
ビジネスデータに向けたR*-TREEへの新しいクラスタリング標準の導入
(A HYBRID CLUSTERING CRITERION FOR R*-TREE ON OLAP DATA)

Yaokai FENG Zhibin WANG and Akifumi MAKINOUCHI
Graduate School of Information Science and Electrical Engineering, Kyushu University

1 INTRODUCTION

There is increasing requirement for processing
multidimensional range queries on business data
usually stored in relational tables. In order to obtain
good performance for such multidimensional range
queries, multidimensional indices (e.g., R*-tree is
famous) are helpful, in which the tuples are clustered
among the leaf nodes to restrict the nodes to be
accessed for a query.
 In this paper, first, it is pointed out that, when the
R*-tree is used for indexing business data, the
clustering pattern of tuples among the leaf nodes is a
decisive factor on range search performance. But,
there exist many very slender leaf nodes when R*-tree
is used to index business data, which greatly degrades
query performance. Slender nodes means those
having a very narrow side (even the side length is
zero) in some dimension. Clearly, slender nodes have
very small, even 0, areas (volumes). According to our
discussion in this paper, the reason of so many slender
leaf node existing becomes clear. The insert
algorithm of R*-tree, especially, its criterion choosing
subtrees for new coming objects, determines the
clustering pattern of the tuples among the leaf nodes.
After that, we make it clear that the present clustering
criterion in the insert algorithm of R*-tree is not
suitable to R*-tree applied to business data. Instead, a
hybrid clustering criterion for the insert algorithm of
R*-tree is proposed. Our discussion and experiments
indicate that query performance of R*-tree on
business data is improved much by the new clustering
creation.

2. SLENDER NODES AND THEIR

EFFECT

Because of the particularity of business data, some
new features occur when R*-tree is used to index
business data.

As a feature of business data, the data ranges of
the attributes are very different from each other. For
instance, the data range of “Year” from 1990 to 2003
is only 13 while the amount of “Sales” for different
``Product'' may be up to several hundreds of thousands.
Another typical example of such domains with small
cardinalities is Boolean attribute, which has inherently
only two possible values.

According to our observations, there are many
slender leaf nodes, or even 0-area leaf nodes when
R*-tree is applied to business data. Again, slender
nodes mean those having a very narrow side (even
zero side) in some dimension. Some examples are
those MBRs roughly shaped as line segments in 2-
dimensional spaces and roughly shaped as plane
segments in 3-dimensional spaces.

The basic reason that so many slender leaf nodes
exist is the distribution of the tuples in the index space.
Because the possible different values in some index
dimensions (attributes) are few. And, the existing of
slender leaf nodes is a “positive feedback”. That is,
once some slender leaf nodes exist, they will become
more and more as the new tuples are inserted. In other
words, the existing of slender leaf nodes promotes
generation of many new such nodes, which greatly
deteriorates search performance.

The existing of slender nodes leads to some
problems.

Let us consider the insertion algorithm of R*-tree,
using the example depicted in Figure 1 (a). Point p is
to be newly inserted. Certainly it should be inserted in
Node B since it is so nearer to Node B than to Node A.
However, according to the insert algorithm of the R*-
tree, p will be inserted to Node A in this case. This is
because the area increment of doing so is smaller than
that of inserting p to Node B. In other words, the new-
coming tuples tend to be inserted into the existing
slender nodes. This will lead to a bad clustering of
tuples among the leaf nodes, which greatly cut down
query performance.

Let us to see another case shown in Figure 1(b).
There are two MBRs shaped as line segments, A and
B. Let assume p is a point to be inserted. Intuitively, p
should be included in Node B whose MBR is a line
segment. Actually, p may be inserted in Node A,
although this enlarges the overlap (between A and B)
and also leads to a long node A. This is because the
insertion algorithm of the R*-tree cannot determine
which node, A or B, should be selected since both
volume increment and overlap increment of selecting
A and selecting B are 0. As a result, either Node A or
Node B is selected as default without consideration of
actual overlap. Here, we assume that Node A is
selected. When a new point with the same y-axis
coordinate as p is inserted again, the same process is
repeated and the point is also inserted into Node A.

3－39

1K-1

情報処理学会第67回全国大会

The repeated insertion of such points leads to the
overflow of Node A. The node is split into Node A’
and Node A’’. Repeated insertions of points like p
leads to node A splitting again and again, which
generate a new Node A’’’, and so on. As a result, the
space utilization of such nodes degrades and the total
number of nodes tends to increase. Moreover, the
heavy overlaps among the leaf nodes also greatly
influence the search performance.

Node A

Node B

p

Node A Node A
p

(a) (b)

 Figure 1. Slender nodes exist.

3. A HYBRID CLUSTERING

CRITERION

The present clustering criterion is as follows.

(a) The least enlargement of overlap area, if tie
occurs then (b) The least enlargement of MBR area, if tie
occurs then (c) The least MBR area.

Our approach to this problem includes the following
two points.

(1) Modifying the area calculation.
The reason that “no way to decide a suitable subtree

(or leaf node) for new-coming tuples” like p1, p2, p3 in
Figure 5 is that the enlargements on overlap area and
enlargements on MBR area are zero and comparison can
not be made for inserting the tuples to nodes A and B.
And whichever of A and B is chosen, the area of the
result MBR is zero.

In order to avoid this situation, we change the area
calculation. That is, when the area of a rectangle, a node
MBR or the overlap region of two node MBRs, is
calculated, if exist, all the zero-sides (i.e., the side length
is zero) of this rectangle is set to a trivial non-zero
positive value (e.g., 10-4 in our experiments).
dimensionality of the index space.
 The modified area calculation of R is as follows.



 =−

=′

′=′ ∏
=

,
,0

,)(
1

otherwiseS
Svaluetrivial

S

SRaAre

i

i
i

d

i
i

where trivial-value is set to 10-4 in this paper.
Anyway, this trivial value must be less than the unit in
this attribute, which is not difficult to guarantee. In
this way, many un-comparable situations caused by

slender nodes can be avoided. Note that, this
modification only changes the clustering pattern of the
tuples among the leaf nodes and it has no effect on the
correctness of the query result.

(2) Introducing a distance-criterion.
If the above area-criterion cannot decide which

subtree or leaf node is most suitable to the new-
coming tuples, which means the area-based clustering
criterion is no longer in force, the nearest subtree or
leaf node to the new-coming tuple is chosen.

4. EXPERIMENTS

Dataset and index attributes: Lineitem table of TPC-
H benchmark, which has 16 attributes of various data
types including floating, integer, date, string, Boolean.
The table used in our experiments has 200,000 tuples.
Six of the total 16 attributes are chosen as index
attributes, including SHIPDATE(date),
QUANTITY(floating point), DISCOUNT(floating
point), SHIPMODE(character string),
SHIPINSTRUCT(character string), and
RETURNFLAG (character string), since they are
often used as query attributes in the queries of the
benchmark.
 The result is included in Table 1.

Table 1. Comparison on the number of accessed
different nodes

Query
range

R*-tree with original
clustering criterion

R*-tree with hybrid
clustering criterion

10% 369.91 95.12
20% 648.90 126.33
30% 603.65 131.31
40% 388.67 137.30
50% 683.29 237.27
60% 489.00 248.10
70% 708.24 231.10
80% 691.89 275.48
90% 571.10 357.62
100% 764.55 358.49

From Table 1, we can know that the hybrid clustering
criterion can greatly improve the query performance.

5. CONCLUSIONS

In this paper, a hybrid clustering criterion is
introduced to R*-tree applied to OLAP data, which
clearly improved query performance of R*-tree.

REFERENCES

Y. Feng, Z. Wang, A. Makinouchi. A Hybrid
Clustering Criterion for R*-tree on Business Data.
Proc. 7th ICEIS Intl. Conf. , 2005. (to appear)

3－40

