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Maintaining Multiple Populations with Different Diversities

for Evolutionary Optimization Based on Probability Models

Takayuki Higo
†1 and Keiki Takadama

†2

This paper proposes a novel method, Hierarchical Importance Sampling (HIS) that can
be used instead of population convergence in evolutionary optimization based on probability
models (EOPM) such as estimation of distribution algorithms and cross entropy methods.
In HIS, multiple populations are maintained simultaneously such that they have different
diversities, and the probability model of one population is built through importance sampling
by mixing with the other populations. This mechanism can allow populations to escape from
local optima. Experimental comparisons reveal that HIS outperforms general EOPM.

1. Introduction

Recently, evolutionary optimization based on
probability models (EOPM), for example, es-
timation of distribution algorithms (EDAs) 6),
cross entropy methods (CEs) 14), and proba-
bilistic model-building genetic algorithms (PM-
BGAs) 10), have attracted considerable atten-
tion for they possess not only the strengths
of genetic algorithms (GAs) 2) but also a sub-
stantial mathematical background. The essen-
tial concept employed in these methods involves
building a probability model of the population,
which is a set of promising solutions, and then
generating samples from the built probability
model.

In general EOPM, one population is main-
tained and is gradually converged; thus, pop-
ulation convergence plays an important role in
EOPM. In EDAs, the convergence is controlled
by a selection operator; Boltzmann selection,
for example, is one of the promising selection
operators, and the standard deviation schedule
can effectively control its convergence speed 7).
However, population convergence is an unstable
method because the obtained solutions cannot
be further improved once the population has
converged.

To overcome this instability, this paper pro-
poses a novel method, Hierarchical Importance
Sampling (HIS) that can be used instead of
population convergence. The basic principle
is to maintain multiple populations with differ-
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ent diversities �1. For example, one population
may be almost random and another, almost
converged. HIS builds the probability model
of each population, respectively, and generates
samples from all the built probability models
simultaneously. Therefore, the obtained sam-
ples consist of a number of sample sets, each of
which is generated from a different probability
distribution. The salient feature is that mixed
samples are used for building probability mod-
els of the populations according to importance
sampling 1),13), which guarantees mathematical
validity.

The aim of this paper is to investigate the
effectiveness of the proposed method through
experimental comparisons with general EOPM.
Onemax, a 1D Ising model, and a 2D Ising
model, are used for benchmark problems.

The outline of the paper is as follows: In Sec-
tion 2, general EOPM is explained from two
different viewpoints. In Section 3, the proposed
method (HIS) is described. In Section 4, the
proposed method is experimentally compared
with EOPM. Section 5 discusses the advan-
tages of the proposed method. Finally, Section
6 concludes this paper.

2. Evolutionary Optimization Based
on Probability Models

The following section provides two viewpoints

�1 The exchange Monte Carlo method (EMC) 4) uses
the same concept of sampling from multiple tar-
get distributions with different diversities. EMC
is one of the Markov chain Monte Carlo methods
(MCMC) 1). MCMC and EMC are essentially dif-
ferent from EOPM and HIS. The relationships
among EOPM, MCMC, HIS, and EMC are sum-
marized in Appendix A.1.

66



Vol. 49 No. SIG 4(TOM 20) Maintaining Multiple Populations with Different Diversities 67

Estimation of Distribution Algorithm (EDA)

1 Generate samples X
(1)
pop = {xi}N

1 from the uniform distribution p1(x). t ⇐ 1.
2 do{
3 Build a probability model pt(x) of X

(t)
pop.

4 Generate samples X
(t)
samp = {xi}M

1 from pt(x).

5 Select promising solutions as the next population X
(t+1)
pop = {xi}N

1 from

X
(t)
samp.

6 t ⇐ t + 1.
7 }until(stopping criterion reached)

Fig. 1 The pseudo-code of EDA.

Fig. 2 Illustration of EDA and CE.

for EOPM: (1) EDA and (2) CE.
2.1 Estimation of Distribution Algo-

rithm (EDA)
EDAs 6) mainly developed in the area of

evolutionary computation and can be consid-
ered as mathematical representations of GAs.
The univariate marginal distribution algorithm
(UMDA) 8) is one of the basic EDAs. In this
paper, the algorithm of EDA is defined as the
generalization of UMDA.

The algorithm of EDA is summarized in
Fig. 1. At the beginning, randomly generated
samples are employed as the initial population,
and this population is then updated iteratively.
To update the current population, first, a prob-
ability model of the population is built, and
samples are then generated from the probabil-
ity model. The promising solutions in the gen-
erated samples are selected by means of a se-
lection operator to form the next population,
and, finally, the population is completely re-
placed with the selected samples, as illustrated
in Fig. 2.

In general, maximum likelihood (ML) estima-
tion 1) is used for building probability models
in EDAs. Let p(x) and q(x) be a probability
model and a target probability distribution, re-
spectively. ML estimation selects the probabil-
ity model that maximizes the (expected) log-

likelihood, which is defined as follows:

L(p(x)) =
∫

q(x) log p(x)dx. (1)

In practice, the empirical log-likelihood is used
as an estimator of the log-likelihood. By using
the given samples X generated from q(x), the
empirical log-likelihood is calculated as follows:

L(p(x)) � 1
N

∑
X

log p(x), (2)

where N is the number of samples in X.
In building a probability model of a popula-

tion Xpop, it is assumed that Xpop is generated
from a certain target distribution q(x). The
target distribution is naturally defined by the
employed selection operator. For example, em-
ploying a truncation selection operator, which
selects samples whose evaluations f(x) are less
than the threshold f̃ in a minimization prob-
lem, is almost equivalent �1 to defining q(x) as
follows:

q(x|f̃) =
1
Z

q̃(x|f̃) (3)

q̃(x|f̃) = I(f(x) < f̃)

=
{

1 f(x) < f̃
0 else

, (4)

where I(·) is an indicator function and Z is the
normalizing constant defined as follows:

Z =
∫

q̃(x)dx. (5)

In this paper, this probability distribution is
called a partially uniform distribution. Another
candidate target distribution is the Boltzmann
distribution 7).

2.2 Cross Entropy method (CE)
CE 14) was originally proposed as a sampling

method in the area of rare-event simulations.
The difference from EDA is that the target dis-
tributions described in Section 2.1 are explicitly

�1 It is assumed that ML estimation affords a perfect
probability model, that is, p(x) = q(x).
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defined instead of using a selection operator.
Consequently, the empirical log-likelihood is
calculated from the previously generated sam-
ples X

(t)
samp through importance sampling 13) as

follows:

L � 1
M

∑
X

(t)
samp

qt+1(x)
pt(x)

log pt+1(x), (6)

where X
(t)
samp is a set of samples generated from

pt(x) and M is the number of the samples. If
we only know q̃t+1(x) and p̃t(x) which are pro-
portional to qt+1(x) and pt(x), respectively, the
empirical log-likelihood can be calculated as fol-
lows:

1∑
X

(t)
samp

q̃t+1(x)
p̃t(x)

∑
X

(t)
samp

q̃t+1(x)
p̃t(x)

log pt+1(x).

(7)
The validity of Eq. (7) is proven in Ap-
pendix A.2. Note that the empirical log-
likelihood is simply an estimator of the ex-
pected log-likelihood, and the accuracy (e.g.,
the variance) depends on the similarity between
pt(x) and qt+1(x).

2.3 Comparison between EDA and CE
From the viewpoint of CE, the selection op-

erators in EDA can be considered equivalent to
resampling according to weights q(x)/p(x) in
Eq. (6); consequently EDA is equivalent to CE.
Since resampling requires a sufficiently large
number of samples, importance sampling can
be superior to resampling and averaging, and
CE can be superior to EDA. However, note
that selection operators are used for not only
calculating the experimental log-likelihoods but
also defining the target distributions. In prac-
tice, the target distributions play an important
role, and EDA’s selection operators such as the
truncation selection operator afford good exper-
imental results, whereas CE with the (1 − δ)-
quantile 14) has difficulties in convergence, as re-
vealed in our experiments described later.

3. Hierarchical Importance Sampling

3.1 Theoretical Overview
HIS maintains L number of layers, each of

which consists of a population Xl, a proba-
bility model pl(x), and a target distribution
ql(x). Each Xl is a set of samples generated
from the corresponding probability model pl(x).
Each pl(x) is built with ML estimation to ap-
proximate the corresponding target distribu-
tion ql(x) , which is assumed to be previously

provided here. Thus, Xl is approximately dis-
tributed according to ql(x). It is supposed that
ql(x) has less diversity than ql−1(x). Therefore,
it is also expected that pl(x) has less diversity
than pl−1(x), and Xl contains better solutions
than Xl−1. Normally, q0(x) is the uniform dis-
tribution, and qL−1(x) is the converged distri-
bution, which generates only the best obtained
solution.

Basically, HIS iterates the following two
steps: (1) sampling and (2) estimation. In the
sampling step, each Xl is updated by sampling
from pl(x) and replacing the current popula-
tion with the generated samples; the sampling
step is illustrated in Fig. 3 (a). In the estima-
tion step, each pl(x) is updated to approximate
ql(x) more accurately than the previous one.
The important feature is that all the popula-
tions Xm = X0 ∪ · · · ∪ XL−1 are used for up-
dating each pl(x). The probability distribution
of Xm is given by a mixture distribution, which
is defined as follows:

pm(x) =
∑

l

αlpl(x), (8)

αl =
Ml∑
i Mi

, (9)

where Ml is the number of samples in Xl;
thereby, the empirical log-likelihood with re-
spect to ql(x) can be calculated via importance
sampling as follows:

L � 1∑
i Mi

∑
Xm

ql(x)
pm(x)

log pl(x). (10)

This corresponds to Eq. (6) and the method of
Eq. (7) would be employed in practice. The es-
timation step is illustrated in Fig. 3 (b).

3.2 Comparison between HIS and CE
Suppose that target distributions are pre-

viously provided in CE and HIS. Let L be
the number of the layers of HIS. At time t,
CE generates a probability model pt(x) ap-
proximating the corresponding target distri-
bution qt(x), whereas HIS generates L num-
ber of probability models p

(t)
0 (x) · · · p(t)

L−1(x) ap-
proximating the corresponding target distribu-
tions q0(x) · · · qL−1(x), respectively. To gener-
ate pt(x), CE uses only one sample set Xt−1,
which is generated in the previous step. On
the other hand, to generate p

(t)
l (x), HIS uses

all the sample sets X
(t−1)
0 · · ·X(t−1)

L−1 , generated
in the previous step. In other words, the differ-
ence is that CE sequentially generates probabil-
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(a) Sampling (b) Estimation

Fig. 3 Illustration of hierarchical importance sampling.

ity models and sample sets, whereas HIS gen-
erates probability models and sample sets both
simultaneously and iteratively.

If only the l − 1th population Xl−1 is used
to update the lth probability model pl(x) in
the estimation step of HIS, HIS, indeed, cor-
responds to iterative execution of CE, which
means that CE is restarted from the initializa-
tion if the population converges. This implies
that HIS is a mathematical extension of CE.

3.3 Target Distribution Control
HIS can theoretically operate if the target dis-

tributions are previously defined in any man-
ner. However, in practice, HIS requires appro-
priate target distributions to produce good re-
sults. This section explains a manner in which
the target distributions of HIS are provided.
Note that the proposed target distribution con-
trol method cannot be used with any proba-
bility distribution other than the partially uni-
form distribution defined by Eq. (3) for target
distributions. To propose a control method for
other probability distribution families such as
the Boltzmann distribution is left as a future
work.

It is supposed that q0(x) and qL−1(x) are
given �1; then the objective of the control
method is to determine ql(x) for l = 1 · · ·L−2.
Each ql(x) is represented by the partially uni-
form distribution and denoted by ql(x|f̃l) with
the threshold parameter f̃ . In terms of impor-
tance sampling, ql−1(x) and the next target dis-
tribution ql(x) should be similar because the ac-
curacy of the empirical log-likelihood given by
the importance sampling depends on this sim-

�1 In the experiments, a probability distribution that
generates only the best obtained sample is used for
qL−1(x).

ilarity. Thus, the objective is to select f̃l such
that ql−1(x|f̃l−1), ql(x|f̃l), and ql+1(x|f̃l+1) are
similar.

The present concept is based on the size of
the search space. In the case of the partially
uniform distribution, a set of drawable samples
is defined by Cl = {x|q̃(x|f̃l) = 1}, where q̃(x|f̃)
is defined by Eq. (4), and the number of draw-
able samples is given by

∫
C

dx =
∫

q̃(x)dx = Z.
Thus, the size of the search space can be pro-
vided by the normalizing constant defined by
Eq. (5). Note that the normalizing constant
is normally unknown, but its estimator can be
calculated through importance sampling as fol-
lows:

Zl(f̃) =
∫

q̃(x|f̃)dx

� 1
M

∑
Xp(x)

q̃(x|f̃)
p(x)

= Ẑl(f̃), (11)

where Xp(x) is a set of samples generated from
p(x), and M is the number of the samples. In
an importance sampling calculation,

1
M

∑
Xql−1(x)

ql(x)
ql−1(x)

f(x), (12)

the probability of generating an acceptable
sample, whose weight ql(x)

ql−1(x) is not zero, is
given by∫

Cl−1

ql−1(x)
q̃l(x)

q̃l−1(x)
dx =

Zl

Zl−1
, (13)

where it is assumed that Cl ⊆ Cl−1. It is clear
that the rejected samples do not contribute
to the importance sampling. In simple CE,
where samples are generated from target distri-
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Hierarchical Importance Sampling (HIS)
1 Initialize the probability models p0(x) · · · pL−1(x) and the populations X0 · · ·XL−1.

l ⇐ 0.
2 do{
3 Adjust the target distribution ql(x) according to Eq. (15).
4 Calculate the empirical log-likelihood with respect to ql(x) from

Xl−1, Xl, Xl+1 through importance sampling according to Eq. (10).
5 Update the probability model pl(x) according to the empirical log-

likelihood.
6 Generate samples from pl(x) and replace population Xl with the gener-

ated samples.
7 l ⇐ (l + 1)%L.
8 }until(stopping criterion reached)

Fig. 5 The pseudo-code of hierarchical importance sampling.

Fig. 4 Search space reduction.

butions, the sum of the number of the accepted
samples is given by

L−1∑
l=1

Ml−1
Zl

Zl−1
, (14)

and the maximization condition of Eq. (14) is
given by

Ml−1
Zl

Zl−1
= Ml

Zl+1

Zl
. (15)

If Zl−1 and Zl+1 are given �1, the target nor-
malizing constant Z∗

l is obtained from Eq. (15).
Then, the threshold parameter f̃l is updated to
satisfy

Z∗
l = Ẑl(f̃l), (16)

where Ẑl(f̃l) is the estimator of the normaliz-
ing constant given by Eq. (11). A method for
solving Eq. (16) is described in Appendix A.3.
Figure 4 shows an illustration of the search
space reduction.

�1 Note that Z0 and ZL−1 are normally previously pro-
vided and thus, all Zl can be previously determined
according to Eq. (15). However, this paper uses the
estimators of Zl−1 and Zl+1 to determine Zl be-
cause, in some cases, it can be difficult to build a
probability model approximating a target distribu-
tion with a certain normalizing constant.

3.4 Practical Procedure
In the practical procedure of HIS, first of all,

each pl(x) is initialized to a uniform distribu-
tion and each Xl is generated from pl(x). For
each l, the lth layer (i.e., ql(x), pl(x), and Xl)
is sequentially and iteratively updated. To up-
date the lth layer, first, ql(x) is updated accord-
ing to Eq. (15), and then pl(x) is updated. To
calculate the empirical log-likelihood with re-
spect to ql(x), we use only three populations,
which are the upper one Xl−1, the current one
Xl, and the lower one Xl+1

�2 for two reasons:
calculating the marginal probability of Eq. (8)
consumes a considerable amount of time, and
the samples in Xi, generated from pi(x), tend
not to contribute to the importance sampling of
Eq. (10) if pi(x) and ql(x) are not similar. Fi-
nally, the population Xl is replaced with sam-
ples generated from pl(x). The pseudo-code of
HIS is shown in Fig. 5.

4. Experiments

This section describes the experiments con-
ducted to investigate the advantages of extend-
ing EDA and CE with HIS. There have been
two types of developments in EDA and CE: one
involves employing complex probability models
such as Bayesian networks 6). It is clear that
HIS can employ any of the probability models
used in EDA and CE. This section focuses on
the simplest probability model, that is, a fully
factorized one. This is because, for the first
step in investigating the effects of HIS, the ba-
sic probability model is appropriate in terms
of avoiding over-fitting. Instead of changing
the complexity of the probability models, dif-
ferent kinds of problems are used for the exper-
iments. As future work, investigations on the
effects of model errors on HIS will be performed

�2 X−1 and XL are supposed to be null sets.
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by changing the complexity of the probability
models.

The other development is to employ a pop-
ulation mechanism, that is, to maintain a part
of the historical samples, whereas general EDA
and CE maintain only the samples generated in
the previous step. One successful method with
a population mechanism is hBOA 11). Since the
population mechanism of hBOA is heuristic, it
is difficult to simply extend hBOA with HIS;
this line of inquiry is also set aside for future
work.

Three benchmark problems, Onemax, a 1D
Ising model, and a 2D Ising model, are em-
ployed. Onemax is a basic benchmark for
EOPM. 1D and 2D Ising models are simple ex-
amples of Ising spin glasses, which are famous
in both statistical physics and optimization 12).
A feature of 1D and 2D Ising models is the diffi-
culty in statistically estimating their cost func-
tions with fully factorized probability models,
which intuitively implies the presence of multi-
ple local optima.

4.1 Benchmark Problems
In the benchmark problems, the domain for

each variable is xi ∈ {0, 1} and the number of
the dimension d is set at 400. Minimization
problems are considered.

4.1.1 Onemax
This problem is defined as

f(x) = −
d∑

i=1

xi. (17)

The optimum cost function value is −d, and
there is no correlation between any of the vari-
ables.

4.1.2 1D Ising model
This problem is defined as follows:

f(x) = −
d∑

i=1

J(xi, xi+1), (18)

J(xi, xj) =
{

1 xi = xj

0 xi �= xj
. (19)

Periodic boundary conditions, implying that
xd+1 is treated as x1, are employed. The opti-
mum cost function value is −d. There are cor-
relations between two variables, as illustrated
in Fig. 6.

4.1.3 2D Ising model
We consider r × r = 20 × 20 grids, as illus-

trated in Fig. 7. If two connected variables at-
tain the same value, the value of the cost func-
tion is improved. 2D Ising model can be defined

Fig. 6 1D Ising with periodic boundary conditions.

Fig. 7 2D Ising with periodic boundary conditions.

as

f(x) = −
i=r∑
i=1

j=r∑
j=1

{J(xij , xi+1,j)

+ J(xij , xi,j+1)}. (20)

Periodic boundary conditions are employed.
The optimum cost function value is −2d. This
problem is basically equivalent to a check-board
problem 6).

4.1.4 Adding Noise
Since the threshold of the partially uniform

distribution cannot function precisely when
multiple solutions have the same cost function
value, the original cost function f(x) is slightly
altered by adding small random values ε as fol-
lows:

f ′(x) = f(x) + ε. (21)
In the experiments, ε is u × 10−10, where u is
a random number uniformly distributed from 0
to 1. This is applied to all the three functions
described above.

4.2 Experimental Setup
4.2.1 EDA Setting
We employ UMDA 8) as the EDA. Thus, the

probability model is defined as

p(x|w) =
i=d∏
i=1

p(xi|wi) (22)

and ML estimation is employed for building the
probability models. Here, the learning rate α is
introduced. The parameter w is updated by the
following equation:

wnew = (1 − α)wold + αwML, (23)
where wnew, wold, wML are the new parameter,
previous parameter, and ML estimator, respec-
tively. This mechanism affords stable estima-
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Table 1 Results of EDA for Onemax.

Samples Cutoff Best Evaluations
100 0.5 –400 (0) 8,570 (148.66)
500 0.5 –400 (0) 41,950 (610.33)
500 0.3 –400 (0) 64,750 (512.35)

1,000 0.5 –400 (0) 85,200 (1,326.65)
1,000 0.3 –400 (0) 130,200 (1,400)

500 0.1 –400 (0) 159,600 (2,406.24)
3,000 0.5 –400 (0) 260,400 (3,231.1)
1,000 0.1 –400 (0) 314,900 (4,109.74)
3,000 0.3 –400 (0) 391,800 (4,069.4)
6,000 0.5 –400 (0) 523,800 (7,613.15)
6,000 0.3 –400 (0) 792,000 (8,485.28)
3,000 0.1 –400 (0) 945,600 (5,969.92)
6,000 0.1 –400 (0) 1,891,200 (6,462.2)

100 0.3 –399.9 (0.3) 13,400 (275.68)
100 0.1 –395.1 (1.7) 36,030 (1,500.03)

tion.
The selection operator employed is the trun-

cation selection operator. The truncation selec-
tion operator includes the cutoff rate parameter
c, which represents the percentage of samples
that are removed. For example, if c = 0.3 and
the number of generated samples is 100, then
the best 70 = 100×(1−0.3) samples are selected
and the rest are discarded. All the parameter
settings are described as follows:
• The number of generated samples in one

sampling M : 100, 500, 1,000, 3,000, or
6,000.

• Cutoff rate c: 0.1, 0.3, or 0.5.
• Learning rate α: 0.5.

These values are experimentally determined.
4.2.2 CE Setting
CE uses the same probability model and es-

timation method as EDA. However, instead of
truncation selection, CE employs the (1 − δ)-
quantile method 14), which selects the best k =
M × δ samples, where M is the number of gen-
erated samples, and removes the rest. Trunca-
tion selection and the (1 − δ)-quantile method
are basically the same: the parameter (1 − δ)
corresponds to the cutoff rate in truncation se-
lection. Thus, (1−δ) is referred to as the cutoff
parameter in this paper. All the parameter set-
tings are described as follows:
• The number of generated samples in one

sampling M : 100, 500, 1,000, 3,000, or
6,000.

• Cutoff rate c = 1 − δ: 0.3, 0.5, or 0.7.
• Learning rate α: 0.5.

These values are experimentally determined.
4.2.3 HIS Setting
HIS also uses the same probability model and

estimation method as EDA. All the parameter

settings are described as follows:
• The number of generated samples in one

sampling M : 10 or 50.
• The number of the layers L: 10, 20, 30, or

40.
• Learning rate α: 0.5.

These values are experimentally determined.
Note that the number of samples contained in
Xi is denoted by Mi and Mi = Mj = M .

4.3 Results
Tables 1, 2 and 3 show the results of EDA.

Tables 4, 5 and 6 show the results of CE. The
values in the first and second columns are the
number of generated samples per sampling and
the cutoff rate value, respectively. The third
column lists the average cost function value,
with the standard deviation in parenthesis, of
the best obtained solutions over ten indepen-
dent runs. The forth column lists the number of
function evaluations until the population con-
verges. The convergence criterion is that the
number of function evaluations is greater than
2.9E6 or the variance of the cost function values
of the generated samples is less than 1E−20.

Clearly, the performance of CE is inferior to
that of EDA, despite the fact that CE is ba-
sically equivalent to or plausibly better than
EDA. This is due to the target distribu-
tions (i.e., the difference between the trunca-
tion selection operator and the (1− δ) quantile
method). The results show that the popula-
tions of CE do not converge well. This problem
is solved by adding a population mechanism to
CE 3).

Table 7 shows the results of HIS for One-
max. The first and the second columns list the
number of generated samples per sampling and
the number of layers, respectively. The third
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Table 2 Results of EDA for 1D Ising.

Samples Cutoff Best Evaluations
3,000 0.3 –364.8 (4.02) 1,114,800 (62,183.29)
3,000 0.5 –364.4 (2.94) 788,400 (54,212.91)
1,000 0.5 –363.8 (6.54) 228,600 (22,037.24)
6,000 0.5 –363.6 (5.78) 1,839,600 (120,365.44)
6,000 0.3 –362.6 (4.2) 2,463,000 (118,922.66)
3,000 0.1 –360.8 (3.82) 2,260,200 (49,060.78)
1,000 0.3 –359.8 (4.33) 307,800 (12,064.82)

500 0.3 –358.4 (4.96) 146,900 (13,931.62)
500 0.5 –358 (3.9) 95,700 (4,648.66)

1,000 0.1 –356.8 (4.21) 663,200 (35,312.32)
100 0.5 –354 (6.69) 13,720 (570.61)
500 0.1 –352.8 (5.38) 308,550 (22,005.06)
100 0.3 –348.6 (4.39) 20,510 (1,328.5)
100 0.1 –338.2 (5.55) 45,170 (6,008.5)

6,000 0.1 –322.4 (5.35) 2,904,000 (0)

Table 3 Results of EDA for 2D Ising.

Samples Cutoff Best Evaluations
3,000 0.5 –719 (15.68) 746,700 (63,617.69)
6,000 0.3 –714 (18.57) 2,269,800 (277,094.14)
3,000 0.3 –709.6 (8.04) 1,073,400 (130,579.63)
1,000 0.5 –706.6 (12.33) 213,100 (22,997.61)
6,000 0.5 –705.4 (12.84) 1,671,000 (165,043.63)
1,000 0.3 –705 (8.06) 321,600 (38,257.55)
3,000 0.1 –698.6 (15.07) 2,625,900 (261,206.99)

500 0.5 –697 (13.89) 94,800 (6,021.63)
500 0.3 –694.8 (9.39) 151,400 (14,902.68)
500 0.1 –688.6 (17.32) 370,050 (56,346.45)

1,000 0.1 –686 (9.34) 807,500 (118,196.66)
100 0.5 –680.8 (10.59) 14,230 (445.08)
100 0.3 –664.4 (14.31) 22,410 (1,602.78)

6,000 0.1 –649.8 (12.79) 2,904,000 (0)
100 0.1 –632.2 (12.47) 47,430 (2,609.23)

Table 4 Results of CE for Onemax.

Samples Cutoff Best Evaluations
6,000 0.7 –399.9 (0.3) 538,800 (31,269.15)
6,000 0.5 –394.6 (3.56) 2,835,000 (207,000)
3,000 0.7 –380.1 (8.83) 272,400 (7,800)
3,000 0.5 –359.2 (7.15) 2,901,000 (0)
1,000 0.7 –339.3 (9.18) 72,200 (3,124.1)

500 0.7 –319.5 (4.92) 32,300 (1,661.32)
1,000 0.5 –317.3 (8.96) 279,600 (27,122.68)

500 0.5 –298 (5.59) 74,550 (4,660.74)
100 0.7 –286.3 (4.24) 4,870 (272.21)
100 0.5 –273.9 (4.87) 8,120 (622.58)
500 0.3 –269.1 (7.33) 2,900,500 (0)

1,000 0.3 –265.7 (3.13) 2,901,000 (0)
3,000 0.3 –264.8 (1.83) 2,901,000 (0)
6,000 0.3 –264 (1.55) 2,904,000 (0)

100 0.3 –254.9 (8.35) 2,900,100 (0)

column lists the average cost function value,
with the standard deviation in parenthesis, of
the best obtained solutions over ten indepen-
dent runs. The forth column lists the number
of function evaluations.

Figures 8 and 9 show the results of HIS

for the 1D and 2D Ising models, respectively.
In each figure, the horizontal axis represents
the number of function evaluations, while the
vertical axis represents the average cost func-
tion value. Each point represents the average
cost function value of the best obtained solu-
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Table 5 Results of CE for 1D Ising.

Samples Cutoff Best Evaluations
1,000 0.7 –288.4 (7.94) 2,901,000 (0)

500 0.7 –287.6 (5.99) 2,613,250 (861,750)
500 0.5 –273.2 (5.31) 2,900,500 (0)
100 0.7 –269.8 (6.72) 183,420 (206,344.9)
500 0.3 –259.2 (6.21) 2,900,500 (0)
100 0.5 –258.2 (8.12) 1,931,100 (1,221,777.89)

1,000 0.3 –251.6 (2.5) 2,901,000 (0)
3,000 0.5 –250.8 (2.56) 2,901,000 (0)
6,000 0.5 –250.2 (2.27) 2,904,000 (0)
1,000 0.5 –250 (2) 2,901,000 (0)
3,000 0.7 –249.6 (2.65) 2,901,000 (0)
6,000 0.3 –249.6 (1.2) 2,904,000 (0)
3,000 0.3 –249.4 (1.8) 2,901,000 (0)
6,000 0.7 –249.2 (1.6) 2,904,000 (0)

100 0.3 –246.6 (8.67) 2,900,100 (0)

Table 6 Results of CE for 2D Ising.

Samples Cutoff Best Evaluations
1,000 0.7 –533 (12.53) 2,901,000 (0)

500 0.7 –525 (14.81) 2,613,900 (859,800)
500 0.5 –506.6 (13.97) 2,900,500 (0)
100 0.7 –501.2 (9) 168,440 (176,983.23)
500 0.3 –484.2 (16.04) 2,900,500 (0)
100 0.5 –480.4 (10.07) 2,191,050 (937,454.9)
100 0.3 –473.4 (9.3) 2,900,100 (0)

3,000 0.5 –472.8 (2.56) 2,901,000 (0)
3,000 0.7 –472.6 (3.23) 2,901,000 (0)
6,000 0.7 –472.4 (3.56) 2,904,000 (0)
6,000 0.3 –472.4 (3.67) 2,904,000 (0)
3,000 0.3 –472 (3.22) 2,901,000 (0)
1,000 0.5 –471.4 (3.9) 2,901,000 (0)
6,000 0.5 –471.2 (2.99) 2,904,000 (0)
1,000 0.3 –470.8 (2.56) 2,901,000 (0)

Table 7 Results of HIS for Onemax.

Samples Cutoff Best Evaluations
10 10 –400 (0) 29,155 (12,095.51)
10 20 –400 (0) 32,743 (11,000.43)
50 10 –400 (0) 48,435 (20,868.97)
10 30 –400 (0) 56,170 (16,627.74)
10 40 –400 (0) 67,595 (20,897.39)
50 20 –400 (0) 82,215 (15,277.81)
50 30 –400 (0) 113,680 (23,360.03)
50 40 –400 (0) 157,715 (35,272.9)

tions over ten independent runs for the corre-
sponding number of function evaluations per-
formed. The standard deviations are negligibly
small and can be ignored. Additionally, the re-
sults of EDA are appended for comparison. The
points correspond to the results in Tables 2 or
3.

The results for Onemax show that HIS per-
forms as well as EDA. For EDA, M should be
set at more than 100; otherwise, EDA can not
find the optima. Figures 8 and 9 show that HIS
can find better solutions than EDA. EDA may

exhibit faster convergence than HIS; however,
given sufficient time (i.e., a sufficient number of
function evaluations), HIS can find better solu-
tions than EDA.

5. Discussion

5.1 Escaping Local Optima
As shown in Figs. 8 and 9, it is clear that

HIS can afford better solutions than EDA. The
number of samples employed by HIS for build-
ing a probability model is given by

3 × M. (24)
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(a) M = 10 (b) M = 50

Fig. 8 Results of HIS for 1D Ising.

(a) M = 10 (b) M = 50

Fig. 9 Results of HIS for 2D Ising.

The number of samples that EDA uses for
building a probability model is given by

(1 − c) × M. (25)
When M = 10, HIS uses 30 samples; on the
other hand, when M = 100 and c = 0.3, EDA
uses 70 samples. This implies that HIS can es-
cape from local optima by using fewer samples.

In EDA and CE, the entropy of the target dis-
tribution is decreased in a stepwise fashion and
the target distribution is tracked by a proba-
bility model. For tracking the target distribu-
tion, the expected log-likelihood must be esti-
mated. The accuracy of an estimator of the
expected log-likelihood is dependent on the ac-
curacy of the approximation of the probabil-
ity model. Thus, once an inferior probability
model is built, the accuracy of the estimator of
the log-likelihood with respect to the next tar-
get distribution is also compromised. And, sub-
sequently, acceptable probability models can-
not be generated. This phenomenon can be
understood as dropping into local optima.

On the other hand, HIS overcomes this prob-
lem by maintaining multiple probability mod-

els. In HIS, the larger is the entropy of a tar-
get distribution, the easier it is to approximate
it. More specifically, low layers tend to have
good probability models and high layers tend
to have bad probability models. HIS iteratively
improves the probability models in the higher
layers with samples generated from the lower
layers. Thus, if the lower layers have good
probability models, the expected log-likelihood
can be estimated well at the layers above them.
Once a good probability model is built, it tends
not to make a change for the worse. Conse-
quently, HIS sequentially improves all the prob-
ability models from the lowest layer.

5.2 Iterative EDA
The more the number of function evaluations

performed, the better the solutions afforded by
HIS. This is because the samples generated by
HIS always have certain diversity. Figure 10
shows the cost function values of the samples
generated by HIS and EDA. The horizontal
axis represents the number of function evalua-
tions, while the vertical axis represents the cost
function value. HIS has no convergence, and
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(a) EDA (b) HIS

Fig. 10 Evolution of EDA (M = 100, c = 0.3) and HIS (L = 10, M = 10)
for 400-dimensional Onemax.

therefore, can find the optimum solution even-
tually. However, this is not an advantage of HIS
because no convergence can also be realized by
iterative EDA.

As the results of EDA for 1D Ising and 2D
Ising show, iterative EDA do not perform as
well as HIS because the standard deviations of
the best values are insufficiently small. For ex-
ample, the 10 best obtained solutions in 100 tri-
als of EDA with M = 3,000 and c = 0.5 for the
2D Ising are −746, −736, −732, −732, −730,
−730, −730, −728, −726, and −726. Remem-
ber that HIS is an extension of iterative CE.
The advantage of HIS is the use of the samples
and probability models of other trials, whereas
each trial in iterative EDA or CE is executed
independently.

5.3 Parameters
In sampling-based optimization, there exists

a trade-off between the number of function eval-
uations and the quality of the obtained solu-
tions. In other words, the greater is the number
of function evaluations, the better are the solu-
tions afforded. In EDA, the number of function
evaluations depends on the parameters: the
number of generated samples in one sampling
and the cutoff rate. If a solution with a cer-
tain quality is needed, it becomes necessary to
provide good parameters.

On the other hand, HIS does not converge,
and the best obtained value is gradually im-
proved. Thus, it can be said that the setting of
the parameters in HIS is easier than in EDA.
However, both the number of function evalua-
tions necessary and the efficiency of HIS depend
on the number of layers. A greater number
of layers in HIS affords greater similarity be-
tween adjacent target distributions (i.e., ql(x)

and ql−1(x)), implying that it is easier for HIS
with a greater number of layers to escape from
local optima. On the other hand, HIS with a
greater number of layers requires more func-
tion evaluations because the samples generated
from bad probability models are useless, and
the probability models in the higher layers tend
to be bad at the early stages. The number of
layers may be expected to be determined adap-
tively according to the accuracy of the proba-
bility models: this will be the subject of future
work.

5.4 Computational Cost
HIS can provide better results, but at greater

computational cost than EDA. First, HIS re-
quires L times the memory space required by
EDA: L number of probability models and L
number of sample sets maintained in HIS. Sec-
ond, HIS consumes greater computational time
than EDA: the calculation of the probability
of the mixture distribution given by Eq. (8) re-
quires considerable time.

5.5 Mixture Model-based EDAs
In terms of using a mixture distribution

or multiple populations, some mixture model-
based EDAs such as Ref. 9) can be considered
similar works. However, they are classified as
normal EDAs because they simply split a single
population into a number of groups and grad-
ually converge each group, whereas HIS orga-
nizes the diversity of all populations. Thus, the
optimization process of them is almost equiva-
lent to one illustrated in Fig. 10 (a).

Note that HIS can simply employ a mixture
distribution for the probability model of each
population. In terms of statistical estimation,
the model error can be reduced by using a mix-
ture model. On the other hand, HIS improves
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the accuracy of the empirical log-likelihood in
terms of importance sampling.

6. Conclusions

This paper proposed Hierarchical Importance
Sampling (HIS), a method that can be used in-
stead of the population convergence for evolu-
tionary optimization based on probability mod-
els (EOPM). Experimental comparisons be-
tween HIS and general EOPM revealed that
HIS outperforms general EOPM when applied
to problems with local optima. The advantages
of HIS can be summarized as follows: (1) it af-
fords better solutions than general EOPM by
escaping from local optima, and (2) it allows
parameters to be set easily.

Future works are summarized as follows:
(1) The target distribution control method
should be generalized for other probability dis-
tribution families; the Boltzmann distribution,
in particular, can be important for applying
HIS to continuous function optimization. (2) A
population mechanism should be added. The
population mechanism of Ref. 3) can calculate
the empirical log-likelihood and HIS may there-
fore be naturally combined with it. (3) The
number of the layers should be controlled adap-
tively. (4) Experimental comparisons involv-
ing changing the complexity of the probability
models may afford interesting results.
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Appendix

A.1 Relation between MCMC and
EOPM

Calculating the expectation value is common
to Markov chain Monte Carlo (MCMC) meth-
ods 1) and EOPM. Table 8 briefly shows the
relationship between MCMC and EOPM. The
key concepts behind MCMC are local transi-
tion, which realizes effective sampling, and de-
signing the transition as a Markov chain by sat-
isfying detailed balance, which guarantees math-
ematical validity. On the other hand, the prin-
ciple feature of EOPM is estimating an effec-
tive sampling distribution and sampling from
it. The mathematical validity is guaranteed by
importance sampling.

In the practical methods, there exist corre-
spondence relations. For example, simulated
annealing (SA) 5) corresponds to general EDA
and CE in terms of sequentially tracking a tar-
get distribution, and the exchange Monte Carlo
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Table 8 MCMC and EDA.

MCMC EOPM
Mathematical Validity Detailed Balance Importance Sampling

Effective Sampling Local Transition Estimated Probability Model
Sequential SA EDA, CE
Parallel EMC HIS

method (EMC) 4) corresponds to HIS in terms
of sampling from multiple target distributions.

A.2 Normalized Importance Sampling
The validity of calculation (7) is confirmed by

the following equations:

1 =
∫

q(x)
p(x)

p(x)dx (26)

� 1
M

∑
p(x)

q(x)
p(x)

(27)

=
1
M

Zp

Zq

∑
p(x)

q̃(x)
p̃(x)

, (28)

1∑
p(x)

q̃(x)
p̃(x)

� 1
M

Zp

Zq
, (29)

where Zp and Zq are the normalizing constants
of p̃(x) and q̃(x), respectively,

∑
p(x) denotes

summation over samples generated from p(x),
and M is the number of the samples.

A.3 Adjust Threshold f̃
This section describes a method for approx-

imately solving Eq. (16). The estimator of the
normalizing constant is given by Eq. (5) by us-
ing the samples in Xm, which is generated
from a mixture distribution defined by Eq. (8).
The estimator of the normalizing constant is a
monotonically decreasing step function with re-
spect to f̃ , and its change-points are given by
f(x1) · · · f(xM ), where x1 · · ·xM ∈ Xm. Thus,
the solution is selected from f(x1) · · · f(xM ).
Assuming f(x1) < · · · < f(xM ), we have the
following:

Ẑ(f̃(xi+1)) = Ẑ(f̃(xi)) +
1

M × pm(xi+1)
.

(30)

A linear search on f(x1) · · · f(xM ) can afford an
approximate solution. In the experiments, for
f̃ , we select f(xk) such that |Ẑ(f(xk))− Z∗| is
minimized under Z∗ < Ẑ(f(xk)).
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