
Detection of Design Problems

in Object Oriented Development

Munkhnasan Choinzon and Yoshikazu Ueda
Ibaraki University

1 Introduction

The last goal of the software development is to pro-
duce high-quality software. However, assessing the
quality of a software at an early stage, not after a
product is ready, is essential for saving the cost. If
design defects are not fixed in the design phase, the
cost for fixing them after delivery of the software is
100 times higher[1].

This paper introduces a metrics-based approach for
detecting defects which have a significant impact on
the OO design quality. Moreover, thresholds to help
in identifying critical values are defined for each of the
metrics.

2 Development of Approach

This section introduces the approach for detecting de-
fects in OO designs.

Within the framework of this work, following four
sequential steps are carried out.

• Survey of design defects into literature and define
a list of design problems(defects).

• Categorize the design defects found during the
survey into corresponding design properties that
are affected by that design defect.

• Identify metrics to detect each design defect.

• Identify threshold for each of the metrics.

These steps are described in detail in the following
subsections.

2.1 Identifying OO Design Defects

We have made a wide survey into literature to collect
the OO design defects that may occur when defining
the classes and objects, attributes and methods of a
class, relationships between classes, and class hierar-
chies. The number of papers that we have studied
during the our survey is thirty five.

During the survey, we found many design guide-
lines, rules, and flaws originating from various
authors[3], [7]. Violations of these design rules may
contribute a potential design defect to the software.
However, it is not always true that every violation
of a design rule corresponds to a design defect, since

heuristics are just guidelines, and not hard and fast
rules that must be followed. Depending on the ap-
plication, violations of some design heuristics may be
acceptable to some extent.

We collected forty seven OO design defects which
best covered our interesting area for further exami-
nation. The rejected guidelines and flaws were either
equivalent to an already chosen one and thus redun-
dant, or requires too detail information of implemen-
tation and thus impossible to detect from a design.

2.2 Classifying Design Defects into
OO Design Properties

In this section, design defects described in the previ-
ous subsection are categorized into OO design prop-
erties depending on what design property’s quality
aspect is violated. Design properties are characteris-
tics to define the quality of an OO design from the
perspective of the internal attributes.

We choose the following ten design properties as
OO design internal quality characteristics: encapsula-
tion, abstraction, cohesion, coupling, messaging, com-
plexity, inheritance, composition, and polymorphism.
We consider that these design properties are most gen-
eral and most important characteristics for indicating
internal quality of OO design.

2.3 Defining Metrics to Detect Design
Defects

Metrics is an important tool for detecting the defects.
Each of the design defects identified in this section can
be detected by metrics defined on each defect. Many
design metrics for OO design have been proposed by
the authors[4], [6]. Twenty two well-known metrics
are used in the assessment of some design properties,
such as size, encapsulation, and cohesion.

For the other design defects, there are no suitable
metrics, therefore, we define eighteen new metrics.

2.4 Identifying Thresholds on Metrics

Once we have a metrics value, we need to judge
whether the value indicates critical situation or not.
Thresholds can help us do this judgement. If a design
metrics exceeds a certain threshold, the design ele-

1－217

2F-4

情報処理学会第67回全国大会



Table 1: Definition of New Design Metrics
Metrics Definition Threshold of Undesirable Value

NOA Number of(N.of) attributes in a class 7-9 little bad, 9< bad

NOM N.of methods in a class 20-30 little bad, 31-50 bad, 50< very bad

NMSM N.of message sends in a method 10-11 little bad, 12-14 bad, 14< very bad

NOP N.of parameters in a method 5-6 little bad, 7-8< bad, 8< very bad

DAC Data abstraction coupling 3-4 little bad, 5-6 bad, 6< very bad
(N.of abstract data types within a class)

CBO Coupling between object classes 6-7 little bad, 8-9 bad, 9< very bad
(N.of other classes to which class is coupled)

NID N.of inherited attributes 0 bad

NMMI N.of messages to a method itself 0 bad

NMSSO Ratio of the n.of messages sent to same 60∼70% little bad, 70∼80% bad, 80∼100%
object from same method very bad

ment can then be considered as “critical” and must
be redesigned.

We define thresholds for all design metrics defined
in the previous subsection. If a metrics value is equal
to threshold or in a range of undesirable values defined
by threshold, it means that there exists the defect and
should be reconsidered.

There is no general standard for thresholds of met-
rics. Different researchers proposed different thresh-
old values for the same OO metrics. For this reason,
we define several thresholds for some metrics instead
of a single one. Then we divide these thresholds on
one metrics into three levels, so as to get more fine-
grained threshold. To make clear these three levels
meaning, we use linguistics values such as “little bad”,
“bad”, and “very bad”. Due to the lack of space, we
show only few of the metrics and their undesirable
thresholds in Table 1.

As an example, for metrics NOM, threshold value
is proposed by [2], [5], and [6] respectively 20, 50, and
60. These three of thresholds are quite different, so we
define several thresholds for metrics NOM, according
to our scheme as mentioned above. 3 levels of thresh-
olds on metrics NOM are defined as follows: “little
bad” ranges from 20 to 30, “bad” ranges from 31 to
50, and “very bad” is larger than 50.

There is defect “There exist methods which do not
make sense in the class’s responsibilities”. For this
defect, we define metrics NMMI “number of messages
to a method itself”. If there is no message to the
method itself, it means that method is useless. Thus
threshold is 0.

There is another defect “A Subclass uses only part
of base class’s interface”. This implies that the sub-
class does not inherit its data. So we define threshold
of 0 for metrics NID “number of inherited attributes”,
which detects this defect.

We believe that detection of design elements, which
have still high probability to be “critical” even if their
values below the threshold, can be improved by defin-
ing several thresholds on their metrics.

3 Conclusions and Future Work

In this paper, we have presented a metrics-based ap-
proach to identify design defects in an OO design.

By defining metrics on each design defect, these
defects can be detected automatically. Consequently,
many design heuristics, and flaws which are described
qualitatively can be evaluated quantitatively. On the
other hand, it can be seen that intended application of
metrics has been clearly determined. Furthermore, we
have proposed thresholds to help in judging whether a
metrics value indicates problematic situation or not,
on each metrics. The levels of the thresholds allow
the user to judge whether metrics value is acceptable
or not by intuition.

Link to external attributes of OO design and em-
prical validation of our work are remained as future
work. An automated tool that helps collect metrics
values more efficient and effective way is now under
development.

References

[1] B. Boehm and V. Basili, “Software Defect Reduction
Top 10 list”, IEEE Computer, 34(1), 135-137, 2001.

[2] M. Akroyd, “AntiPatterns Session Notes”, Object
World West, 1996.

[3] W.J. Brown, R.C. Malveau, H.W. McCormick, and
T.J. Mowbray, “AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis”, John Wiley &
Sons, 1998.

[4] S.R. Chidamber and C.F. Kemerer, “A Metrics Suite
for Object Oriented Design”, IEEE Transactions on
Software Engineering, 21(3), 263-265, 1994.

[5] R.E. Johnson and B. Foote, “Designing reusable
classes”, Journal of Object-Oriented programming,
1(2), 22-35, June 1988.

[6] M. Lorenz and J. Kidd, “Object-Oriented Software
Metrics: A Practical Guide”, Prentice Hall, 1994.

[7] A.J. Riel, “Object Oriented Design Heuristics”,

Addison-Wesley, 1996.

1－218




