
A General Purpose Assembler 
for Queue Computers

CANEDO Arquimedes†, ABDERAZEK Ben†,

YOSHINAGA Tsutomu†, SOWA Masahiro†

1. Introduction

Different  types  and  implementations  of
queue  computers  have  been  developed  and
researched at The Advanced Distributed and
Parallel  Computer  Systems  Laboratory[1].
QASM  is  a  general  purpose  two-pass
assembler designed to generate object code
for  multiple  queue-based  microprocessors
and  to  provide  a  suitable  tool  for  both
programmers  and  compiler  assembly  output.
It is capable to perform macro expansion,
pseudoinstructions  assembly  and  machine
dependent optimizations.

2. QASM

The assembly process takes place in two
passes. The first pass reads the input file
statement by statement and fills the symbol
table and program image. Forward references
are solved using a backpatch list once the
input  file  has  been  completely  read.
Program image is an intermediate language
form based on generalized quadruples. The
second  pass reads the machine description
file  of  the  target  architecture  and
performs  pattern  matching  for  every
statement found in the program image. All
machine  dependent  optimizations  and  type
checking are achieved in the second pass.
QASM  is  entirely  written  in  C  language
using  flex  and  bison  to  build  lexical
analizer and parser.

2.1.Preprocessor

In  case  that  macro  expansion  capability
has  to  be  used,  the  programmer  provides
QASM  a  library  file  which  contains  all
macro  expansion  definitions  for  a  given
program.  Preprocessor  adds  an  extra  pass
over the input program. Preprocessor (QKK)
default  behavior  generates  a  expanded
assembly file for every input program and
it is capable to merge all input files into
one single output assembly file.

2.2.Intermediate Representation

The  intermediate  representation  of
program  was  chosen  according  to  two  main
functions the assembler must  provide: (1)
to satisfy all queue-computer architecture
features and (2) to be easily retargetable
to  new  queue-based  computer  architectures
[4,5]. Each instruction is represented in a
quadruple with at least opcode field. Up to
three  operands  can  be  encoded  into  each
quadruple:  destination  operand  and  two
sources. This intermediate form allows the
QASM to perform efficient pattern matching
and translation to binary code. 

2.4.Porting Mechanism

For each target architecture supported by
QASM a machine description file has to be
defined.  The  machine  description  file
contains  one  by  one  all  existing
instructions in the target architecture in
a form of extended quadruple described in
section 2.3. The opcode field defines the
mnemonic,  binary  value,  and  offset  that
specifies the starting position  of opcode
field within every particular instruction.
As for the destination and source fields,
the  data  type  expected  (e.g.  General
Purpose  Register,  Queue  Register,
Immediate),  the  offset  defining  the
position of field, and bit size of field is
provided in the definition. 

Second  pass  of  assembler  is  machine
dependent and can be controlled at runtime
by  a  special  directive  (.syntax  TARGET-
ARCHITECTURE) in the source program. This
feature  is  particularly  usefull  for
assembling  programs  for  hybrid  queue
processors.

The  second  pass  over  the  program  image
attempts  to  match  every  instruction
(quadruple) found in the program image with
instruction  definitions  in  the  machine
description files (extended quadruples). If
a match is found the following  steps are
bounds checking, type checking and machine
dependent  optimizations  if  available  for
the matched instruction. 

† Graduate School of Information Systems,
University of Electro-Communications, Tokyo

1－295

4N-1

情報処理学会第67回全国大会



2.2.Optimizations

QASM  distinguishes  between  two types  of
optimizations:  user  defined  and  machine
dependent  optimizations.  User  defined
optimizations  are  activated  by  programmer
when  invoking  the  assembler  and  are  not
critical  for  assembly  process.  Machine
dependent optimizations are transformations
the assembler must do to source program to
guarantee correctness of assembled program.

2.3.Special Features

All design features and decisions in QASM
were made acording the following keypoints:

• Assemble multiple input syntaxes.
• Provide a tool suitable for compiler

and a intuitive and simple framework
for human programmers.

• Easy  retargetable  and  portable
assembler  for  queue  computers  and
hybrid queue-register computers.

• Multiple  output  for  different  target
architectures.

• Multiple  object  file  formats  for
hardware  and  software  simulators  and
linker.

In  order  to  generate  usefull  data  for
hardware  and  software  simulators  QASM
provides  simulator  dependent  object  file
formats, hexadecimal object file, and raw
binary object file. In a near future QASM
will support ELF[2] object file format.

Figure 1. depicts QASM general structure in
block diagram.

Figure 1. QASM block diagram.

3. Conclusions and Future Work

QASM  has  been  finely  tuned  for  three
different queue architectures and supports
both  high-level  human  programmer  input
assembly  syntax  and  compiler  generated
assembly output.  It has been  successfully
interfaced  with GCC port for PQP and Queue
Java  Compiler[3].  QASM  is  a  custom  made,
general  purpose,  portable  assembler
developed  to  fulfill  all  queue  computer
architecture features and needs. 

QASM  has  been  successfully  compiled  on
MacOSX,  FreeBSD,  OpenBSD,  Linux,  Solaris
operating systems using GCC 3.4 compiler.

A fragment of quicksort benchmark assembled
program for multithreaded PQP is shown in
Figure 2.

Figure 2. Object file output fragment of
quicksort benchmark for MTPQP.

4. References

[1] Advanced  Distributed  and  Parallel
Computer  Systems  Laboratory,  University
of Electro-Communications, Tokyo

[2] ELF:  Executable  and  Linkable  Format,
Tool Interface Standards (TIS), Portable
Formats Specification, v1.1

[3] 生産順序キューマシン命令コード生成手法
の提案, 川島祐介, 繁田聡一, 吉永努, 曽和
将容, 第 66回情報処理学会全国大会 論文集
(1)pp81-82, March 2004.

[4] Parallel  Queue  Processor  Architecture
Based  on  Produced  Order  Computation
Model,  (to  appear in  the  International
Journal of Supercomputing 2005)

[5] 曽和将容, 省電力大並列高速並列キュープ
ロ セ ッ サ PQP,  Technical  Report,
SLL030331, 電気通信大学情報システム学研究
科, June 2003

1－296




