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This work proposes a method to control the dominance area of solutions in order to induce
appropriate ranking of solutions for the problem at hand, enhance selection, and improve
the performance of MOEAs on combinatorial optimization problems. The proposed method
can control the degree of expansion or contraction of the dominance area of solutions using a
user-defined parameter S. Modifying the dominance area of solutions changes their dominance
relation inducing a ranking of solutions that is different to conventional dominance. In this
work we use 0/1 multiobjective knapsack problems to analyze the effects on solutions ranking
caused by contracting and expanding the dominance area of solutions and its impact on the
search performance of a multi-objective optimizer when the number of objectives, the size of
the search space, and the feasibility of the problems vary. We show that either convergence
or diversity can be emphasized by contracting or expanding the dominance area. Also, we
show that the optimal value of the area of dominance depends strongly on all factors analyzed
here: number of objectives, size of the search space, and feasibility of the problems.

1. Introduction

Multiobjective evolutionary algorithms
(MOEAs) 1),2) are being increasingly investi-
gated for solving multiobjective optimization
problems. MOEAs are particularly suitable for
this task because they evolve simultaneously a
population of potential solutions to the prob-
lem at hand, which allows us to search a set of
Pareto non-dominated solutions in a single run
of the algorithm. Some important features of
the latest generation MOEAs are that selection
incorporates elitism and it is biased by Pareto
dominance and a diversity preserving strategy
in objective space. Pareto dominance based
selection is thought to be effective for prob-
lems with convex and non-convex fronts and has
been successfully applied, especially in two and
three objective problems.

However, some current research reveals that
ranking by Pareto dominance on problems with
an increased number of objectives might not
longer be effective 3)∼5). It has been shown that
the characteristics of multiobjective landscapes
viewed in terms of non-dominated fronts (that
are found in the process of non-domination sort-
ing) can change drastically as the number of
objectives increases, i.e., the number of fronts
reduces substantially and become denser (more
solutions per front) just by increasing the num-
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ber of objectives 5). In this case, most sam-
pled solutions at a given time turn to be non-
dominated. That is, most solutions are as-
signed the same rank of non-dominance and
Pareto selection weakens since it has to dis-
criminate mostly based on diversity of solu-
tions. Another factor that affects the density
of the fronts is the complexity (ruggedness and
number of local optima) of the individual single
objective landscapes. It has been shown that
the top non-dominated fronts become denser as
the complexity of the landscapes reduces, and
vice-versa 5), which affects the behavior and ef-
fectiveness of conventional Pareto selection in
two ways. First, in landscapes of low complex-
ity the high density of the top non-dominated
fronts combined with elitism makes the instan-
taneous elite-population to be mostly composed
of individuals with the same non-domination
rank since early generations, even in two ob-
jective problems. In this case, also, selection
has to rely mostly on diversity rather than on
Pareto dominance ranking. Second, on prob-
lems of increased complexity there could be too
many but sparse fronts, where Pareto selection
could become too strong increasing the likeli-
hood that the algorithm gets trapped in local
fronts. These studies suggest that for selection
to be effective a more careful analysis of Pareto
dominance relation is required when the num-
ber of objectives increase. In addition, for any
number of objectives, the dominance relation
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should be appropriately revised according to
the characteristics of the multiobjective prob-
lem.

Relaxed forms of Pareto dominance have
been discussed within decision making in mul-
tiobjective optimization since long ago 6)∼8).
However, it is only recently that the evolution-
ary multiobjective optimization (EMO) com-
munity has turned its attention to relaxed forms
of dominance for ranking solutions during the
search process, and the effects of such domi-
nance relaxations on the behavior and perfor-
mance of the evolutionary optimizer are still not
well understood. Within the EMO community,
works on relaxed forms of Pareto dominance in-
clude ε-dominance 9) and α-domination 10). ε-
dominance acts as an archiving strategy and
was proposed as a way of regulating conver-
gence of a MOEA. The algorithm maintains a
finite-size archive of non-dominated solutions,
in which new points are only accepted if they
are not ε-dominated by any other point of the
current archive. ε-dominance strengthens se-
lection during the archiving process. On the
other hand, α-domination permits a solution x
to dominate a solution y if x is slightly infe-
rior to y in an objective but largely superior
to y in some other objectives. α-domination
was tried on an ad hoc continuous problem cre-
ated specifically to illustrate a potential prob-
lem that Pareto selection could face. In addi-
tion, α-domination only introduces a method
to strengthen selection and its effects have not
been explained nor tested on standard test suit
problems.

In this work, we propose a method to con-
trol the dominance area of solutions in order
to induce appropriate ranking of solutions for
the problem at hand, enhance selection, and
improve the performance of MOEAs on com-
binatorial optimization problems. The pro-
posed method can control the degree of ex-
pansion or contraction of the dominance area
of solutions using a user-defined parameter
S. Modifying the dominance area of solutions
changes their dominance relation inducing a
ranking of solutions that is different to con-
ventional dominance. Contrary to ε-dominance
and α-domination, the proposed method can
strengthen or weaken selection by expanding
or contracting the area of dominance and con-
ceptually can be considered as a generalization
of Pareto dominance. In addition, the motiva-
tion and method itself of the proposed approach

is different to ε-dominance and α-domination.
See Sections 3 and 4 for a detailed explanation
about ε-dominance, α-domination, and the pro-
posed method.

In this work we analyze the effects on so-
lutions ranking caused by contracting and ex-
panding the dominance area of solutions and its
impact on the search performance of a multi-
objective optimizer when the number of ob-
jectives, the size of the search space, and the
complexity of the problems vary. We chose
NSGA-II as a representative elitist algorithm
that uses dominance 11) and compare its perfor-
mance with NSGA-II enhanced by the proposed
method. We conduct our study on 0/1 multiob-
jective knapsack problems with m = {2, 3, 4, 5}
objectives varying the number of items n (size
of search space is given by 2n) and the feasibil-
ity ratio φ of the search space, which is a good
indicator of the complexity of the landscapes in
this kind of problems. This work clearly shows
that either convergence or diversity can be em-
phasized by contracting or expanding the dom-
inance area. Also, this work shows that the
optimal value of S∗ that controls the area of
dominance depends strongly on all factors an-
alyzed here: number of objectives, size of the
search space, and feasibility of the problems.

2. Multiobjective Optimization Con-
cepts and Definitions

A multiobjective optimization problem in-
cluding m kinds of objective functions is defined
as follows:{

Maximize f(x) = (f1(x), f2(x), . . . , fm(x))
subject to x ∈ F

(1)

where, x ∈ F is a feasible solution vector in
the solution space S (F ⊆ S), and fi (i =
1, 2, · · · , m) are the m objectives to be maxi-
mized. That is, we try to find a feasible solution
vector x ∈ F in the solution space maximiz-
ing each objective function fi (i = 1, 2, . . . , m)
in a vector fitness function f . Important con-
cepts used in determining a set of solutions for
multiobjective optimization problems are domi-
nance, Pareto optimality, Pareto set and Pareto
front. Next we define dominance between solu-
tions x, y ∈ F as follows: If

∀i ∈ {1, 2, . . . , m} : fi(x) ≥ fi(y) ∧
∃i ∈ {1, 2, . . . , m} : fi(x) > fi(y).

(2)
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are satisfied, x dominates y. In the following,
x dominates y is denoted by f(x) � f(y). A
solution vector x is said to be Pareto optimal
with respect to F if it is not dominated by other
solution vectors in F . The presence of multiple
objective functions, usually conflicting among
them, gives rise to a set of optimal solutions.
The set of Pareto optimal solutions (POS) is
defined as

POS = {x ∈ F |¬∃y ∈ F : f(x)�f(y)} ,

(3)

and the Pareto front is defined as
Front = {f(x) | x ∈ POS} . (4)

A convenient method to assign rank to solu-
tions is by classifying them into non-dominated
fronts 11). Let us denote Z the set of solution
we want to classify. The first front Front1 is
obtained from Z and corresponds to the set of
POS in Z. Let us denote this set as POS1.
The subsequent fronts Frontj ; j > 1, contain
lower level non-dominated solutions and are ob-
tained by disregarding solutions corresponding
to the previous higher non-dominated fronts,
i.e., Frontj ; j > 1, is obtained from the set
Z − ⋃j−1

k=1 POSk.

3. Related Works

3.1 Domination Structures
Relaxed forms of Pareto dominance have

been discussed within decision making in mul-
tiobjective optimization since long ago 6)∼8).
Given a decision space and a corresponding cri-
terion (objective) space, a decision maker has
to take a decision about what solution should
be chosen. There have been two popular meth-
ods used to help making a decision. One of
them is known as one dimensional comparison
and the other one as Pareto optimality. Yu 6),7)

argued that the one dimensional comparison
and Pareto optimality methods are two extreme
cases in the entire domain of domination struc-
tures and showed that there are infinity valid
methods lying between them, which suitabil-
ity depends on how much information is known
on the decision maker’s preferences. Follow-
ing Yu’s notation, let us denote the objective
space as Y , and a solutions in objective space
as y = (y1, · · · , ym) ∈ Y . Given two solutions
y and y1 ∈ Y . A nonzero vector d ∈ Rm is a
domination factor for y ∈ Y iff y1 = y + λd,
λ > 0, implies that y is preferred to y1, assum-
ing maximization in all objectives. The set of

all domination factors for y, together with the
zero vector in Rm is denoted by D(y). The fam-
ily {D(y)|y ∈ Y } is called the structure of dom-
ination of the decision problem 6),7). An impor-
tant class of domination structures is D(y) = Λ
for all y ∈ Y , where Λ is a convex cone. In this
case Λ is called the domination cone. With the
above definitions, we say that y1 ∈ Y is domi-
nated by y ∈ Y if

y1 ∈ y + D(y) = {y + d|d ∈ D(y)} (5)
and we say that a point y0 ∈ Y is a nondomi-
nated solution iff

¬∃y ∈ Y |y0 ∈ y + D(y) (6)
A nondominated solution with respect to a
domination cone Λ is also called a Λ-extreme
point.

Now, it is easy to show that the concept of
Pareto optimality is equivalent to using a dom-
inance cone Λ = {d ∈ Rm|d ≤ 0}. In the addi-
tive weight method for establishing preferences,
one first find a suitable weight λ = (λ1, · · · , λm)
and then maximizes λ · y =

∑
λjyj over Y ,

y = (y1, · · · , ym). Given λ > 0, the solution
concept implicitly uses the domination cone
Λ = {d ∈ Rm|λ · d ≤ 0}. The weights es-
tablish tradeoffs among objectives, which de-
termine the shape of the domination cone used
by the solutions. To illustrate this, lets as-
sume m = 2 objectives. The trade-off ratio of
y2 with respect to y1 is defined by how many
units of y2 we want to sacrifice in order to
increase a unit of y1. Thus, the ratio λ2/λ1

gives the value of y2 in terms of y1 and the
decision problem becomes one of maximizing
λ1y1 + λ2y2 or equivalently y1 + λ2

λ1
y2. To cor-

rectly predetermine the ratio λ2/λ1 is a difficult
task. Thus, in practice lower and upper bounds
are set for this ratio λ2/λ1 to have partial in-
formation on the decision maker’s preferences,
which determine the shape of the domination
cone 6). By varying the range defined by the
lower and upper bound for tradeoffs we could
achieve different domination cones. In one ex-
treme case, if 0 < λ2/λ1 < ∞ then we have Λ =
{(d1, d2)|d1 ≤ 0, d2 ≤ 0}, which corresponds to
Pareto optimality that renders the domination
cone in the non-positive quadrant. Decreas-
ing the range between lower and upper bound
of λ2/λ1, the dominance cone extends until it
forms a half-space Λ = {(d1, d2)|d1 + γd2 ≤ 0}
when the lower and upper bounds of λ2/λ1 are
equal to γ (> 0), which is the case of one di-
mensional comparison method.
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Note that domination cones covering smaller
areas than the minimum area covered by the
Pareto optimality concept are not considered in
Yu’s extension. This is understandable because
the motivation for Yu’s approach relates to the
process of decision making that assumes posi-
tive trade-off rates among objectives. On the
other hand, in this work we propose to consider
dominance areas smaller than the one given
by the concept of Pareto optimality as well as
larger ones, because the motivation for our work
is to improve the search process of MOEAs ei-
ther by weakening or selection compared to se-
lection induced by conventional Pareto domi-
nance.

3.2 Relaxed Forms of Dominance in
MOEAs

Recently, some researchers have proposed the
use of relaxed forms of Pareto dominance as
a way of regulating convergence of a MOEA.
Laummans, et al. 9) proposed a relaxed form
of dominance for MOEAs called ε-dominance
seeking to ensure both properties of conver-
gence towards the Pareto-optimal set and prop-
erties of diversity among the solutions found.
A solution x ε-dominates a solution y for some
ε > 0, assuming maximization in all objectives,
if

∀i ∈ {1, 2, . . . , m} : (1 + ε) · fi(x) ≥ fi(y).
(7)

ε-dominance acts as an archiving strategy,
where new points are only accepted if they are
not ε-dominated by any other point of the cur-
rent archive. Thus, it strengthens Pareto se-
lection during the archiving process. In addi-
tion, ε-dominance uses a set of boxes to cover
the Pareto front, where the size of such boxes
is set by the user-defined parameter ε. Within
each box only one non-dominated solution is re-
tained. Thus, by using a larger value of ε the
user can accelerate convergence, while sacrific-
ing the quality (preciseness) of the Pareto front
obtained. In contrast, if a high quality of the
front is required, a small value of ε must be
adopted. The definition of ε is very important.
However, it is not simple to find the most appro-
priate value of ε, especially if nothing is known
in advance about the shape of the Pareto front.
Also, to correlate the number of desired solu-
tions with the value of ε chosen is not easy. In
addition, ε-dominance eliminates the extreme
points of the Pareto front, which may be unde-
sirable in some cases.

Another strategy that relaxes Pareto domi-
nance is α-domination proposed by Ikeda, et
al. 10) to strengthen selection. The fundamen-
tal idea of α-domination is setting upper/lower
bounds of trade-offs rates between two objec-
tives 6),7). α-domination permits a solution x
to dominate a solution y if x is slightly infe-
rior to y in an objective but largely superior
to y in some other objectives. To calculate α-
dominance, first a relative fitness vector g(x, y)
between two solutions must be established. The
i-th component of g(x, y) is calculated by

gi(x, y) = fi(x)−fi(y)+
m∑

j �=i

αij(fj(x)−fj(y))

(8)
where fi(x) is the fitness value of solution x on
the i-th objective, and αij is the trade-off rate
between the i-th and j-th objectives.

A solution x α-dominates a solution y, as-
suming maximization in all objectives, if

∀i ∈ {1, 2, . . . , m} : gi(x, y) ≥ 0 ∧
∃i ∈ {1, 2, . . . , m} : gi(x, y) > 0.

(9)

To calculate α-domination, αij trade-off rates
must be properly set for each pair of objec-
tives. Assessing the appropriate trade-offs be-
tween objectives could be a difficult problem,
especially if nothing is known in advance about
the landscape and shape of Pareto front. Thus,
α-domination assumes lower and upper bounds
for the trade-off rates as explained above. In
other words, α-domination strengthens selec-
tion because only dominance areas larger than
the conventional Pareto dominance are consid-
ered.

To summarize, important differences between
our work and the above related works are
as follows. First, the proposed method can
strengthen or weaken selection by expanding
or contracting the area of dominance, and con-
ceptually can be considered as a generalization
of Pareto dominance. On the other hand, ε-
dominance and α-domination only strengthen
selection. Second, the proposed method fo-
cuses on selection at each generation, whereas
ε-dominance focuses on the archiving process.
α-domination focuses on selection, but the ap-
proach and its motivation are different. α-
domination was tried on an ad hoc continu-
ous problem created specifically to illustrate a
potential problem that Pareto selection could
face and its effects have not been explained nor
tested on standard test suit problems. In ad-
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(a) S1 = S2 = 0.5 (b) S1 = S2 < 0.5 (c) S1 = S2 > 0.5

Fig. 2 Conventional dominance (a) and examples of expanding (b) and
contracting (c) the dominance area of solutions.

Fig. 1 Fitness modification to change the covered
area of dominance.

dition, α-domination cannot weaken selection.
Third, in this work we analyze the effects on
ranking of solutions by expansion or contrac-
tion of the dominance area of solutions, which
has not been done before. Moreover, we also an-
alyze the impact on the performance of MOEAs
in combinatorial optimization problems.

4. Proposed Method

4.1 Contraction and Expansion of
Dominance Area

In this work, we try to control the covered
area of dominance. Normally, the dominance
area is uniquely determined with a fitness vec-
tor f(x) = (f1(x), f2(x), · · · , fm(x)) in the ob-
jective space when a solution x is given. To
contract and expand the dominance area of so-
lutions, we modify fitness value for each objec-
tive function by changing the user defined pa-
rameter Si in the following equation

f ′
i(x) =

r · sin(ωi + Si · π)
sin(Si · π)

(i = 1, 2, · · · , m)

(10)

where ϕi = Si · π. This equation is derived
from the Sine theorem. We illustrate the fit-
ness modification in Fig. 1, where r is the norm
of f(x), fi(x) is the fitness value in the i-th
objective, and ωi is the declination angle be-

tween f(x) and fi(x). In this example, the
i-th fitness value fi(x) is projected (increased)
to f ′

i(x) > fi(x) by using ϕi < π/2 (Si < 0.5).
In case of ϕi = π/2 (Si = 0.5), fi(x) does not
change and f ′

i(x) = fi(x). Thus, this case is
equivalent to the conventional dominance. On
the other hand, in case of ϕi > π/2 (Si > 0.5),
fi(x) is projected (decreased) to f ′

i(x) < fi(x).
Such fitness modification changes the domi-
nance area of solutions. We show an exam-
ple in Fig. 2 (a)–(c), where three solutions a,
b and c are distributed in 2-dimensional objec-
tive space. In Fig. 2 (a), a dominates c, but
a and b, and b and c do not dominate each
other. However, if we modify fitness values for
each solution by using Eq. (10), the location
of each solution moves in the objective space,
and consequently the dominance relationship
among solutions changes. For example, if we
use S1 = S2 < 0.5 as shown in Fig. 2 (b), the
dominance area of solutions a′, b′ and c′ is ex-
panded from the original one of a, b and c.
This causes that a′ dominates b′ and c′, and b′

dominates c′. That is, expansion of dominance
area by smaller Si (< 0.5) works to produce
a more fine grained ranking of solutions and
would strengthen selection. On the other hand,
if we use S1 = S2 > 0.5 as shown in Fig. 2 (c),
the dominance area of solutions a′, b′ and c′
is contracted from the original one of a, b and
c. This causes that a′, b′ and c′ do not domi-
nate each other. That is, contracting the area
of dominance by larger Si (> 0.5) works to pro-
duce a coarser ranking of solutions and would
weaken selection.

4.2 Effects of Controlling Dominance
Area

As indicated above, expanding or contract-
ing the dominance area of solutions change the
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Fig. 3 Solutions per front varying the parameter S.

dominance relation of some solutions and there-
fore modify the distribution of the fronts (num-
ber of fronts and solutions per front). Since
front distribution significantly relates to selec-
tion, we verify and illustrate the effect of ex-
panding or contracting the dominance area on
the distribution of the fronts changing the pa-
rameter Si in Eq. (10). Here, we randomly gen-
erate 100 solutions in the 2-dimensional objec-
tive space of [0, 1]2, calculate dominance among
them after recalculating fitness with Eq. (10),
and perform a non-domination sorting to ob-
tain the fronts. We repeat the above steps a
1,000 times and calculate the average number
of fronts and solutions per front, for each value
of Si. In this work, we use a common param-
eter S = Si (i = 1, 2, · · · , m) for all objective
functions, because we assume that all objective
functions are normalized. Figure 3 shows the
fraction of number of solutions per front vary-
ing S in the range [0.25, 0.75] in intervals of 0.1
along with results for conventional dominance
(S = 0.5).

From this figure, note that if we gradually ex-
pand the area of dominance by decreasing S be-
low 0.5, the number of fronts increases and the
ranking of solutions by non-dominance can be
fine grained. Note that for maximum expansion
of the dominance area S = 0.25 there is one so-
lution per front. On the other hand, if we grad-
ually contract the area of dominance by increas-
ing S above 0.5, the number of fronts decreases
and ranking of solutions by non-dominance be-
comes coarser. Note that for maximum contrac-
tion of the dominance area S = 0.75 there is
only one front that contains all solutions. Since
different rankings can be produced, we can ex-
pect that the optimum parameter S∗ that yields

maximum search performance exists for a given
kind of problem.

5. Benchmark Problems, Metrics, and
Parameters

In this paper we use multiobjective 0/1 knap-
sack problems 12) as benchmark problems to
study and compare the effects on search per-
formance of ranking solutions by expanding or
contracting their dominance area. The problem
(KPn-m) is formulated to maximize the func-
tion

fj(x) =
n∑

i=1

xi · pi,j (11)

subject to

gj(x) =
n∑

i=1

xi · wi,j ≤ Wj (12)

where xi ∈ {0, 1} (i = 1, 2, · · · , n) are elements
of solution vector x = (x1, x2, · · · , xn), which
gives a combination of items. Thus, we use
binary representation in this work. Note that
here we are interested in finding a set of non-
dominated Pareto solutions. Also, pi,j and wi,j

(j = 1, 2, · · · , m) denote profit and weight of
item i according to knapsack (objective) j. Wj

is the capacity of knapsack j, and solutions not
satisfying this condition are considered as in-
feasible solutions F̄ = (S − F). We can control
the complexity (difficulty) of the problem by
varying the number of objectives m, the num-
ber of items n, and the feasibility ratio of the
search space φ. In this paper, we use bench-
mark problems with m = {2, 3, 4, 5} objectives,
n = {100, 250, 500, 750} items and feasibility
ratio φ = {0.75, 0.5, 0.25} downloaded from
Ref. 13), for which we know the true Pareto
non-dominated set only in case of two objec-
tives m = 2. In these particular problems, we
use a constant S for all objectives because the
scale of each objective function is similar.

The hypervolume is used as a metric to eval-
uate sets of non-dominated solutions obtained
by MOEAs. The hypervolume measures the m-
dimensional volume of the region in objective
space enclosed by the obtained non-dominated
solutions and a dominated reference point 14).
Here we use (f1, f2, · · · , fm) = (0, 0, · · · , 0) as
the reference point to calculate the hypervol-
ume. A set of non-dominated solutions showing
higher value of hypervolume can be considered
as a better set of solutions from both conver-
gence and diversity viewpoints. The hypervol-
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ume metric is a reliable metric and it is among
the few recommended metrics to compare non-
dominated sets 15). To provide additional infor-
mation separately on convergence and diversity
of the obtained solutions in this work we also
use Inverse Generational Distance (IGD) 16)

and Spread (SP ) 1), respectively. IGD takes
the average distance for all members in the true
Pareto front to their nearest solutions in the ob-
tained set of non-dominated solutions (exactly
the inverse process followed by Generational
Distance GD 17)). Spread measures the degree
of dispersion on the distribution of the obtained
solutions. A set of Pareto non-dominated so-
lutions showing smaller Spread can be consid-
ered as better solutions satisfying diversity con-
dition.

In our study we compare the performance of
a conventional NSGA-II 11) with NSGA-II en-
hanced by the proposed method. We adopt
two-point crossover with a crossover rate pc =
1.0 for recombination, and apply bit-flipping
mutation with a mutation rate pm = 1/n. In
the following experiments, we show the aver-
age performance with 30 runs, each of which
spent 2,000 generations. Population size is set
to |P | = 200 and the parent and offspring pop-
ulation sizes |Q| and |R| are set to half the pop-
ulation size |P |, i.e., |Q| = |R| = 100.

6. Experimental Results and Discus-
sion

6.1 Performance Varying the Number
of Objectives

In the following sections we observe the ef-
fects of varying the parameter S that controls
the area of dominance of the solutions on the
performance of the algorithm measured by the
hypervolume. Recall that S = 0.5 indicates
conventional dominance, values of S > 0.5 in-
dicate contraction of the dominance area of the
solutions, and values of S < 0.5 indicate expan-
sion of the dominance area of the solutions.

First, we observe the effect of varying S on
problems with different number of objectives.
Figure 4 shows the values of the hypervol-
ume achieved varying S in the range [0.25, 0.75]
in intervals of 0.05 on problems with m =
{2, 3, 4, 5} objectives, n = 500 items, and fea-
sibility ratio φ = 0.50. Note that in the figure
the values of the hypervolume are normalized so
that the value achieved at S = 0.5 is always 1.0.
From this figure important observations are as
follow. First, there is an optimum value S∗ for

Fig. 4 Hypervolume as we increase the number of ob-
jectives m for problems with n = 500 items and
φ = 0.5 feasibility ratio.

each number of objectives that maximizes the
hypervolume. Note however that the maximum
value of hypervolume is not achieved by conven-
tional dominance (S = 0.5) for any number of
objectives. Second, to achieve the maximum
value of hypervolume, the degree of expansion
or contraction of dominance area of solutions
should be adjusted accordingly to the number
of objectives. Note that maximum values of the
hypervolume are achieved for two and three ob-
jectives by contracting the dominance area of
the solutions (S > 0.5), whereas for four and
five objectives the maximum hypervolume val-
ues are achieved by expanding the dominance
area of the solutions (S < 0.5). Third, as a
general trend in problems with n = 500 items
and feasibility ratio φ = 0.50, we observe that
the optimum value S∗ reduces as we increase
the number of objectives. That is, increasing
the number of objectives the area of dominance
should be expanded by using smaller values of
S∗ to achieve maximum hypervolume.

Figure 5 (a) and (b) show the front distribu-
tion over generation by conventional dominance
(S = 0.5) and by contracting dominance with
the optimum parameter (S∗ = 0.65), respec-
tively, on m = 2 objectives, n = 500 items and
feasibility ratio φ = 0.5. Similarly, Fig. 6 (a)
and (b) show on m = 4 objectives the front dis-
tributions by conventional dominance (S = 0.5)
and by expanding dominance with the optimum
parameter (S∗ = 0.45), respectively. Results
are presented for the ten top fronts obtained
from the combined population of parents and
offspring before truncation. The horizontal line
indicates the truncation point after front non-
domination sorting. These figures illustrate and
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(a) S = 0.5, conventional dominance (b) S∗ = 0.65, best by contracting dominance

Fig. 5 Front distribution over generation m = 2 objectives, n = 500 items,
and φ = 0.5 feasibility ratio.

(a) S = 0.5, conventional dominance (b) S∗ = 0.45, best by expanding dominance

Fig. 6 Front distribution over generation m = 4 objectives, n = 500 items,
and φ = 0.5 feasibility ratio.

corroborate our expectation that contraction
or expansion of area of dominance changes the
ranking of solutions. Remember that contrac-
tion of the area of dominance weakens selection
and induces a coarse ranking of solution, as il-
lustrated in Fig. 5 (a) and (b), which works bet-
ter for two and three objectives. Also, remem-
ber that an expansion of the area of dominance
strengthen selection and induces a fine grained
ranking of solutions, as illustrated in Fig. 6 (a)
and (b), which works better for four and five
objectives.

6.2 Performance Varying the Size of
the Search Space

Second, we observe the effects of varying S
on problems with different number of items n.
Note that the size of the search space is given
by 2n. Figure 7 shows the hypervolume vary-
ing S on problems with n = {100, 250, 500, 750}
items and feasibility ratio φ = 0.5 for m =
{2, 3, 4, 5} objectives. From Fig. 7 (a) we can
see that in the case of m = 2 objectives the
optimum S∗ is similar for all n, around 0.65.
However, from Fig. 7 (b), (c), and (d) we ob-

serve that increasing the number of items n
produces a clear shift of the optimum S∗ to-
wards smaller values (greater expansion of area
of dominance), especially in the case of m = 4
and m = 5 objectives. For example, for m = 4,
note the optimal S∗ = {0.55, 0.5, 0.45, 0.45} on
n = {100, 250, 500, 750}, respectively. In the
previous section, fixing the number of items to
n = 500, results suggested that the degree of
expansion or contraction of dominance area of
solutions should be adjusted according to the
number of objectives. The results presented in
this section suggest that the degree of expansion
or contraction of dominance area of solutions
should also be adjusted according to the size
of the search space, especially for an increased
number of objectives.

6.3 Performance Varying the Search
Space Feasibility Ratio φ

Third, we observe the effects of varying
S on problems with different feasibility ratio
φ. Figure 8 shows the hypervolume vary-
ing S on problems with feasibility ratio φ =
{0.75, 0.5, 0.25} and n = 500 items for m =
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(a) m = 2 objectives (b) m = 3 objectives

(c) m = 4 objectives (d) m = 5 objectives

Fig. 7 Hypervolume as we increase the number of items n for problems
with m = {2, 3, 4, 5} objectives and φ = 0.5 feasibility ratio.

{2, 3, 4, 5} objectives. From Fig. 8 (a)–(d) note
that the effects on problems with different feasi-
bility ratio φ resemble those observed on prob-
lems with different number of items. That is, in
m = 2 objectives the optimum S∗ is the same
for all φ. However, reducing the feasibility ratio
φ from 0.75 to 0.25, there is a shift of the opti-
mum S∗ towards smaller values, which becomes
more notorious for m = 4 and m = 5 objec-
tives. For example, for m = 4, note the optimal
S∗ = {0.55, 0.45, 0.4} on φ = {0.75, 0.5, 0.25},
respectively. These results suggest that the op-
timum degree of expansion or contraction of
dominance area of solutions also depends on the
feasibility ratio of the search space (complexity
of the landscapes), especially for an increased
number of objectives.

Summarizing, the optimum degree of expan-
sion or contraction of the dominance area de-
pends on the three aspects investigated in this
work; that is, number of objectives, size of the
search space, and feasibility ratio of the search

space. For most real world combinatorial prob-
lems we can know in advance the number of
objectives and size of the search space. Based
on these information, we can use the results
presented here as a good initial guidelines to
properly set the degree of expansion or con-
traction of the area of dominance in order to
achieve higher performance. However, the fea-
sibility ratio (or complexity of the single objec-
tive landscapes) is usually unknown. It would
be interesting to find adaptive ways to fine tune
the parameter S for problems of different com-
plexity.

6.4 Results on Complementary Met-
rics and Obtained Solutions

Figure 9 (a) and (b) show the Inverse Gener-
ational Distance IGD and Spread SP , respec-
tively, varying the number of items on prob-
lems with m = 2 objectives and feasibility ra-
tio φ = 0.5. From these figures note that
optimum IGD and SP (smaller values) are
achieved when the dominance area of solutions



146 IPSJ Transactions on Mathematical Modeling and Its Applications Oct. 2007

(a) m = 2 objectives (b) m = 3 objectives

(c) m = 4 objectives (d) m = 5 objectives

Fig. 8 Hypervolume as we decrease feasibility ratio for problems with
m = {2, 3, 4, 5} objectives and n = 500 items.

(a) IGD (b) SP

Fig. 9 Inverse generational distance IGD and Spread SP varying the number
of items n on problems with m = 2 objectives and φ = 0.5 feasibility
ratio.

is contracted (S > 0.5) rather than by conven-
tional dominance (S = 0.5), similar to the re-
sults shown in Fig. 7 (a). The values S achiev-
ing minimum IGD are almost coincident with

S∗ = 0.65 achieving maximum hypervolume.
However, in case of SP the values S are slightly
shifted towards larger values. Also, note that
the graph of SP shows a maximum peak in the
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(a) Conventional dominance
(S = 0.5)

(b) Contracting dominance
(S∗ = 0.65)

(c) Expanding dominance
(S = 0.40)

Fig. 10 Obtained solutions by conventional dominance S = 0.5, contracting
dominance S∗ = 0.65, and expanding dominance S = 0.4 for m = 2
objectives, n = 500 items, and φ = 0.5 feasibility ratio.

area of S < 0.5 and a minimum peak in the
area of S > 0.5.

To analyze the above observations further,
Fig. 10 illustrates the obtained solutions in the
final generation (t = 2,000) for all 30 simula-
tions by conventional dominance S = 0.5, con-
tracting dominance S∗ = 0.65, and expand-
ing dominance S = 0.4 for m = 2 objectives,
n = 500 items, and φ = 0.5 feasibility ratio.
Note that solutions obtained by conventional
dominance are close to the true Pareto front
but are clustered in a limited region of objec-
tive space. By contracting dominance with the
optimum parameter S∗ = 0.65, we can spread
the obtained solutions showing the maximum
hypervolume, although convergence of some of
them seems to deteriorate. On the other hand,
by expanding dominance with S = 0.4 showing
the maximum SP (worst spread), we can focus
on convergence of solutions within a narrower
region of objective space.

6.5 Transition of Current Non-
dominated Solutions

Figure 11 illustrates the transition of the
current non-dominated solutions and the non-
dominated solutions on the projected objec-
tive space (after contraction/expansion of dom-
inance area) used for the selection process as
explained in Section 4. Results are shown
for t = {1, 10, 30, 100, 300, 2,000} generations.
Looking at solutions in the conventional (non-
projected) objective space, from Fig. 11 (b.1)
and (c.1), we can observe that since early gen-
erations (t ≥ 100) diversity is favored at the ex-
pense of convergence by contraction of area of
dominance with S∗ = 0.65, while convergence
is favored at the expense of diversity by expan-

sion of area of dominance with S = 0.40. Next,
we look at solutions in the projected space. If
we contract the dominance area of solutions
(S∗ = 0.65), we can see from Fig. 11 (b.2) that
solutions approach closely to the projected true
Pareto front. Also, note that from generation
t ≥ 300 the diversity of solutions increases re-
markably. On the other hand, if we expand
dominance area of solutions (S = 0.40), we can
see from Fig. 11 (c.2) that the algorithm directs
its search towards a limited region of the true
Pareto front, within which high convergence is
achieved.

To summarize, by controlling the dominance
area of solutions changing parameter S we in-
duce different projected objectives spaces in
which the algorithm emphasizes different func-
tionality (diversity/convergence). It would be
an interesting subject of research to investigate
the balance between diversity and convergence
within a single run by adapting properly the
parameter S.

7. Comparison with α-domination

In this section we compare results by the
proposed method and α-domination in terms
of hypervolume and computational time along
with highlighting some important differences
between both approaches.

7.1 Hypervolume
Figure 12 (b), (d) show the obtained hyper-

volume on problems with m = {2, 5} objec-
tives by α-domination varying α from 0.0 to
1.0 in intervals of 0.1. Here, we use a common
parameter α = αij (i �= j; i, j = 1, 2, · · · , m)
for all tradeoff ratios. Note that α = 0.0 is
equivalent to conventional Pareto dominance
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(a) Conventional dominance (S = 0.5)

(b.1) Conventional objective space (b.2) Projected objective space

(b) Contracting dominance (S∗ = 0.65)

(c.1) Conventional objective space (c.2) Projected objective space

(c) Expanding dominance (S = 0.40)

Fig. 11 Current non-dominated solutions at t = {1, 10, 30, 100, 300, 2,000}.

and that selection is strengthened (dominance
area increased) by increasing the value of α.
Similarly, Fig. 12 (a), (c) show the obtained hy-
pervolume by the proposed method varying S
from 0.25 to 0.75. Remember that in the pro-
posed method S = 0.5 is equivalent to conven-

tional Pareto dominance, selection is strength-
ened (dominance area increased) by reducing
S below 0.5 (S < 0.5), and selection is weak-
ened (dominance area reduced) by increasing S
above 0.5 (S > 0.5).

Looking at results by α-domination for 0.0 ≤
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(a) Proposed method, m = 2 (b) α-domination, m = 2

(c) Proposed method, m = 5 (d) α-domination, m = 5

Fig. 12 Hypervolume by proposed method and α-domination on problems
with m = {2, 5} objectives, n = 500 items and φ = 0.5 feasibility
ratio.

α ≤ 1.0 and the proposed method for 0.25 ≤
S ≤ 0.5, i.e., where selection is strengthened,
we can see that the performance trend in terms
of hypervolume is similar by both approaches.
For example, in Fig. 12 (c) and (d) for m = 5
objectives, note that the highest hypervolume
can be achieved by using a somewhat stronger
selection than conventional Pareto dominance.
In the case of α-domination this is achieved by
increasing α from 0.0 to 0.1, whereas in the
case of the proposed method this is achieved
by reducing S from 0.5 to 0.45. Also, note
that strengthening selection further by either
method (α > 0.1 or S < 0.45) the hypervolume
deteriorates.

Thus, on problems where stronger selection
needs to be used (compared to conventional
Pareto dominance), either α-domination or the
proposed method could be used to achieve a
higher hypervolume. However, as it has been
discussed throughout this paper, there could

be many problems where selection actually
needs to be weakened (compared to conven-
tional Pareto dominance) either because of the
number of objectives, size of the search space,
or feasibility ratio of the search space. In these
cases, the proposed method can achieve higher
values of hypervolume because selection can
be weakened by simple increasing S above 0.5.
This can clearly be seen between Fig. 12 (a) and
(b) for m = 2 objectives, where the proposed
method by weakening selection (S = 0.65)
can achieve much higher hypervolume than α-
domination.

7.2 Conceptual Difference and Com-
putational Cost

An important conceptual difference between
the proposed method and α-domination is the
projected space used to perform calculations.
In the proposed method we project efficiently
all solutions to another objective space, where
we can manipulate objective values to perform
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(a) m = 2 objectives (b) m = 5 objectives

Fig. 13 Computational time by proposed method and α-domination vary-
ing the population size |P | on problems with m = 2 and m = 5
objectives, n = 500 items and φ = 0.5 feasibility ratio.

MOEAs operations on sets of solutions, such
as calculation of dominance, crowding distance,
and so on. On the other hand, α-dominations
maps the relationship between each pair of so-
lutions to a two-region separable space, where
dominant solutions clearly fall in one region and
non-dominated solutions in the other one. In
this two-region space no information about the
objectives is preserved and other operations in-
volving objective values, either between the two
solutions or over sets of solutions, cannot be di-
rectly performed.

One important implication of this concep-
tual difference is the computational cost needed
to calculate dominance by both methods. To
calculate α-domination we must first calculate
the gi values of the two-region separable space
for pairs of individuals as indicated in Eq. (8).
Since to calculate each gi value we need to
compute differences between m objectives, and
since there are m pieces of gi for each pair of
individuals in the population, it requires a com-
putational order of O(m2N2), where the num-
ber of objectives is m and the size of the popu-
lation is |P | = N . Once these values have been
computed, we can calculate dominance among
all individuals by using Eq. (9), which requires
a computational order of O(mN2). Thus, the
overall computational order to calculate domi-
nance with α-domination is O(m2N2 + mN2).
On the other hand, in the proposed method we
compute new objective values as indicated by
Eq. (10), projecting the solutions to another ob-
jective space. This process only requires a com-
putational order of O(mN). Then, we can work
in the projected space where the calculation of

dominance requires a computational order of
O(mN2). Thus, the overall computational or-
der to calculate dominance with the proposed
method is O(mN + mN2), which is less than
O(m2N2 + mN2) required by α-domination.

Figure 13 shows the actual computational
time (CPU time) by α-domination and the pro-
posed method varying the size of the population
|P | on a problem with m = 2 and m = 5 ob-
jectives, n = 500 items and φ = 0.5 feasibility
ratio. Both algorithms run for 2,000 genera-
tions in the same computer, configured with
CPU Pentium IV 3.4 GHz. For α-domination
we set α = 0.0 and for the proposed method
S = 0.5, so both methods render results similar
to conventional Pareto dominance in terms of
hypervolume. From the figure we can see that
the proposed method is computationally more
efficient than α-domination as the number of
objectives increases or the population size |P |
increases, which is in accordance with the above
computational orders.

α-domination is inspired from works on de-
cision making 6),7) and included within the se-
lection process of a MOEA without paying at-
tention to its efficiency. During decision mak-
ing, the decision maker analyzes already found
solutions in order to choose one or more so-
lutions that satisfy his aspirations. For each
run (or probably multiple runs) of an opti-
mizer, the decision process would be usually
run once, so an inefficient calculation of pref-
erences might go unnoticed. However, in the
case of α-domination, dominance must be cal-
culated at each generation and its inefficiency
becomes quite apparent as shown in Fig. 13. On
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the contrary, the proposed method is designed
to work efficiently as a part of the instantaneous
selection process of a MOEA that could evolve
a population of solutions for a large number of
generations.

8. Conclusions

In this work we have proposed a method that
can control dominance area of solutions by a
user defined parameter S. We showed that con-
tracting or expanding the dominance area of so-
lutions changes their dominance relation, mod-
ifying the distribution of solutions (number of
fronts and number of solutions per front) in the
multiobjective landscape. Since front distribu-
tion significantly relates to selection, we ana-
lyzed the effects on solutions ranking caused by
contracting and expanding the dominance area
of solutions and its impact on the search per-
formance of a multi-objective optimizer. We
used 0/1 multiobjective knapsack problems as
benchmark problems and showed that the opti-
mum value of S∗ depends strongly on number
of objectives, size of the search space, and fea-
sibility ratio of the search space (complexity).
In addition, we showed that significantly bet-
ter performance can be achieved either on con-
vergence or diversity of obtained solutions by
contracting or expanding the dominance area
rather than by using conventional dominance.
Furthermore, we compared results by the pro-
posed method with α-domination.

In this work, we have assumed a constant
parameter Si = S on all objectives (i =
1, 2, · · · , m) to control the expansion or con-
traction of dominance area. It would be in-
teresting in the future to investigate the effect
of varying Si for each objective and control S
adaptively, especially for problems of unknown
characteristics. For example, a possible way to
include adaptation could be to adjust instanta-
neously the value of S according to the number
of obtained fronts at each generation. Another
way would be changing S adaptively by observ-
ing the balance between convergence and diver-
sity in the population. However, in both ways
the determination of an appropriate change (in-
crease or decrease) of S is a critical issue that
must be carefully investigated in detail.

In addition, it could be valuable to com-
bine this approach with the inclusion of pref-
erences to guide the search towards a partic-
ular region of objective space. With the pro-
posed method, we can improve either conver-

gence or diversity of solutions but not simulta-
neously both. Therefore, we would like to com-
bine the proposed method with other selection
methods to achieve higher convergence while
covering the whole true Pareto front. Further-
more, we should try our method on other kind
of problems with more objectives and compare
our method with other approaches that aim to
solve many objective optimization problems.
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