion 15.
Proposition 25. Let T and U be two trees.
For x ∈ V (T ), Dx : T → U satisfies the follow-
ing properties:
( 1 ) for any y ∈ ch(x), Dx : T [x ≤ y] →

U [x ≤ Dx(y)] is an isomorphism, and
( 2 ) Dx : T [x ≤ x] → U [

∧
y∈ch(x) x ≤ Dx(y)]

is an isomorphism.
Theorem 26 (Decomposition of degenera-
tion). Let ϕ be a degeneration from T to U
with Dup(ϕ) = {x1, . . . , xn}. There exist a se-
quence of trees T0, T1, . . . , Tn, and a sequence
of deletions ϕi : Ti → Ti+1 (i ∈ {0, . . . , n − 1})
such that
( 1 ) T0 = T ,
( 2 ) Tn = U ,
( 3 ) Dup(ϕi−1 ◦ · · · ◦ ϕ0) = {x1, . . . , xi}, and
( 4 ) ϕ = ϕn−1 ◦ · · · ◦ ϕ0;

Proof. We apply induction on n. For n =
1, ϕ is a deletion by definition. Now as-
sume that n ≥ 2. Let ϕ0 : T → T1 be
Dx1 . By Proposition 18, there exists ψ :
T1 → U such that ϕ = ψ ◦ ϕ0. Moreover,
by Proposition 23, ψ is a degeneration such
that Dup(ϕ) = Dup(ϕ0) ∪ ϕ−1

0 (Dup(ψ)). In
particular, Dup(ψ) = {ϕ0(x2), . . . , ϕ0(xn)} fol-
lows Dup(ϕ) = Dup(ϕ0) ∪ ϕ−1

0 (Dup(ψ)): if
ϕ0(x1) ∈ Dup(ψ), then p(x1) ∈ Dup(ϕ), and
therefore ϕ0(x1) ∈ {ϕ0(x2), . . . , ϕ0(xn)}.

Now we can apply the induction hypothesis
to ψ. Hence, there exists a sequence of trees T2,

T3, . . . , Tn such that
( 1 ) Tn = U ,
( 2 ) Dup(ϕi−1◦· · ·◦ϕ1)={ϕ0(x2), . . . , ϕ0(xi)}

for i ∈ 2, . . . , n− 1, and
( 3 ) ψ = ϕn−1 ◦ · · · ◦ ϕ1.
Obviously, ϕ = ψ ◦ ϕ0 = ϕn−1 ◦ · · · ◦ ϕ0

holds. In addition, we have Dup(ϕi−1◦· · ·◦ϕ1◦
ϕ0) = Dup(ϕ0) ∪ ϕ−1

0 (Dup(ϕn−1 ◦ · · · ◦ ϕ1)) =
{x1, . . . , xi}. Therefore, the assertion of this
theorem holds. �

5.2.8 Duality between Embedding and
Degeneration

In Lemma 20, we see that, for a given de-
generation ϕ, there exists an embedding ψ such
that ϕ◦ψ is an identity map. In fact, its reverse
also holds.
Theorem 27. Let T and U be two trees. The
following two properties hold:
( 1 ) For an arbitrary degeneration ϕ : T →

U , there exists a unique embedding ψ :
�(ϕ) → T such that ϕ ◦ψ is the identity
map on V (�(ϕ)) and ψ◦ϕ is the identity
map on V (T ) \ Dup(ϕ).

( 2 ) For an arbitrary embedding ψ : U → T ,
there exists a unique degeneration ϕ :
�(ψ) → U such that ϕ ◦ψ is the identity
map on V (U) and ψ ◦ ϕ is the identity
map on V (�(ψ)) \ Dup(ϕ).

Proof. As the proof of ( 1 ) is already given in
Lemma 20, we prove ( 2 ) in the following.

Without loss of generality, we may assume
that T = �(ψ). Let T ′ be T [x ∈ ψ(V (U))], and
η be the canonical degeneration Dx∈ψ(V (U)) :
T → T ′ (Proposition 24). First, we show that
η ◦ ψ is an isomorphism. Since η ◦ ψ : U → T ′
is a bijective homomorphism by the definition
of T ′, according to Proposition 5, it suffices to
show that, if η(ψ(x)) < η(ψ(y)), then x < y.
By the definition of a degeneration, there exists
z ∈ V (T ) such that ψ(x) < z and η(ψ(y)) =
η(z). Since ψ(y) = lca(η−1(η(ψ(y)))), we have
ψ(x) < z ≤ ψ(y). Hence, x < y since ψ is an
embedding, and we conclude that η ◦ ψ is an
isomorphism.

By letting ϕ = (η ◦ψ)−1 ◦η : T → U , we have
ϕ ◦ ψ is the identity map on V (U).

The rest of the assertion is proved as follows.
For an arbitrary x ∈ V (T ) \Dup(η), y ∈ V (T ′)
such that ψ(y) = x is uniquely determined by
definition. Hence, we have
ψ(ϕ(x)) = ψ((η ◦ψ)−1(η(ψ(y))) = ψ(y) = x. �

This theorem is to the effect that there ex-
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ists a unique degeneration ψ̄ (an embedding ϕ̄,
resp.) if an embedding ψ (a degeneration ϕ,
resp.) is given.

5.3 Characterization of Alignment of
Trees

Now we are ready to give a definition of the
alignment of trees in a formal manner.

Throughout in this section, S and T are
rooted trees, and M ⊆ V (S) × V (T ) is a tree
mapping from S to T .
Definition 15. A tree mapping M from S to
T is alignable if and only if there exists a triplet
(U,ϕ, ψ) such as
( 1 ) ϕ : S → U is an embedding,
( 2 ) ψ : T → U is an embedding, and
( 3 ) ϕ(x) = ψ(y) for all (x, y) ∈M ;
We call (U,ϕ, ψ) a union on M .

Lemma 28. For an alignable mapping M with
a union (U,ϕ, ψ), (s, t) = (s, ψ̄(ϕ(s))) holds for
an arbitrary (x, y) ∈ M , where ψ̄ is the degen-
eration such that ψ̄ ◦ ψ is the identity map of
T .
Proof. The assertion is obvious since ψ̄ ◦ ψ is
the identity map of T . �

Let T = (V (T ), <) be a rooted tree and a
and b be two nodes in V (T ) such that p(a) =
p(b). We define V (T )/{(a, b)} and </{(a,b)} as
follows.

V (T )/{(a, b)} = V (T ) \ {a, b} ∪ {ν}.
For distinct x, y ∈ V (T )/{(a, b)}, x </{(a,b)}

y holds if and only if one of the following con-
ditions holds.
( 1 ) x = ν, y = ν and x < y.
( 2 ) x = ν and y > a (therefore, y > b).
( 3 ) y = ν and x < a ∨ x < b.
Lemma 29. (V (T )/{(a, b)}, </{(a,b)}) is a
rooted tree.
Proof. First, we show that x </{(a,b)} z if
x </{(a,b)} y and y </{(a,b)} z. If x, y, z = ν,
x < y and y < z hold, and therefore x < z
holds. If x = ν, a < y and y < z hold, and
therefore a < z holds. If y = ν, x < a ∨ x < b
and z > a ∧ z > b hold, and therefore x < z
holds. If z = ν, x < y and y < a ∨ y < b hold,
and therefore x < a ∨ x < b holds. Hence, we
have x </{(a,b)} z for each case.

Secondly, we show that Ax = {y ∈
V (T )/{(a, b)}|y > x} is totally ordered. Take

arbitrary distinct y, z ∈ Ax If y = ν and z = ν,
y > x ∧ z > x for x = ν or y > a ∧ z > a
for x = ν holds. In any case, y < z or y > z
holds, and therefore we have y </{(a,b)} z or
y >/{(a,b)} z. If y = ν, x < a∨ x < b and x < z
hold, and therefore one of a < z, b < z, z < a
and z < b holds. Hence, we have ν </{(a,b)} z
or ν >/{(a,b)} z. �

Definition 16. Let T be a tree. For distinct
a, b in V (T ) such that p(a) = p(b), T/{(a, b)}
denotes the tree (V (T )/{(a, b), </{(a,b)}}).
Proposition 30. Let S and T be two trees.
Any singleton tree mapping M = {(s, t)} from
S to T is alignable.
Proof. Let V (Ū) be V (S)∪ V (T ) and define a
relation <Ū such that x <Ū y holds, for distinct
x, y ∈ V (Ū), if and only if one of the following
conditions holds.
( 1 ) x, y ∈ V (S) and x < y,
( 2 ) x, y ∈ V (T ) and x < y,
( 3 ) x ∈ V (S) and y ∈ V (T [x > t]),
( 4 ) x ∈ V (T (t)) and y ∈ V (S[x > s]).

It is easy to show that Ū = (V (Ū), <Ū ) is a
rooted tree, and the proof is left to the reader.

We have p(s) = p(t) in Ū , since As = At =
V (S[x > s]) ∪ V (T [x > t]) by definition of <Ū .

Thus, we can apply Lemma 29 to Ū , and
U = (V (U), <) = Ū/{(s, t)} is a rooted tree.
Moreover, it is easy to see that natural inclusion
maps ϕ : V (S) → V (U) and ψ : V (T ) → V (U)
are embeddings. In particular, since ϕ(s) =
ψ(t) holds, M = {(s, t)} is an alignable map-
ping. �

Lemma 31. Let η : S → S̄ is an embedding.
For a tree mapping M , the following properties
are equivalent.
( 1 ) M is alignable.
( 2 ) M̄ = {(η(s), t)|(s, t) ∈M} is alignable.
Proof. By definition of an alignable mapping,
( 2 )⇒( 1 ) is trivial.

In the following, we show ( 1 )⇒( 2 ). Let
(U,ϕ, ψ) be a union on M : hence, the em-
beddings ϕ : S → U and ψ : T → U satisfy
ϕ(s) = ψ(t) for all (s, t) ∈M . By Theorem 16,
we only have to take care of the following two
cases.
( 1 ) η is not surjective and red(η) = 0
( 2 ) �(η) = S̄ and red(η) = 1.
Case (1): Letting V (Ū) = V (S̄[x ∈ η(S)]) ∪
V (U), we define the relation<Ū over V (Ū) such
that, for distinct x, y ∈ V (Ū), x <Ū y if and
only if one of the following holds.



42 IPSJ Transactions on Mathematical Modeling and Its Applications Dec. 2005

( a ) x, y ∈ V (S̄[x ∈ η(S)]) and x < y;
( b ) x, y ∈ V (U) and x < y;
( c ) x ∈ V (U) and y ∈ V (S̄[x > η(r(S))]).
It is easy to see that Ū = (V (Ū), <Ū ) is a
tree, and the proof is left to the reader. Let
α : V (S̄[x ∈ η(S)]) → V (Ū) and β : V (U) →
V (Ū) denote the natural inclusions. We de-
fine ϕ̄ : V (S̄) → V (Ū) by ϕ̄(x) = α(x) if
x ∈ V (S̄[x ∈ η(S)]) and ϕ̄(x) = β(ϕ(η−1(x))) if
x ∈ η(V (S)). Also, we define ψ̄ : V (T ) → V (Ū)
by ψ̄ = β ◦ ψ. It is easy to see that both ϕ̄
and ψ̄ are embeddings, and the proof is left to
the reader. Since ϕ̄(η(s)) = β(ϕ(η−1(η(s)))) =
β(ϕ(s)) = β(ψ(t)) = ψ̄(t), we have the conclu-
sion in the case of (1).
Case (2): In the following, we use the following
notation.
• V (S̄) \ η(V (S)) = {σ}
• p(σ) = η(p)
• ch(σ) = {η(c1), . . . , η(cn)}

Now, letting V (Ū) = V (U)∪{σ̄}, we define the
relation <Ū over V (Ū) such that, for distinct
x, y ∈ V (Ū), x <Ū y if and only if one of the
following holds.
( 1 ) x, y ∈ V (U) and x < y.
( 2 ) x = σ̄ and y ≥ ϕ(p).
( 3 ) x ∈ V (U), ∃(z ∈ V (U))[ϕ(ci) ≤ z <

ϕ(p) ∧ x ≤ z] and y = σ̄.
It is easy to see that Ū = (V (Ū), <Ū ) is a tree,
and the proof is left to the reader. Letting α :
V (U) → V (Ū) be the natural inclusion, we de-
fine ϕ̄ : V (S̄) → V (Ū) by ϕ̄(x) = α(ϕ(η−1(x)))
if x = σ and ϕ̄(σ) = σ̄. Further, we define
ψ̄ = α ◦ ψ : V (T ) → V (Ū). It is easy to see
that both ϕ̄ and ψ̄ are embeddings, and the
proof is left to the reader. Since ϕ̄(η(s)) =
α(ϕ(η−1(η(s)))) = α(ϕ(s)) = α(ψ(t)) = ψ̄(t),
we have the conclusion in the case of (2). �

Lemma 32. Let M ′ be a subset of M . If M is
alignable, then M ′ is also alignable.
Proof. A union on M is also a union on M ′. �

By definition of a tree mapping, for (s, t) ∈
M , if s = r(S), then t = r(T ).
Lemma 33. Let (U,ϕ, ψ) be a union on M .
Then, there exist ϕ′ and ψ′ such that (U,ϕ′, ψ′)
is also a union on M and ϕ′(r(S)) = ψ′(r(T )).

In particular, the following are equivalent.
( 1 ) M is alignable.
( 2 ) M ∪ {(r(S), r(T ))} is alignable.
Proof. Let (s, t) ∈ M . ϕ(r(S)) and ψ(r(T ))
are comparable, since they are ancestors of
ϕ(s) = ψ(t). If ϕ(r(S)) = ψ(r(T )), there is

nothing to prove. Without loss of generality,
we may assume that ϕ(r(S)) < ψ(r(T )). De-
fine ϕ′ : V (S) → V (U) by ϕ′(x) = ϕ(x) if
x = r(S) and ϕ′(r(S)) = ψ(r(T )). In the fol-
lowing, we see that ϕ′ is an embedding. First,
let x, y ∈ V (S) satisfy x < y. If y = r(S),
ϕ′(x) < ϕ′(y) holds since ϕ is a homomorphism.
If y = r(S), ϕ′(x) = ϕ(x) < ϕ(r(S)) < ϕ′(r(S))
holds. Thus, ϕ′ is a homomorphism. The prop-
erty x < y if ϕ′(x) < ϕ′(y) is also easily proved.
Consequently, we see that ϕ′ is an embedding.

Since (2)⇒(1) follows Lemma 32, we only
have to show (1)⇒(2). As shown in the
first part, if (U,ϕ, ψ), we have another union
(U,ϕ′, ψ′) such that ϕ′(r(S)) = ψ′(r(T )).
Therefore, M ∪ {(r(S), r(T ))} is alignable. �

In Lemma 34, we use the following notations.
• Si denotes the tree S(σi) for ch(r(S)) =

{σ1, . . . , σm}.
• Ti denotes the tree T (τi) for ch(r(T )) =

{τ1, . . . , τn}.
• By symmetry, we assume that m ≤ n.
• Mi ⊂ V (Si) × V (Ti) for i = 1, . . . , m

denotes the tree mapping {(s, t) ∈ M |s ∈
V (Si) ∧ t ∈ V (Ti)}

Lemma 34. If M =
⋃m
i=1Mi and each Mi is

alignable, then M is alignable.
Proof. Let (Ui, ϕi, ψi) be a union onMi: hence,
the embeddings ϕi : Si → Ui and ψi : Ti → Ui
satisfy ϕi(s) = ψi(t) for all (s, t) ∈Mi.

Letting V (U) be {ρ} ∪ ⋃m
i=1 V (Ui) ∪⋃n

i=m+1 V (Ti), we define the relation <U so
that, for distinct x, y ∈ V (U), x <U y if and
only one of the following holds.
( 1 ) 1 ≤ i ≤ m, x, y ∈ V (Ui) and x < y;
( 2 ) m < i ≤ n, x, y ∈ V (Ti) and x < y;
( 3 ) y = ρ.
It is easy to see U = (V (U), <U ) is a tree, and
the proof is left to the reader.

Let αi : V (Ui) → V (U) for i ∈ {1, . . . ,m}
and βi : V (Ti) → V (U) for i ∈ {m + 1, . . . , n}
be the natural inclusions. Thus, we define
ϕ : V (S) → V (U) and ψ : V (T ) → V (U)
as follows: ϕ(x) = αi(ϕi(x)) if x ∈ V (Si);
ϕ(r(S)) = ρ; ψ(x) = αi(ψi(x)) if x ∈ V (Ti)
for i ∈ {1, . . . ,m}; ψ(x) = βi(x) if x ∈ V (Ti)
for i ∈ {m + 1, . . . , n}; and ψ(r(T )) = ρ. It
is easy to see that ϕ and ψ are embeddings.
Since ϕ(s) = αi(ϕi(s)) = αi(ψi(t)) = ψ(t) for
(s, t) ∈Mi, we have the conclusion. �
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6. Tree Mapping Condition for Align-
ment of Trees

Now we are ready to prove our main theo-
rem, where the tree mapping condition for the
alignment of trees is shown.
Theorem 35. For a tree mapping M from a
tree S to a tree T , the following two properties
are equivalent.
( 1 ) M is alignable.
( 2 ) ∀(s1, t1), (s2, t2), (s3, t3) ∈ M [s1 � s2 <

s1 �s3 ⇒ t2 �t3 = t1 �t3].
Proof. ( 1 )⇒( 2 ): Let (U,ϕ, ψ) be a union
on M : hence, ϕ : S → U and ψ : T → U
are embeddings such that ϕ(s) = ψ(t) for an
arbitrary (s, t) ∈ M . Further, ψ̄ denote the
degeneration such that ψ̄ ◦ ψ is the identity
map of T (Theorem 27). Suppose that (s1, t1),
(s2, t2), and (s3, z3) are any three elements of
M such that s1 � s2 < s1 � s3. We have
ϕ(s1)�ϕ(s2) < ϕ(s1)�ϕ(s3) by Corollary 11,
and therefore ϕ(s2) � ϕ(s3) = ϕ(s1) � ϕ(s3).
Also, we have ψ̄(ϕ(s2))� ψ̄(ϕ(s3)) = ψ̄(ϕ(s2)�
ϕ(s3)) = ψ̄(ϕ(s1) � ϕ(s3)) = ψ̄(ϕ(s1)) �
ψ̄(ϕ(s3)) by Proposition 21. Since ψ̄(ϕ(s1)) =
t1, ψ̄(ϕ(s2)) = t2 and ψ̄(ϕ(s3)) = t3 hold by
Lemma 28, we conclude that t2 �t3 = t1 �t3.
( 2 )⇒( 1 ): The assertion in the case of |M | =
1 directly follows Proposition 30.

Let |M | ≥ 2 for the induction step. Let M
be the set of node pairs {(s1, t1), . . . , (sn, tn)},
X ⊆ V (S) denote the set of nodes {s1, . . . , sn},
and Y ⊆ V (T ) denote the set of nodes
{t1, . . . , tn}.

It suffices to prove the assertion of the theo-
rem under the hypothesis that lca(X) = r(S)
and lca(Y ) = r(T ). In fact, for the embed-
dings α = Ex≤lca(X) : S(lca(X)) → S and β =
Ex≤lca(Y ) : T (lca(Y )) → T , Lemma 31 asserts
that, if M ′ = {(α−1(s), β−1(t))|(s, t) ∈ M} is
alignable, then M is alignable.

Also, we may assume that M does not con-
tain (r(S), r(T )), since, if M contains it, we
only have to eliminate it by Lemma 33.

We now choose Xk = {s1, . . . , sk}, by re-
ordering si’s if necessary, such that
• k ≥ 1,
• lca(Xk) is not the root of S, and
• for any x ∈ X \Xk, lca(Xk ∪ {x}) = r(S).

Note that k < n. Let us denote by Yk the set
of nodes {t1, . . . , tk} corresponding to Xk.
Claim 1. For any i ≤ k and j > k, si � sj is
the root of S.

Proof. The two nodes si � sj and lca(Sk) are
comparable since si ∈ Xk. Now assume that
si � sj ≤ lca(Xk). It follows that lca(Sk ∪
{sj}) = lca(Xk). This contradicts the defini-
tion of Xk. Hence lca(Xk) < si � sj , and in
particular si � sj = lca(Xk ∪ {sj}). This im-
plies that si�sj is the root of S. �

Let A = {x ∈ ch(r(S))|∃(i)[1 ≤ i ≤ k ∧ si ≤
x]} and B = {x ∈ ch(r(S))|∃(j)[k < j ≤ n ∧
sj ≤ x]}. We have A∩B = ∅, since, if x ∈ A∩B,
we have si�sj ≤ x for 1 ≤ i ≤ k and k < j ≤ n,
as is contradictory with Claim 1.

Thus, by inserting nodes as children of r(S)
if necessary, we may assume the following prop-
erties (Lemma 31 asserts that, if M is alignable
after insertion of nodes, it is alignable without
the insertion):
• the children of r(S) are only two nodes a

and b,
• lca(Sk) ≤ a, and
• lca(X \ Sk) ≤ b.
Now, to apply similar discussion to Yk, we

claim the following.
Claim 2. For any i ≤ k and j > k, ti � tj is
the root of T .
Proof. We start by showing that, for any i′ ≤ k
and j′ > k, ti � tj = ti′ � tj′ . By Claim 1, we
now have si � si′ < si � sj . Hence, since M
satisfies (2) in the statement, ti′ � tj = ti � tj
holds. In the same way, we have sj�sj′ ≤ b <
si′ �sj and therefore ti′ � tj = ti′ � tj′ . Hence,
we conclude ti � tj = ti′ � tj′ . Therefore, we
have ti � tj = ti′ � tj′ . Next, we show the
assertion of the claim. Since ti�tj = ti′ �tj′ for
all i′ ≤ k and j′ > k, we have lca(Y ) ≤ ti� tj .
Since lca(Y ) is the root of T , ti� tj is also the
root of T . �

Therefore, in the same way as the case of S,
by inserting nodes as children of r(T ) if neces-
sary, we may assume the following properties:
• the children of r(T ) are only two nodes α

and β,
• lca(Yk) ≤ α, and
• lca(Y \ Yk) ≤ β.

By the induction hypothesis, Mk={(s1, t1), . . . ,
(sk, tk)} is an alignable mapping from S(a) to
T (α), and M \ Mk is an alignable mapping
from S(b) to T (β). Then, by Lemma 34, M
is alignable. �



44 IPSJ Transactions on Mathematical Modeling and Its Applications Dec. 2005

7. Conclusion

In this paper, we have introduced a new the-
oretical formulation of the tree edit distance,
which allows us to describe distinct semantics
of tree edit distance measures. We have focused
on a significant distance measure, the alignment
of trees, and shown the tree mapping condition
of the alignment of trees, which has remained
unknown in prior work. By using our formula-
tion, we have redefined the alignment of trees.
We then established the declarative definition
of the alignment of trees.

The theoretical framework that we have for-
mulated in the paper is generally applicable to
all the edit-based approaches in trees. Then,
this framework can be utilized for the analysis
of the other edit-based tree matching problems
as well.
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