
Vol. 46 No. SIG 17(TOM 13) IPSJ Transactions on Mathematical Modeling and Its Applications Dec. 2005

Regular Paper

Polynomial Time Learnability of a Sub-class of Linear Languages

Yasuhiro Tajima,† Yoshiyuki Kotani† and Matsuaki Terada†

We propose some PAC like settings for a learning problem of a sub-class of linear languages,
and show its polynomial time learnability in each of our settings. Here, the sub-class of linear
languages is newly defined, and it includes the class of regular languages and the class of even
linear languages. We show a polynomial time learning algorithm in either of the following
settings with a fixed but unknown probability distribution for examples. (1) The first case
is when the learner can use randomly drawn examples, membership queries, and a set of
representative samples. (2) The second case is when the learner can use randomly drawn
examples, membership queries, and both of the size of a grammar which can generate the
target language and d. Where d is the probability such that the rarest rule in the target
grammar occurs in the derivation of a randomly drawn example. In each case, for the target
language Lt, the hypothesis Lh satisfies that Pr[P (Lh∆Lt) ≤ ε] ≥ 1 − δ for the error
parameter 0 < ε ≤ 1 and the confidential parameter 0 < δ ≤ 1.

1. Introduction

In this paper, we propose some PAC 8) like
settings for a learning of a sub-class of lin-
ear languages, and show its polynomial time
learnability on each of our settings. The sub-
class of linear languages is newly defined by
us and called Mode Selective Linear Languages
(MSLLs). It includes the class of regular lan-
guages and the class of even linear languages 7).
The class of linear grammars which generates
MSLLs is called Mode Selective Linear Gram-
mars (MSLGs). In grammatical inference, it
has been shown that queries and additional in-
formation for the learner are powerful for poly-
nomial time exact learning 1),2),5),7), while there
are not many results about PAC learnability or
PAC like learning settings. Thus, our result
contributes to understanding a PAC learning
of grammars.

At first, we show an exact learning algorithm
for MSLLs via membership queries and a set
of representative samples. Here, a set of repre-
sentative samples is a subset of the target lan-
guage given to the learner apriori 1). The time
complexity of the exact learning algorithm is
bounded by a polynomial of the following pa-
rameters; the time complexity to find a sym-
metric difference of MSLGs, n (the size of a
grammar which generates the target language),
and l (the maximum length of a word in a given
representative samples). The main propositions
of this paper is to show that, using this exact

† Institute of Symbiotic Science and Technology,
Tokyo University of Agriculture and Technology

learning algorithm, the class of MSLLs is poly-
nomial time learnable in either of the following
settings.
(1) The first case is when the learner can use

polynomial number of random examples,
membership queries, and a set of repre-
sentative samples. Here, random exam-
ples are drawn according to a distribu-
tion on Σ∗ which is independent of both
of the learner and the teacher.

(2) The second case is when the learner can
use polynomial number of random exam-
ples, membership queries and both of n
and d. Where n is the size of a grammar
which generates the target language, and
d is the probability such that the rarest
rule in the target grammar occurs in the
derivation of a randomly drawn example.

In each case, for the target language Lt, the hy-
pothesis Lh satisfies the PAC criterion that is
Pr[P (Lh∆Lt) ≤ ε] ≥ 1−δ for the error param-
eter 0 < ε ≤ 1 and the confidential parameter
0 < δ ≤ 1.

We note that both of our setting differs from
standard PAC learning, and the parameter d
depends on the probability distribution of ex-
amples.

In the first case, the time complexity to con-
struct a hypothesis is bounded by a polynomial
of n, le (the maximum length of a word in ran-
dom examples or a set of representative sam-
ples), and PAC learning parameters ε and δ.
In the second setting, the time complexity is
bounded by a polynomial of d, n, le ε and δ.

In addition, for a corollary of the second
case, we show that if the learner does not have

20

Vol. 46 No. SIG 17(TOM 13) Polynomial Time Learnability of Linear Languages 21

to terminate with a small probability, a hy-
pothesis can be constructed in polynomial time
only from random examples and membership
queries.

2. Preliminaries

A context-free grammar (CFG) is a 4-tuple
G = (N,Σ , P, S) where N is a finite set of non-
terminals, Σ is a finite set of terminals, P is a
finite set of rewriting rules (rules) and S ∈ N
is the start symbol. Let σ be the word whose
length is 0. Assume that all CFGs are σ-free.
In this paper, |β| denotes the length of β if β is
a string and |W | denotes the cardinality of W
if W is a set.

Let β, γ, γ′ ∈ N∗ and A → β be in P . Then
γAγ′ ⇒

G
γβγ′ denotes the derivation from γAγ′

to γβγ′ in G. We define ∗⇒
G

to be the reflexive
and transitive closure of ⇒

G
. A word generated

from γ ∈ (N ∪ Σ)∗ by G is w ∈ Σ∗ such that
γ

∗⇒
G

w and the language generated from γ by

G is denoted by LG(γ) = {w ∈ Σ∗ | γ
∗⇒
G

w}.
A word generated from S by G for the start
symbol S is called a word generated by G and
the language generated by G is denoted by
L(G) = LG(S). A nonterminal A ∈ N is said
to be reachable if S

∗⇒
G

wAβ for some w ∈ Σ∗,
β ∈ N∗, and a nonterminal B ∈ N is said to
be live if LG(B) �= ∅. For two CFGs G1 and
G2, L(G1)∆L(G2) denotes the set {w ∈ Σ∗ |
w ∈ (L(G1)−L(G2))∪ (L(G2)−L(G1))} and a
word w ∈ L(G1)∆L(G2) is called a symmetric
difference.

A CFG G is a simple deterministic grammar
iff
• every rule in G is of the form A → aBC or

A → aB or A → a for a ∈ Σ and A, B, C ∈
N , and

• there is at most one rule which is of the
form A → aβ in P where β ∈ N∗ for every
pair of a ∈ Σ and A ∈ N .

The language generated by a simple determin-
istic grammar is called a simple deterministic
language.

A CFG G is a linear grammar iff every rule
in G is of the form A → aBb or A → aB or
A → Bb or A → a for a, b ∈ Σ and A, B ∈ N .
The language generated by a linear grammar
is called a linear language. A linear grammar
Ge = (Ne,Σ , Pe, Se) is an even linear grammar
iff every rule in Ge is of the form A → aBb or

A → a or A → ab for a, b ∈ Σ and A, B ∈ Ne.
The language generated by an even linear gram-
mar is called an even linear language. For any
other definitions about formal language theo-
ries, the reader refers to the text book 3).

Let D be a probability distribution over Σ∗
and let Pr(w) be the probability for w ∈ Σ∗.
Let Lh be a hypothesis and Lt be the target
language. The learning from randomly drawn
examples is called a PAC learning if a hypoth-
esis Lh satisfies

Pr[P (Lh∆Lt) ≤ ε] ≥ 1 − δ (1)
where P (Lh∆Lt) is the probability of difference
between Lh and Lt, i.e. the total of the prob-
ability for every w ∈ Lh∆Lt on the distribu-
tion D. Even though the learner can use either
some queries or additional information, we call
Lh a PAC hypothesis if Lh satisfies (1). For
any other definitions about PAC learning, the
reader refers to the text book 4).

A membership query MEMBER(w) for w ∈
Σ∗ on a linear language Lt is defined as follows.

MEMBER(w) =
{

1 . . . if w ∈ Lt,
0 . . . if w �∈ Lt.

For a CFG G and x ∈ Σ∗, we can solve a mem-
bership query in O(|x|3) time.

In this paper, we assume that the learner
can take a response of MEMBER(w) for any
w ∈ Σ∗ in unit time, and can take an example
which is a pair of an example word w ∈ Σ∗ and
whether w ∈ Lt or not drawn according to D
in unit time, too.

3. Mode Selective Linear Languages

We define a new sub-class of linear languages
to show the learnability via membership queries
and examples.

3.1 Definitions and Properties
A linear grammar G = (N,Σ , P, S) which

satisfies the following is called a mode selective
linear grammar (MSLG):
• If a rule A → aBc is in P for A, B ∈ N and

a, c ∈ Σ , then
(1) there is no rule in P such as A →

aCc for any C(�= B) ∈ N , and
(2) neither A → aD nor A → Dc is in P

for any D ∈ N .
• If a rule A → aB is in P for A, B ∈ N and

a ∈ Σ , then
(1) there is no rule in P such as A → aC

for any C(�= B) ∈ N , and
(2) neither A → aDb nor A → Db is in

P for any b ∈ Σ and any D ∈ N .

22 IPSJ Transactions on Mathematical Modeling and Its Applications Dec. 2005

• If a rule A → Ba is in P for A, B ∈ N and
a ∈ Σ , then
(1) there is no rule in P such as A → Ca

for any C(�= B) ∈ N , and
(2) neither A → bDa nor A → bD is in

P for any b ∈ Σ and any D ∈ N .
In other words, when the derivation for w ∈
L(G) is proceeded to S

∗⇒
G

uAv where u, v, z ∈
Σ∗, a, b ∈ Σ and uazbv = w, then there exists
exactly one rule which can be applied to the
first derivation of A

∗⇒
G

azb. It implies that every
MSLG is unambiguous.

We define a mode selective linear language
(MSLL) as the language generated by an
MSLG. Throughout this paper, we assume that
the target language is an MSLL denoted by Lt

and Gt denotes some MSLG such that L(Gt) =
Lt.

Theorem 1 The class of MSLLs contains
the class of regular languages.
Proof : For a regular grammar Gr =
(Nr,Σ , Pr, Sr), all rules can be written of the
form A → aB or A → a where A, B ∈ Nr and
a ∈ Σ . If A → aB is in Pr then A → aC is
not in Pr for any C ∈ Nr such that C �= B.
Thus Gr is an MSLG. On the other hand,
L = {aibi | i ≥ 1} is not a regular language
but an MSLG G = (N, {a, b}, P, A) where

N = {A, B},
P = {A → aB,

B → aBb, B → b}
is L(G) = L. �

Theorem 2 The class of MSLLs is incom-
parable to the class of simple deterministic lan-
guages.
Proof : The class of simple deterministic lan-
guages is incomparable to the class of linear
languages. Thus, there exists L which is a sim-
ple deterministic language but is not an MSLL.
Now, L1 = {aibi | i ≥ 1} ∪ {aici | i ≥ 1} is not
a simple deterministic language but an MSLG
G1 = (N1, {a, b}, P1, S) where

N1 = {S, A, B},
P1 = {S → Ab, S → Bc,

A → aAb, A → a,
B → aBc, B → a}

satisfies that L(G1) = L1.
Thus this theorem holds. �

Theorem 3 The class of MSLLs contains
the class of even linear languages.
Proof : The language Lm = {(ac)ibi |

i ≥ 1} is an MSLL represented by Gm =
(Nm, {a, b, c}, Pm, S) such that

Nm = {S, A, B, C},
Pm = {S → Bb,

B → aCb, B → Ac,
A → a, C → cB}

but Lm is not an even linear language. On the
other hand, every even linear grammar Ge =
(Ne,Σ , Pe, Se) can be written in an MSLG by
the following algorithm.
(1) For every subset X ⊆ Ne, make a new

nonterminal denoted by X, i.e. NM =
Ne ∪ {X | X ⊆ Ne}.

(2) For every 3-tuple (A, a1, a2) where A ∈
Ne and a1, a2 ∈ Σ , let P(A,a1,a2) =
A → a1Xa2 where X is a new nonter-
minal such that X = {C ∈ Ne | A →
aCb in Pe}. Then, let P0 be the union
of P(A,a,b) for every 3-tuple (A, a, b), i.e.
P0 = {P(A,a,b) | A ∈ Ne, a, b ∈ Σ}.

(3) Let P ′
0 = {A → ab | A ∈ Ne, a, b ∈

Σ , A → ab in Pe} and P ′′
0 = {A → a |

A ∈ Ne, a ∈ Σ , A → a in Pe}.
(4) For every subset X ⊆ Ne and every pair

of b1, b2 ∈ Σ , let P(X,b1,b2) = X →
b1Y b2 where Y = {C ∈ Ne | B →
b1Cb2 in Pe for some B ∈ X}. Then,
let P1 = {P(X,c,d) | X ⊆ Ne, c, d ∈ Σ}.

(5) Let P ′
1 = {X → ab | X ⊆ Ne, a, b ∈

Σ , B → ab in Pe for some B ∈ X} and
P ′′

1 = {X → a | X ⊆ Ne, a ∈ Σ , B →
a in Pe for some B ∈ X}.

(6) Let PM = P0 ∪ P ′
0 ∪ P ′′

0 ∪ P1 ∪ P ′
1 ∪ P ′′

1 ,
then PM has at most one rule which is
of the form A → aBb for every 3-tuple
(A, a, b) where A, B ∈ NM , a, b ∈ Σ .

Now, we show that L(Ge) = L(GM =
(NM ,Σ , PM , Se)). Suppose that

Se ⇒
GM

a1X1b1 ⇒
GM

a1a2X2b2b1 ⇒
GM

· · ·
⇒
GM

a1a2 · · · anwbnbn−1 · · · b1

for ai, bi ∈ Σ , Xi ∈ NM (i = 1, 2, · · ·n) and w ∈
Σ+ such that |w| ≤ 2. From the steps 4 and
5 of the above algorithm, there exist Ai ∈ Xi

(i = 1, 2, · · ·n) such that Ai → ai+1Ai+1bi+1 is
in Pe for i = 1, 2, · · ·n − 1 and An → w is in
Pe. It implies that if Se ⇒

GM

u then Se ⇒
Ge

u for

any u ∈ Σ∗.
On the other hand, if

Se ⇒
Ge

a1A1b1 ⇒
Ge

a1a2A2b2b1 ⇒
Ge

· · ·
⇒
Ge

a1a2 · · · anwbnbn−1 · · · b1

Vol. 46 No. SIG 17(TOM 13) Polynomial Time Learnability of Linear Languages 23

for ai, bi ∈ Σ , Ai ∈ Ne (i = 1, 2, · · ·n) and
w ∈ Σ+ such that |w| ≤ 2. There also exist
Xi ∈ NM (i = 1, 2, · · ·n) such that Ai ∈ Xi

(i = 1, 2, · · ·n), Xi → ai+1Xi+1bi+1 is in PM

for i = 1, 2, · · ·n − 1 and Xn → w is in PM .
It implies that if Se ⇒

Ge

u then Se ⇒
GM

u for any

u ∈ Σ∗.
We can conclude that L(Ge) = L(GM =

(NM ,Σ , PM , Se)).
(7) For every pair of A ∈ NM and a ∈ Σ ,

let P2(A, a) = {A → aα in PM | α ∈
(NM ∪ Σ)+}. For every P2(A, a) �= ∅,
• add a new nonterminal B′

(A,a) to
NM ,

• let PB′
(A,a)

= {B′
(A,a) → α | A →

aα in P2(A, a)},
• delete all rules in P2(A, a) from PM ,

and
• add A → aB′

(A,a) and all rules in
PB′

(A,a)
to PM .

Now, GM = (NM ,Σ , PM , S) is an MSLG.
Thus, this lemma holds. �

Lemma 4 Let G = (N,Σ , P, S) be an
MSLG and w ∈ L(G). Consider the derivation

S
∗⇒
G

w1Aw2
∗⇒
G

w

where w1aubw2 = w for A ∈ N , w1, w2 ∈ Σ∗,
a, b ∈ Σ and u ∈ Σ+. Then, there is exactly
one rule in P for a derivation of A⇒

G
β where

β ∈ (N ∪ Σ)+ such that aub ∈ LG(β) and β �=
A.
Proof : From the definition of an MSLG, P in-
cludes exactly one of A → aB, A → Bb or
A → aBb for some B ∈ N . Thus, there exists
exactly one rule in P for the derivation A⇒

G
β.
�

From this lemma, any MSLG is not ambiguous
and it holds that aub ∈ L(A) iff w1aubw2 ∈ Lt.
That is, we can observe behavior of a nonter-
minal by membership queries for Lt.

3.2 Representative Samples
We define a set of representative samples of

an MSLL L to develop learning algorithms for
MSLLs.

Definition 5 Let G = (N,Σ , P, S) be an
MSLG such that every A ∈ N is reachable and
live. Let Q be a finite subset of L(G). Then Q
is a set of representative samples (RS) of G iff
the following holds.
• For any A → aBc in P where A, B ∈ N

and a, c ∈ Σ , there exists a word w ∈ Q
such that S

∗⇒
G

xAy⇒
G

xaBcy
∗⇒
G

w for some

x, y ∈ Σ∗.
�

From this definition, for any MSLG G =
(N,Σ , P, S), there exists a set of RS Q such
that |Q| ≤ |P |.

Definition 6 For an MSLL L, a finite set
Q ⊆ L is a set of RS iff there exists an MSLG
G = (N,Σ , P, S) such that L(G) = L and Q is
a set of RS of G. �

We note that the definition of a set of RS for
an MSLL is independent of representation. As-
sume that both G1 and G2 are MSLGs and
L(G1) = L(G2) = Lt holds, then a set Q is
a set of RS for Lt even though Q is a set of RS
for G1 and not for G2.

Let G = (N,Σ , P, S) be an MSLG. For every
A ∈ N , define uA, yA, wA ∈ Σ∗ as satisfying
the following.
• There exists a derivation such that

S
∗⇒
G

uAAyA
∗⇒
G

uAwAyA.
• It holds that |uA|+ |yA| ≤ |u|+ |y| for any

u, y ∈ Σ∗ such that S
∗⇒
G

uAy.

• It holds that |wA| ≤ |w| for any w ∈ Σ+

such that w ∈ LG(A).
Then,

Q = {uAayA | A ∈ N, A → a is in P}
∪{uAvBwBxByA | vB , xB ∈ Σ∗,

A ∈ N, A → vBBxB is in P}
is a set of RS for G.

4. The Exact Learning Algorithm

In this section, we describe the exact learning
algorithm for MSLLs via membership queries
and a set of RS. This algorithm is constructed
by applying the learning algorithm for simple
deterministic languages proposed in our previ-
ous work 6).

4.1 The Algorithm
Let Q be the given set of RS. The following

R is the set of candidates for nonterminals.

R = {(x, y, z) | x, z ∈ Σ∗, y ∈ Σ+,

x · y · z ∈ Q}
and we define the observation T : R × Σ∗ →
{0, 1} as

T ((u, v, w), x) = MEMBER(u · x · w).
Assume that W ⊆ Σ∗ is a set of words which
will be used for partitioning R. At the begin-
ning of the learning algorithm, W = ∅ and it
grows up step by step. We define an equivalence
relation W= over R such that

24 IPSJ Transactions on Mathematical Modeling and Its Applications Dec. 2005

r
W= r′ ⇐⇒ T (r, w) = T (r′, w)

for any w ∈ W
where r, r′ ∈ R. In addition, we define the
equivalence class BW

=
(r) = {r′ ∈ R | r′ W= r}

for r ∈ R.
Now, a CFG Gh = (Nh,Σ , Ph, Sh) is defined

as follows where σ is the word whose length is
0.

Nh = {BW
=

(r) | r ∈ R},
Sh = BW

=
((σ, w, σ)),

where w ∈ Q, and
Ph = Ps ∪ Pl ∪ Pr ∪ Pb.

Here,
Ps = {BW

=
((u1, a, u3)) → a | a ∈ Σ ,

(u1, a, u3) ∈ R},
Pl = {BW

=
((u1, au2, u3)) →
a · BW

=
((u1a, u2, u3)) | a ∈ Σ ,

(u1, au2, u3), (u1a, u2, u3) ∈ R},
Pr = {BW

=
((u1, u2a, u3)) →
BW

=
((u1, u2, au3)) · a | a ∈ Σ ,

(u1, u2a, u3), (u1, u2, au3) ∈ R},
Pb = {BW

=
((u1, au2b, u3)) →

a · BW
=

((u1a, u2, bu3)) · b | a, b ∈
Σ , (u1, au2b, u3), (u1a, u2, bu3)

∈ R}.
A subset of Ph is a candidate for a hypothesis

rule set. From this CFG Gh, the learner deletes
some rules according to following conditions.

Condition 7 For every pair of u1, u2 ∈
Σ∗ and every pair of rA, rB ∈ R such that
BW

=
(rA) → u1BW

=
(rB)u2 is in Ph, if there ex-

ists w ∈ W such that T (rA, u1wu2) �= T (rB, w)
then delete BW

=
(rA) → u1BW

=
(rB)u2 from Ph.

�

In other words, when BW
=

(rB) should generate
w in a hypothesis but BW

=
(rA) cannot generate

u1wu2 in Gh or vice versa, the rule BW
=

(rA) →
u1BW

=
(rB)u2 is deleted from candidates.

Condition 8 For every pair of u1, u2 ∈
Σ∗ and every pair of rA, rB ∈ R such that
BW

=
(rA) → u1BW

=
(rB)u2 is in Ph, if there ex-

ists w ∈ W such that T (rB, w) = 1 and
w �∈ LGh

(BW
=

(rB)) then delete BW
=

(rA) →
u1BW

=
(rB)u2 from Ph. �

This condition means that if BW
=

(rB) should
generate w in a hypothesis but there are not
enough rules in Gh to generate w then all
rules whose right-hand side contains BW

=
(rB)

are deleted.
When the above deletions are repeated |Ph|

times, there is no rule which satisfies either of
the above conditions. Such a set of rules Ph is
called reduced.

The reduced Ph satisfies the following lemma.
Here, let PΣ be the set of all rules in Ph whose
right-hand side is a terminal such as A → a.

Lemma 9 For any set of rules P1 such that
PΣ ⊆ P1 ⊆ Ph and G1 = (Nh,Σ , P1, Sh) is an
MSLG, it holds that

T (r, w) = 1 ⇐⇒ BW
=

(r) ∗⇒
G1

w

for any r ∈ R such that BW
=

(r) ∈ Nh is reach-
able and live in G1 and any w ∈ W .
Proof : We prove this lemma by induction on
the length of w.

Base step: Assume that |w| = 1. Then, from
the definition of T and the assumption of P1, it
holds that T (r, w) = 1 ⇐⇒ BW

=
(r) → w is in

P1. Thus, T (r, w) = 1 ⇐⇒ BW
=

(r) ∗⇒
G1

w holds.

Induction step: Now suppose that this lemma
holds for any w ∈ Σ∗ such that |w| ≤ n. Let
u ∈ W such that |u| = n + 1.

Suppose that T (r, u) = 1. Then, from Con-
dition 8, if u �∈ LGh

(BW
=

(r)) then all rules
in P1 whose right-hand side contains BW

=
(r)

are deleted. On the other hand, there exists
a rule in P1 whose right-hand side contains
BW

=
(r) from the assumption such that BW

=
(r)

is reachable and live in G1. Thus, it holds that
u ∈ LGh

(BW
=

(r)). It implies that there exists
a rule BW

=
(r) → v1BW

=
(r′)v2 in P1 such that

v1w
′v2 = u for some BW

=
(r′) ∈ Nh, v1, v2 ∈ Σ∗

and w′ ∈ Σ+.
If T (r′, w′) �= 1 then the rule BW

=
(r) →

v1BW
=

(r′)v2 is deleted from P1 because of Con-
dition 7. Thus, T (r′, w′) = 1 holds. From the
assumption and |w′| ≤ n, BW

=
(r′) ∗⇒

G1
w′ holds.

Then, it also holds that BW
=

(r) ∗⇒
G1

u.

Conversely, if BW
=

(r) ∗⇒
G1

u, then there exists

a rule BW
=

(r) → v1BW
=

(r′)v2 in P1 such that

v1w
′v2 = u and BW

=
(r′) ∗⇒

G1
w′ for r′ ∈ R and

v1, v2 ∈ Σ∗. Thus, T (r, u) = 1 from |w′| ≤ n
and Condition 7. �

From this lemma, we can find a correct gram-
mar by selecting rules from Ph but such se-
lections exist exponential order, unfortunately.
However, we can select appropriate rules by

Vol. 46 No. SIG 17(TOM 13) Polynomial Time Learnability of Linear Languages 25

comparing a polynomial size set of MSLGs
called base grammars.

We define an MSLG G(A → β) = (Nh, Σ ,
PA→β, Sh) for every rule A → β in Ph as fol-
lows, where ≤R is an arbitrary total order on
Nh.
(1) Let PA→β = {A → β}.
(2) For C ∈ Nh and a, b ∈ Σ , if

• there exists a rule which is of the
form C → aDb in Ph for some D ∈
Nh, and

• there does not exist either C → aγ or
C → γb in PA→β for any γ ∈ (Nh ∪
Σ)+,

then let E0(C, a, b) = {D ∈ Nh | C →
aDb in Ph}, and add C → aD0b to
PA→β where D0 ≤R D1 for any D1 ∈
E0(C, a, b).

(3) For C ∈ Nh and a ∈ Σ , if
• there exists a rule which is of the

form C → aD in Ph for some D ∈
Nh, and

• there does not exist either C → aγ
or C → Eb in PA→β for any γ ∈
(Nh ∪ Σ)+, any E ∈ Nh and any
b ∈ Σ ,

then let E1(C, a) = {D ∈ Nh | C →
aD in Ph}, and add C → aD0 to PA→β

where D0 ≤R D1 for any D1 ∈ E1(C, a).
(4) For C ∈ Nh and b ∈ Σ , if

• there exists a rule which is of the
form C → Db in Ph for some D ∈
Nh, and

• there does not exist either C → γb
or C → aE in PA→β for any γ ∈
(Nh ∪ Σ)+, any E ∈ Nh and any
a ∈ Σ ,

then let E2(C, b) = {D ∈ Nh | C →
Db in Ph}, and add C → D0b to PA→β

where D0 ≤R D1 for any D1 ∈ E2(C, b).
(5) For C ∈ Nh and a ∈ Σ , if there exists a

rule which is of the form C → a in Ph,
then add C → a to PA→β .

(6) Now, G(A → β) = (Nh,Σ , PA→β, Sh) is
an MSLG.

The set of base grammars G is defined as
G = {G(A → β) | for every rule

A → β in Ph}.
Then, for every A ∈ Nh and every pair of G1 ∈
G and G2 ∈ G, the learner checks whether

LG1(A) = LG2(A)
or not, and finds a symmetric difference

w1,2 ∈ (LG1(A)∆LG2(A))
if it is not equivalent.

If all grammars in G generate the same lan-
guage then the learner outputs any G ∈ G and
terminates. Otherwise, for every i, j such that
wi,j exists, the learner adds all sub-words of
wi,j into W .

Example 10 For example, we construct
the set of base grammars for the CFG Gh =
(Nh, Σ , Ph, S) where Nh = {S, A, B, C, D, E,
F}, Σ = {a, b}, Ph = {

S → aA, S → aSb, S → Bb,
A → aC, A → aAb, A → Sb, A → b,
B → aS, B → aBb, B → Db, B → a,
C → aE, D → Fb, E → b, F → a

}. Here, L(Gh) = {aibi | i ≥ 1}.
For A → aC, G(A → aC) is constructed as
follows. Here, we assume that S ≤R A ≤R

B ≤R C ≤R D ≤R E ≤R F .
(1) Initializing PA→aC = {A → aC}.
(2) For S ∈ Nh and a, b ∈ Σ , there exists

S → aSb in Ph. Then, S → aSb is added
to PA→aC . For A ∈ Nh and a ∈ Σ , there
already exists A → aC in PA→aC . We
also add B → aBb to PA→aC . Now,
PA→aC = {A → aC, S → aSb, B →
aBb}.

(3) For C ∈ Nh and a ∈ Σ , there exists C →
aE in Ph. Then, C → aE is added to
PA→aC .

(4) For C ∈ Nh and b ∈ Σ , there exists D →
Fb in Ph. Then, D → Fb is added to
PA→aC .

(5) All of A → b, B → a, E → b and F → a
are added to PA→aC .

(6) Now, PA→aC = {A → aC, S →
aSb, B → aBb, C → aE, D → Fb, A →
b, B → a, E → b, F → a}. This is the
rule set for the MSLG G(A → aC).

In the same manner, we construct
PS→aA = {S → aA, A → aAb, B → aBb,

C → aE, D → Fb, A → b,
B → a, E → b, F → a},

PS→aSb = {S → aSb, A → aAb, B → aBb,
C → aE, D → Fb, A → b,
B → a, E → b, F → a},

PS→Bb = {S → Bb, A → aAb, B → aBb,
C → aE, D → Fb, A → b,
B → a, E → b, F → a},

PA→Sb = {S → aSb, A → Sb, B → aBb,
C → aE, D → Fb, A → b,
B → a, E → b, F → a},

PB→aS = {S → aSb, A → Sb, B → aS,
C → aE, D → Fb, A → b,

26 IPSJ Transactions on Mathematical Modeling and Its Applications Dec. 2005

Algorithm 1
INPUT : Q : a set of RS;
OUTPUT: a hypothesis Gh;
begin

R := {(x, y, z) | x, z ∈ Σ∗, y ∈ Σ+,
x · y · z ∈ Q};

W := {y ∈ Σ+ | x, z ∈ Σ∗, x · y · z ∈ Q};
do

find T (r, w) for ∀r ∈ R and ∀w ∈ W ;
construct Gh and make Ph reduced;
find G;
W ′ := ∅;
for every pair of G1, G2 ∈ G and
every A ∈ Nh do

find w ∈ LG1 (A)∆LG2(A);
W ′ := W ′ ∪ {w};

done
for all w ∈ W ′ do

W := W ∪ {y ∈ Σ+ | x, z ∈ Σ∗,
x · y · z = w};

done
while (W ′ �= ∅);
output any G ∈ G;

end.

Fig. 1 The exact learning algorithm.

B → a, E → b, F → a},
PB→Db = {S → aSb, A → Sb, B → Db,

C → aE, D → Fb, A → b,
B → a, E → b, F → a}.

We note that PS→aSb = PA→aAb = PA→b =
PB→aBb = PB→b = PC→aE = PD→Fb = PE→b

= PF→a.
Thus, |G| = 7 and every MSLG in G has one
of the above rule set. �

The entire description of the learning algo-
rithm is shown in Fig. 1.

4.2 Termination and Time Complex-
ity

We assume that Gt = (Nt,Σ , Pt, S) is an
MSLG such that L(Gt) = Lt.

Definition 11 We define that (w1, w2, w3)
∈ R corresponds to A ∈ Nt if there exists a
derivation such that St

∗⇒
Gt

w1Aw3
∗⇒

Gt

w1w2w3.

In addition, for BW
=

(r0) → u1BW
=

(r1)u2 in Ph

where u1, u2 ∈ Σ∗ and ri ∈ R (i = 0, 1), we
define that BW

=
(r0) → u1BW

=
(r1)u2 corresponds

to C0 → u1C1u2 in Pt if ri corresponds to Ci

for every i = 0, 1, respectively. �

The following lemma holds for the learning
algorithm.

Lemma 12 If LG1(A) = LG2(A) holds for
every A ∈ Nh and every pair of G1 ∈ G and
G2 ∈ G then any G ∈ G satisfies that L(G) =

Lt.
Proof : It is sufficient to show that w ∈
LG(BW

=
(rA)) ⇐⇒ w ∈ LGt

(A) for every
A ∈ Nt, G ∈ G and w ∈ Σ∗ where rA ∈ R
corresponds to A. We prove the above by in-
duction on the length of w.

Base step: Suppose that |w| = 1. If A → w
is in Pt then there exists BW

=
(rA) → w is in Ph

which corresponds to A → w and T (rA, w) = 1
holds from Lemma 9. Conversely, if A → w is
not in Pt then it holds that T (rA, w) = 0 from
Lemma 9. Thus w ∈ LG(BW

=
(rA)) ⇐⇒ w ∈

LGt
(A).

Induction step: Suppose that this lemma
holds for any w ∈ Σ∗ such that |w| ≤ n. For
every rule A → u1Bu2 in Pt where u1, u2 ∈
Σ∗, there exists BW

=
(rA) → u1BW

=
(rB)u2 in

Ph which corresponds to A → u1Bu2. Thus,
if w ∈ LGt

(A) then w ∈ LG(BW
=

(rA)) holds
from the assumption. Conversely, assume that
w �∈ LGt

(A). Then, it is sufficient to consider
the following cases.
(1) If it holds that A⇒

Gt

u1Bu2 for some

u1, u2 ∈ Σ∗ such that u1w
′u2 = w and

w′ �∈ LGt
(B), then w′ �∈ LG(BW

=
(rB))

holds and there exists a derivation
BW

=
(rA)⇒

G
u1BW

=
(rB)u2. It implies that

w �∈ LG(BW
=

(rA)) because every G is not
ambiguous.

(2) If there is no derivation such that
A⇒

Gt

u1Bu2 for some u1, u2 ∈ Σ∗ where

u1w
′u2 = w and w′ ∈ LGt

(B), then
w′ ∈ LG(BW

=
(rB)) holds. It implies

that T (rB, w′) = 1 and T (rA, w) = 0
from Lemma 9. Thus, from Condi-
tion 7, there is no derivation such that
BW

=
(rA)⇒

G
u1BW

=
(rB)u2.

In both cases, it holds that w �∈ LG(BW
=

(rA)).
�

The following lemma guarantees the termina-
tion of the exact learning algorithm.

Lemma 13 For G1, G2 ∈ G,w ∈ Σ+ and
A ∈ Nh, suppose that w ∈ LG1(A)∆LG2(A)
and let Ww = W ∪ {w′ ∈ Σ+ | u, v ∈
Σ∗, uw′v = w}. Now, assume that Ww= is
the equivalence relation over R by Ww and
G′

h = (N ′
h,Σ , P ′

h, S′
h) is the CFG constructed

from Ww= by the algorithm in Fig. 1. Then, at
least one of the following holds.
(1) There exist u, v ∈ Σ∗ and r0, r1 ∈ R such

that

Vol. 46 No. SIG 17(TOM 13) Polynomial Time Learnability of Linear Languages 27

BW
=

(r0) → uBW
=

(r1)v

is in Ph but
BWw

=
(r0) → uBWw

=
(r1)v

is not in P ′
h.

(2) It holds that the partition R/
Ww= is finer

than the partition R/
W=.

Proof : Assume that this lemma does not hold.
Then, (R/

Ww=) = (R/
W=) and any rule in Ph is

not deleted by Conditions 7 or 8. It implies that
G1 and G2 are in the new set of base grammars
and BW

=
(rA) = BWw

=
(rA) for any rA ∈ R

Without loss of generality, we assume that
w ∈ LG1(BW

=
(rA)) but w �∈ LG2(BW

=
(rA)).

Now, from Lemma 9, w ∈ LG1(BW
=

(rA)) im-
plies that T (rA, w) = 1 in the updated T . On
the other hand, w �∈ LG2(BW

=
(rA)) also implies

that T (rA, w) = 0 in the updated T . This is a
contradiction. �

From the definition of Ph, Ph contains 3|R|2
rules whose right-hand side has a nonterminal.
Thus, the loop of the algorithm in Fig. 1 can be
repeated at most 3|R|2 times from Lemma 13.

Now, the following theorem holds.
Theorem 14 The class of MSLLs is exact

learnable via membership queries and a set of
RS. Here, the time complexity of the learning
is bounded by a polynomial of
• the time complexity to check an equiva-

lence and find a symmetric difference of
MSLGs,

• the size of rules |Pt|,
• max{|w| | w ∈ Q} and |Q|. �

5. Constructing a PAC Hypothesis

Modifying the algorithm in Fig. 1, we can ob-
tain polynomial time learning algorithms which
outputs a PAC hypothesis. In this section, we
describe the modifications.

5.1 Replacing Equivalence Checking
by Random Examples

It is unknown whether checking equivalence
and finding a symmetric difference of MSLGs
can be solvable in polynomial time or not.
Thus, it is unknown whether the time com-
plexity of the algorithm in Fig. 1 is bounded
by a polynomial of |Pt|, |Q| and max{|w| | w ∈
Q}. However, it has been proved that an ex-
act learning algorithm which uses equivalence
queries can be transformed to a PAC learn-
ing algorithm by replacing an equivalence query

Algorithm 1’
INPUT : Q:a set of RS,

ε, δ:error and confidential parameters;
OUTPUT: a hypothesis Gh or failure;
begin

R := {(x, y, z) | x, z ∈ Σ∗, y ∈ Σ+,
x · y · z ∈ Q};

W := {y ∈ Σ+ | x, z ∈ Σ∗, x · y · z ∈ Q};
i := 1;
repeat

find T (r, w) for ∀r ∈ R and ∀w ∈ W ;
construct Gh and make Ph reduced;
find G;
W ′ := ∅;
take ni examples;
if (∃G ∈ G is consistent with ni examples)

output G ∈ G and terminate;
else

let W ′ be the set of words in ni examples;
fi
for all w ∈ W ′ do

W := W ∪ {y ∈ Σ+ | x, z ∈ Σ∗,
x · y · z = w};

done
i := i + 1;

until (i > 3|R|2);
output failure (the learning fails);

end.

Fig. 2 The learning algorithm 1’.

with consistency checking of polynomial num-
ber of examples 2). That is, when i-th equiv-
alence query is asked with a hypothesis Gh in
the exact learning algorithm, then the learner
takes ni examples such that

ni ≥ 1
ε

(
log(

1
δ
) + (log 2)(i + 1)

)

and checks consistency for ni examples. If there
exists a word such that w ∈ Lt∆L(Gh) in ni ex-
amples then the w is given to the exact learning
algorithm as a counterexample. If there exists
no such a word in ni examples then the hypoth-
esis is PAC.

From our exact learning algorithm, we can
obtain a polynomial time learning algorithm
which outputs a PAC hypothesis by replacing
equivalence checking with consistency checking
for ni examples. In Fig. 2, we show the learning
algorithm for MSLLs via a set of RS, member-
ship queries and random examples.

Theorem 15 The class of MSLLs is poly-
nomial time learnable with a PAC hypothesis
via polynomial number of randomly drawn ex-
amples, membership queries and a set of RS.
Here, the time complexity of the learning is
bounded by a polynomial of
• PAC parameters ε and δ,
• max{|w| | w ∈ Q} and |Q|, and

28 IPSJ Transactions on Mathematical Modeling and Its Applications Dec. 2005

• the size of rules |Pt|.
Proof : It is sufficient that the algorithm in
Fig. 2 is a polynomial time learning algorithm
with a PAC hypothesis via randomly drawn ex-
amples, membership queries and a set of RS.

If there exists G ∈ G which is consistent with
ni examples in the algorithm of Fig. 2, then it
holds that Pr[P (L(G)∆Lt) ≤ ε] ≥ 1−δ for any
given ε and δ 2).

If any G ∈ G is not consistent with ni exam-
ples then, for every G ∈ G, there exists wG ∈
Σ∗ which is a word in ni examples such that
wG ∈ L(G)∆Lt. Let Wni

= {wG | G ∈ G}.
Now, we consider that the algorithm in Fig. 2

continues with the set W ′ of words in ni exam-
ples. Here, W ′ ⊇ Wni

holds. Assume that the
new G′′

h = (N ′′
h ,Σ , P ′′

h , Sh) is constructed from
R, W ′′ and T where W ′′ = W ∪ W ′. Then,
for w ∈ Wni

such that w ∈ Lt, there exists
w2 ∈ Σ+ such that
• w = w1w2w3 for some w1, w3 ∈ Σ∗,
• T (r, w2) = 1 but w �∈ LG(BW

=
(r)) for some

G ∈ G.
On the other hand, for w ∈ Wni

such that w �∈
Lt, there also exists w2 ∈ Σ+ such that
• w = w1w2w3 for some w1, w3 ∈ Σ∗,
• T (r, w2) = 0 but w ∈ LG(BW

=
(r)) for some

G ∈ G.
Thus, if the algorithm in Fig. 2 repeats the

loop with W ′′, then at least one of the following
holds.
(1) There exist u, v ∈ Σ∗ and r0, r1 ∈ R such

that
BW

=
(r0) → uBW

=
(r1)v

is in Ph but
BW ′′

=
(r0) → uBW ′′

=
(r1)v

is not in P ′′
h .

(2) It holds that the partition R/
W ′′
= is finer

than the partition R/
W=.

Thus, if Q is a complete set of RS then this
algorithm outputs a PAC hypothesis in a finite
time while repeating the “repeat - until” loop.
That is, this algorithm never fails. It implies
that this theorem holds. �

We note that if a complete set of RS is given
to the algorithm in Fig. 2 then the algorithm
outputs a PAC hypothesis before it reaches the
last line. But, it may fails when an incomplete
set of RS is given to the algorithm.

5.2 Selecting a Set of Representative
Samples from Random Examples

We consider that how many random exam-
ples are needed to construct a set of RS. For
every rule A → β where β ∈ (Nt ∪ Σ)+ in Pt,
let

Z(A → β) = {w ∈ Σ∗ | St
∗⇒

Gt

α1Aα2 ⇒
Gt

α1βα2
∗⇒

Gt

w, for some

α1, α2 ∈ (Nt ∪ Σ)∗}.
Then, a probability Pr(A → β) is defined as
follows;

Pr(A → β) =
∑

u∈Z(A→β)

Pr(u).

It is to say that Pr(A → β) is an occurrence
probability of A → β when a sample word is
drawn randomly. Now, let d = min{Pr(A →
β) | A → β in Pt}, then the probability that
the rule A → β does not appear in derivations
of m examples is bounded by (1 − d)m. There
are |Pt| rules, thus a set of m examples which
satisfies

|Pt|(1 − d)m < δ
is a set of RS with a probability at least 1 − δ.
Let

m >
1
d

log(
|Pt|
δ

),

then it holds that

|Pt|(1 − d)m ≤ |Pt|e−dm

< δ.

Now, we suppose that the learner constructs
a candidate for a set of RS from

m̂ >
1
d

log
(|Pt|

1 −√
1 − δ

)

examples. Then, the probability that the set
of m̂ examples contains a correct set of RS is
at least

√
1 − δ. In addition, if the equivalence

checking and finding a symmetric difference in
Algorithm 1’ are done using

ni ≥ 1
ε
(log(

1
1 −√

1 − δ
) + (log 2)(i + 1))

examples, then we can claim that Algorithm1’
outputs a hypothesis Gh such that

Pr[P (L(Gh)∆Lt) ≤ ε] ≥ √
1 − δ.

It implies that if the learner constructs a candi-
date for a set of RS from m̂ examples and, with
this set, makes a hypothesis by Algorithm1’,
then the hypothesis Gh satisfies that

Vol. 46 No. SIG 17(TOM 13) Polynomial Time Learnability of Linear Languages 29

Algorithm 2
INPUT : ε, δ, |Pt| and d;
OUTPUT: a hypothesis Gh;
begin

take m̂ examples where m̂ > 1
d

log

(
|Pt|

1−√
1−δ

)
;

(let M be the set of example words)
Q := Q ∪ {w ∈ M | w ∈ Lt};
execute Algorithm 1’ with Q as a set of RS,

ε and 1 −√
1 − δ;

if (Algorithm 1’ does not fail)
let Gh be the hypothesis of Algorithm 1’;
output Gh;

else
output Gh = (∅,Σ , ∅S);

fi
end.

Fig. 3 The learning algorithm 2.

Algorithm 3
INPUT : ε and δ;
OUTPUT: a hypothesis Gh;
begin

j := 1, Q := ∅;
repeat

take j examples;
(let M be the set of example words)
Q := Q ∪ {w ∈ M | w ∈ Lt};
execute Algorithm 1’ with Q as a set of RS,
ε and 1 −√

1 − δ;
if (Algorithm 1’ does not fail)

output Gh;
(the hypothesis of Algorithm 1’)

fi
j := j + 1;

until (forever)
end.

Fig. 4 The algorithm 3.

Pr[P (L(Gh)∆Lt) ≤ ε] ≥ 1 − δ.
Thus, the algorithm in Fig. 3 is a learning

algorithm with a PAC hypothesis via examples
and membership queries. With this algorithm,
we can obtain the following theorem.

Theorem 16 The class of MSLLs is poly-
nomial time learnable via random examples and
membership queries with a PAC hypothesis, if
the learner knows ε, δ, |Pt| and d. The time
complexity of the learning is bounded by a poly-
nomial of ε, δ, |Pt|, d and the maximum length
of examples. �

We can claim the following corollary from the
algorithm in Fig. 4.

Corollary 17 For the class of MSLL, there
exists an algorithm such that
• it constructs a hypothesis Gh such that

P (L(Gh)∆Lt) ≤ ε
via membership queries and random exam-

ples with a probability at least 1 − δ,
• the algorithm runs forever with a probabil-

ity at most δ,
• when the algorithm terminates, the time

complexity of the algorithm is bounded by
a polynomial consists of ε, δ, |Pt|, d and
the maximum length of examples.

Proof : It is sufficient that the algorithm in
Fig. 4 terminates in this conditions. Obviously,
if the algorithm terminates then the guessed
hypothesis satisfies Pr[P (L(Gh)∆Lt) ≤ ε] ≥
1 − δ. When the loop of the algorithm is re-
peated and

i >
1
d

log(
|Pt|

1 −√
1 − δ

)

holds, Q is a set of RS with the probability at
least 1 − δ. Thus, this theorem holds. �

We note that the algorithm in Fig. 4 runs for-
ever with the probability δ. Thus, this is not a
learning algorithm.

6. Conclusions

We have shown an exact learning algorithm of
the class of MSLLs via membership queries and
a set of RS. Modifying the algorithm, we can
obtain a polynomial time learning algorithm
which outputs a PAC hypothesis via either of
the following settings.
• The learner can use membership queries,

random examples, a set of RS, ε and δ.
• The learner can use membership queries,

random examples, ε, δ, |Pt| and d.
In the second setting, the learner constructs

a set of RS from polynomial number of random
examples where the polynomial consists of the
given parameters.

PAC learnability is important not only the-
oretical aspects but also to make a practical
algorithm, though it is hard to show standard
PAC learnability of practical or useful gram-
mars. Our results mean that additional infor-
mation helps the learner not only in an exact
learning but also in a PAC learning of gram-
mars.

Acknowledgments This research report is
partially supported by Grant-in-Aid for Young
Scientists, No.16700007 to the first author from
the Ministry of Education, Culture, Sports, Sci-
ence and Technology, Japan.

References

1) Angluin, D.: A note on the number of queries
needed to identify regular languages, Inf. &

30 IPSJ Transactions on Mathematical Modeling and Its Applications Dec. 2005

Cont., Vol.51, No.1, pp.76–87 (1981).
2) Angluin, D.: Learning regular sets from

queries and counterexamples, Inf. & Comp.,
Vol.75, No.2, pp.87–106 (1987).

3) Hopcroft, J.E. and Ullman, J.D.: Introduction
to Automata Theory, Languages, and Compu-
tation, Addison-Wesley, Reading, MA (1979).

4) Natarajan, B.K.: Machine Learning: A Theo-
retical Approach, Morgan Kaufmann Publish-
ers, San Mateo, CA (1991).

5) Sakakibara, Y.: Learning context-free gram-
mars from structural data in polynomial time,
Theor. Comp. Sci., Vol.76, No.2 & 3, pp.223–
242 (1990).

6) Tajima, Y., Tomita, E., Wakatsuki, M. and
Terada, M.: Polynomial time learning of simple
deterministic languages via queries and a rep-
resentative sample, Theor. Comp. Sci., Vol.329,
No.1–3, pp.203–221 (2004).

7) Takada, Y.: A hierarchy of language families
learnable by regular language learning, Inf. &
Comp., Vol.123, No.2, pp.138–145 (1995).

8) Valiant, L.G.: A theory of the learnable,
Comm. ACM, Vol.27, pp.1134–1142 (1984).

(Received August 24, 2004)
(Revised January 9, 2005)

(Accepted February 25, 2005)

Yasuhiro Tajima was born
in 1971. He received his B.E.,
M.E. and Ph.D. from The Uni-
versity of Electro-Communica-
tions in 1994, 1996 and 2001,
respectively. He had joined
Ishikawajima-Harima Heavy In-

dustries Co., Ltd. from 1996 to 1998. Currently,
he is a research associate at Tokyo University of
Agriculture and Technology. His research inter-
ests are in Machine Learning, Computational
Learning Theory and Formal Language Theory.
He is a member of JSAI and IEICE.

Yoshiyuki Kotani was born
in 1949. He received his Ph.D.
from The University of Tokyo
and he was appointed Assistant
Professor at Tokyo University of
Agriculture and Technology in
1977. Currently, he is a Pro-

fessor of Tokyo University of Agriculture and
Technology. His research interests include Ar-
tificial Intelligence, Natural Language Process-
ing, Knowledge Acquisition, Game and Puzzle,
and Educational Systems. He is a member of
JSAI and IEICE. He is the former president of
Computer Shougi Association (CSA).

Matsuaki Terada received
his B.E. from Okayama Uni-
versity in 1970 and D.E. from
Osaka University in 1992. He
joined the Systems Development
Laboratory of Hitachi, Ltd in
1970, and was engaged in the re-

search and development of distributed control
processing systems, high performance protocol
processing, LAN, VoIP and the next genera-
tion Internet. He has been a Professor, Depart-
ment of Computer, Information & Communi-
cation Sciences, Tokyo University of Agricul-
ture and Technology since 1999. He has also
presided over the Information Media Center of
the same university as a director since 2003. He
is a member of IEEE, ACM and IEICE.

