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Simplification Ordering for Higher-Order Rewrite Systems

MUNEHIRO IwAMIt and YOSHIHITO TOYAMA'

Simplification orderings, like the recursive path ordering and the improved recursive de-
composition ordering, are widely used for proving the termination property of term rewriting
systems. The recursive path ordering is known as the most useful simplification ordering.
Recently Jouannaud and Rubio extended the recursive path ordering to higher-order rewrite
systems by introducing an ordering on type structure. In this paper, we define the notion
of simplification orderings for higher-order rewrite systems. Further, we redefine the recur-
sive path ordering for higher-order rewrite systems and compare our approach to that of

Jouannaud and Rubio.

1. Introduction

Higher-order rewriting is a natural exten-
sion of first-order term rewriting to reason
with higher-order equations™?). An impor-
tant application of higher-order rewrite systems
(HRSs) is to model the basic mechanisms of
higher-order functional programming languages
like ML and Haskell and of higher-order theo-
rem provers like TPS and Isabelle?).

Termination is one of the most important
properties of higher-order rewriting®, like first-
order rewriting!)®. Tt is, well known that
termination is undecidable in general even
for first-order rewriting. Thus, several semi-
automated techniques for proving termination
of term rewriting systems (TRSs) have been
successfully developed. In particular, simpli-
fication orderings, like the recursive path or-
dering (RP0)?-19):11) | are widely used for first-
order rewriting.

Recently Jouannaud and Rubio extended the
recursive path ordering on . first-order terms,
called algebraic terms, to that on higher-order
terms®)-®) by using a first-order interpretation
on A-terms. They showed that this ordering can
prove termination of several interesting exam-
ples.. However, in this recursive path ordering,
two higher-order terms have to be compared by
type first, then by root function symbol, before
the comparison can proceed recursively on the
arguments. This unnatural priority between
type and function symbol restricts their order-
ing to only on type compatible terms.

In this paper we introduce the notion of sim-
plification orderings on algebraic terms and pro-
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pose a new powerful recursive path ordering on
higher-order terms, called higher-order recur-
sive path ordering (HRPO). Though our ap-
proach was inspired by the first-order inter-
pretation method described in Jouannaud and
Rubio®, we develop the higher-order recursive
path ordering within a more natural framework
of a simplification ordering. Our key idea in
higher-order recursive path ordering is the con-
cept of envelopes for typed terms that allows us
to treat higher-order variables as function sym-
bols. We clarify that the priority between type
and function symbol introduced in Jouannaud
and Rubio is not essential and any partial or-
dering on types and function symbols can be
used freely to define the higher-order recursive
path ordering. Thus we can remove the type
compatible term limitation in Jouannaud and
Rubio’s ordering.

In section 2 we give the basic notations. Sec-
tion 3 presents the definition of simplification
orderings on algebraic terms. We define the
higher-order recursive path ordering in section
4. Section 5 develops the technique of en-
velopes, and section 6 compares our approach
to that of Jouannaud and Rubio.

2. Preliminaries

We mainly follow the basic notations in the
literatures®>7)-9):12),

2.1 Abstract; Reduction Systems

An abstract reduction system (ARS for short)
is a pair (A4, —) consisting of a set A and a bi-
nary relation — C A x A. The relation —+
is the transitive closure of —, the relation —*
is the reflexive and transitive closure of —,
and the relation <* is reflexive, symmetric and
transitive closure of —. If there is no element
b € A such that a — b, then we saya € Ais a
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normal form (with respect to —). If b€ Aisa
normal form such that a —* b then we say that
b is a normal form of a. The binary relation
— on A is terminating if there is no infinite se-
quence ag — a; — az — ... of elements in A.
We say that ARS (A4, —) is terminating if the
binary relation — on A is terminating.

A binary relation on a set A is called a quasi-
ordering on A if it is a reflexive and transitive
on A. The quasi-ordering is usually denoted by

A binary relation on A is called a partial
ordering on A if it ig irreflexive and transitive
on A. The partial ordering is usually denoted
by >. A partial ordering is total if for any a,
b € A we have either a > bora =bor a <
b. A partial ordering > on A is well-founded
if > has no infinite descending sequences, i.e.,
there is no sequence of the form ag > a; >
as > ... of elements in' A. A partial ordering
> on A is a well-partial ordering if for every
infinite sequence (a;); of elements in A there
are indexes k < [ such that ay < a;. Given a
well-partial ordering > on A, { 4,> ) is called
a well-partially ordered set. ‘

Given a binary relation > on A, the multiset
extension of > is denoted by > mul and the lez-
icographic extension. of > is denoted by >z,
following Baader and Nipkow").

2.2 Simply Typed )-Terms

Let S be a set of basic types (or sorts), b, v/,
b",.... The set Ts of types is generated from
the set of basic types by the constructor — as
follows: Ts:= 8 | Ts = Ts. We use o, 7 and
p to denote types. We use the abbreviation o,
= ... 2o, »Tioro = (= (op > T)

). If b is a basic type then o; (i = 1,...,n)
is called input type and b is called output type
of oy = ... = o, = b

We assume a set of variables X and a set of
constants F, for each:type v € Ts, where X
N X = Fr N Fp =0 if + # 7. The set of
all variables is X = Ure7y X7, which is disjoint
from the set of all constants F = U, Fr. F
is called signature. If fioy — ... = 0, = b
€ F and b is a basic type then arity(f) = n.
Arbitrary variables are denoted by z, y, 2z ...,
free variables by upper case letters F G X, .
and constants by a, ¢,id, e, ....

The set of untyped \- terms is generated from
F and X according to the grammar: T := X |
F|l(AX.T)|(TT). Terms are denoted by I, r,
s, t, .... The application of s to t is-denoted by
(st). We write s(ty,...,t,) for (... (st1) ... tp).
We use FV.(t) for the set of free variables and
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BV (t) for the set of bound variables of t. We
may assume that bound variables are different
from free ones. Further, we assume that for any
free variable X : 0y - ... > 0, = b, bis a
basic type.

A type judgment stating that ¢ is of type 7 is
written as ¢ : 7. The following rules inductively
define the set of simply typed \-terms T (F, X)-

e x € X, implies z : 7.

e cc F, implies c: 7.

¢ s:o—7andt:oimply (st): 7

e z:0and s:7imply (\z.s):0—T.

In the rest of this paper, simply typed X-
terms are written as terms. A term is ground if
it contains no free variables. T(F) denotes the
set of ground terms.

Substitutions are written as in {z; <+«
1y .. yZpn ¢ tn} where term t; is assumed dif-
ferent from variable x; and z; and ¢; have the
same type (i = 1, ..., n). We use the letter 6
for substitutions. Substitutions behave as en-
domorphisms defined on free variables. Letting
0 ={x1 < t1,..., T, + t,}, dom(6) denotes
the set {z1,...,z,} and range(d) denotes the
set {t1,...,tn}. A substitution 6 is ground if

~range(6) C T(F)-

2.3 7p-Long g-Normal Forms

Two rules originate from the A-calculus, (-
reduction and n-expansion:

(Az.8)(t) —=p s {x +t},

s =, (Az.s(2)) if s:0 = 7, z:0 € FV(s) and
s is not an abstraction.

The simply typed \-calculus is confluent and
terminating with respect to (-reductions and
n-expansions. Given a term s, we denote by
s its unique n-long B-normal form (n-long G-
normal term), defined as the S-normal form of
its n-normal form. We say shortly that s is
normalized when s is in n-long S-normal form.
T(F,x) ! denotes the set of normalized terms.
T(F){ denotes the set of ground normalized
terms. -

A substitution 6 is normalized if range(8) C
T(F,x) ). In the rest of this paper, substitu-
tion 6 is normalized.

We suppose that for every basic type b there
is a constant of type b not occurring F that is
denoted by O (called hole). A context is a term
with occurrences of 0. A context with only one
occurrence of O is denoted by C[ |. If tis a
term then C[t] denotes the result of replacing
the hole in C| ] by ¢.

Normalized terms have one of the following
two forms®) : () z.s) for some normalized term



Vol.40 No. SIG 4(PRO 3)

s, or a(sy,...,8,) for some @ € F U X and
normalized terms $1, ..., 8.

From now on we assume that each bound
variable in normarized terms has a basic type.
This restriction is neccesary to gurantee the sta-
bility of ground substitutions (See example 18).

Let C[s] and ¢ be normalized terms such that
s and t have the same type. Then, C[t] is nor-
malized.

2.4 Higher-Order Rewrite Systems

A normalized term ¢ is called a pattern if
every free occurrence of a variable X is in a
subterm X (u1,...,uy) of , such that uy,...,u,
are f-equivalent to s list of distinct bound vari-
ables. Examples of patterns are \z.a(z), F,
and \ zy.F'(z,y). Examples of non-patterns are
F(d), xz.F(z,z) and Az.G(H(z)).

A rewrite rule is'a pair I — r such that [ and r
are normalized terms with the same basic type,
[ is not fn-equivalent to free variable, I is a
pattern and FV (I} D FV(r). A higher-order
rewrite system (HRS3) is a set of rewrite rules.
The letter R denotes a higher-order rewrite sys-
tem. Then, the restriction FVi(I) 2 FV(r) is
preserved under substitution, i.e:, for any sub-
stitution 8, FV(I) 2 FV (r) implies FV (I8 ) D
FV(r8 ) holds?. ‘

Given a higher-order rewrite system R, a nor-
malized term s is rewritten to a term t with re-
spect to R, written s —v5 ¢, if s = C[l#}] and
t=C[r6|] forsome!l —r € R, C[ ]and 6:X
= T(F, x){. Note that ¢t is normalized since s
is so.

The status is a function status:F — {mult,
lexz}. Thus every constant has one of the follow-
ing statuses: mult (the arguments will be com-
pared as multiset), lex (lexicographical compar-
ison from left to right).

3. Simplification Ordering for Higher-
Order Rewrite Systems

In this section, we introduce the notion of
simplification orderings for higher-order rewrite
systems.

Definition 1 Let £ = {\; (o= |0, TE
Ts} and B = {¢, | 0 € Ts} where A\; (o - 7):T
— (0 — 1) and ¢y:0 are fresh constants. We
define the new signature A\F = F U L U B.
Algebraic terms are typed terms over \ F ob-
tained from normalized. terms over F through
the following interpretation.
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Definition 2 The interpretation function
|| || from normalized terms over the signature
F U B to algebraic typed terms over the signa-
ture \ F is defined by:

O80T = Ar (o (I5{3 o H).
lla(s1s - ssn)ll = e(llsalls - +sllsall) if @ € F U
BUX.

Then, the set of algebraic terms is T(A F, X) =
{Itll|teT(F,x)l} and the set of ground
algebraic termsis TN F) = {|| t || | t € T(F) |}

Lemma 3 Let C[s] € T(F)!| and s €
T(F, X)L Let 8 = {21 < CopyoeeyTn
Cs, } where z;:c,, (1 <1 < n) and FV(s) =
{1-..,2n}. Then, [|C[s] || = | C[[[] s8]
Proof. It is straightforward by the definition
of the interpretation function. 0

Fun(t) denotes the set of constants in an al-
gebraic term ¢. The size | t | is defined as the
number of symbols occurring in .

Definition 4 The root symbol of an alge-
braic term is defined by top(a(si,...,sm)) = a
ifa € \F U X. Note that an algebraic term
a(s1,-..,8,) has a basic type if and only if o
¢ L. An algebraic term s; is called an imme-
diate subterm of an algebraic term s = « (s1,
cevy Siy -ovy Sp). Then, st(s) = ( sy, ..., 85

.., 8p ) and st™(s) = {s1, -.-, Si, ..., Sn
denote the sequence and the multiset of imme-
diate subterms of s, respectively. The subterm
relation, denoted by >, is the transitive closure
of the immediate subterm relation. A partial
ordering > on algebraic terms has the subterm
property if for any s; € st™(s), s > s; holds.

Definition 5 Let > be a partial ordering
on )\ F. A partial ordering > is a simplification
ordering on T (\ F) if it possesses the following
three properties:

(1) s > t implies & (u1, ..., 8, ..., up) > «
(w1, ooy by oo, up) for @ € X\ F. (the re-
placement property),

(2) s > s; for any s; € st™(s) (the subterm
property),

(3) Ck(ulr < ,Un) > IB(uila‘ . auim) if a, :6 €
AF, a>= B, 1<i <..<im<n,
arity(a) = n and arity(8) = m.

Definition 6 Let > be a partial ordering
on )\ F. The homeomorphic embedding relation
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Demp o0 T (A F) is defined inductively as fol-

lows:

s=a (81, ...y 5n) Pemp B (t1, ...

(arity(a) = n and arity(f) = m)

if and only if

(1) @ = B and there exist indexes jl,...,jm
such that 1 < j1 < j2< ... < jm < n and
Sji Bemb i (7’ =1,... am)y or

(2) 85 Bemp t for some j.

atm):t

Lemma 7 Let » be a partial ordering on
A F and > a simplification ordering on T(\ F).
Then, >emp > holds.

Proof. We show that s > ¢ implies s > ¢
by induction on | s |.
e Basic step: | s | = 1. Since o, 8 € A F and
S=aDemp 8=t a> 3. Hence, s = a >
B =t holds.

e Induction step: We consider that s = «
(317' s asn) D emb ﬁ (tlv' . 7tm) = 1.
(1) By induction hypothesis, s;; > ¢; holds

(1 =1,...,m). By replacement prop-
erty, ﬂ (Sjla"'>5jm) > IB (tla”'atm)
holds. Since @ > f and 1 < j1 <
j2 < ... < jm < n, & (81, ,5m) >

B (8j1,....5;m) holds. Hence, s = o
(6?1,. .. ,Sn) > 0 (tl,. .. ,tm) = ¢ holds.
(2) By induction hypothesis, s; > t for
some j. By subterm property, s > s;
holds. Hence, s > t holds. O

Note. If we assume that S and F are finite
then we can give a well-partial ordering > on
AF, ie., (A\F,>) is a well-partially ordered set:
See lemma 32 in appendix.

Theorem 8 Let > be a well-partial order-
ing on \JF. Then, a homeomorphic embed-
ding relation I>emp is o well-partial ordering on

TIF).
Proof. It is straightforward by Kruskal’s tree
theorem®)®). O

Theorem 9 Let > be a well-partial order-
ing on \JF. Then, simplification orderings on
T(AF) are well-founded.

Proof. It is straightforward since lemma 7 and
theorem 8. O

The following theorem guarantees the termi-
nation property for higher-order rewrite sys-
tems.
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Theorem 10 Let R be a HRS on normal-
ized terms. Let > be a well-partial ordering on
AF and > a simplification ordering on T(\F)
such that |18 ]| > ||r0 1] for any ground sub-
stitution 0:X — T(FUB)| and any rewrite
rule I = r in R. Then, R is terminating.
Proof. Assume that R is not terminating.
There is an infinite rewrite sequence ty —5
t1 = ta =g .... Without loss of gener-
ality, we may assume that terms in this infi-
nite sequence are ground. By the definition
of rewriting, s —x t if and only if there ex-
ist a rewrite rule [ — r € R, a substitution
0:xX — T(F,Xx) ] and a ground context C such
that s = C[lf|] and t = C[r8l]. FV(I8}) =
{z1,...,2n} where z;:0; (1 < i < n). Let ¢
= {Z1 4 Cgyy- - - T < Cq, }- Note that 100" | =
18016, ro9' | = rf 6" and substitution 06":x
— T(FUB)| is ground. Since 18)6" and
rf | 8" are ground and the assumption, || 16 |8’ ||
> |lr8 16| holds. By replacement property,
I CilI616'1] > || C[[[| 6 48" |- By lemma 3,
it follows that [|C[I6 ]| = [|C||[|| 164 6" ]|] and
[Cro 1l = [ICHlll7646"]]. Hence, |s|| >
[I#||. Thus we have the infinite sequence || ¢ || >
[l ] > || t2]] > ...: contradiction to the well-
foundedness of > by theorem 9. Therefore, R
is terminating. O

4. Higher-Order Recursive Path Or-
dering

In this section, we define the recursive path
ordering for higher-order rewrite systems. First
we define the recursive path ordering on alge-
braic terms.

Definition 11 (TRPO) Let >,r be a
partial ordering on A\ F. Let s and t be alge-
braic terms. The typed recursive path ordering
(TRPO) on 7T(AF, X) is defined as follows:

s >rrpo t if and only if top(s) ¢ X and

(1) s; >rrpo t for some s; € st™(s), or

(2) top(s) >y # top(t) and s >rrpo t; for all
t; € st™(t), or

(3) top(s) = top(t), status (top(s)) = mult and
st™(s) >TEL ., st™(t), or

(4) top(s) = top(t), status (top(s)) = lex, st(s)
>lfvf3po st(t) and s >rrpo t; for all ¢; €
st™(t).

We show that the TRPO is a simplification
ordering on T()\F) for some partial ordering
>y 7 on )\ F. Note that a partial ordering >,
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on )\ F is given in the following lemmas.

Lemma 12 The TRPO is a partial order-
ing on T(\F).
Proof. We can show the transitivity and the
irreflexivity of TRPO by using the same argu-
ment as that for the recursive path ordering on
first-order terms®. 0

Lemma 13 The TRPO has the subterm
property on T(A\F), i.e., s € T(\F) and s >
t imply s >rrpo t..

Proof. Let s be a ground algebraic term and ¢
be a strict subterm of s. We show that s >7rpo
t by induction on . Let s = a(s1,... ,8m)
(m > 1). Since t is a subterm of some s;, s;
>rrpo t holds by induction hypothesis. Hence,
s >rrpo t holds by case (1) of definition 11. O

o

3

Lemma 14 The TRPO has the replace-
ment property on T()\F), i.e., 8 >Trpo t im-
plies o (u1,..., 8, ..., up) >1rRPO @ (U1,..., t,
vooytn) for @ (Ui, 8y o up), @ (U, .., t

- Un) € T(AF).
Proof. f a:0y =+ ... > 0, -0 € AF
and status(a) = mult then a (ug,...,8,...,uy)
>TRPO @ (U1,.. - . .. up) holds, since {uq, ...,

Sy ooy Un} SIPEL S up, ooty oo, up) I
status(a) = lex then a (w1, ..., 8, ..., up)
>rrpo @ (U1, ..., &, ..., u,) holds, since (u;,
ey 8y ey Un) DS o (U1, ooy by .., up) and
a(uy, ..., 8 ..., u,) >rrpo ufor all u € {u,,
sty e, Upte 0

Lemma 15 If a >,z B then a(uy,...,u,)
>1rPO BlUj1,. .. Ujm) where o, B € ANF, 1 <

jl < ... < jm < n,.arity(a) = n and arity(B)
= m.

Proof. It is straightforward by the definition
of TRPO. i

Theorem 16 If >,  is a partial ordering
on \F then the TRPO is o« simplification or-
dering on T(\F).

Proof. By lemmas 12, 13, 14 and 15, the
TRPO is a simplification ordering on 7(\ F).
O

We define the higher-order recursive path or-
dering based on the typed recursive path order-
ing.
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Definition 17 (HRPO) Let s and t be
normalized terms. The higher-order recursive
path ordering (HRPO) s >grpo t is defined
by [|s|l >rreo || t]-

Example 18 We consider the following
normalized terms. s = X(Azy.xz) and t =
X(\zy.y) where X : Nat - Nat — Nat.

Then, ”5” =X ()\Nat——)Nat-—)Nat (ANat—>Nat

(enar))) = || ¢ holds.

Let 8 = {X < Xz. 2(0,1)} where z:Nat —
Nat — Nat. Since s = 0 and t8] = 1, we
have || s8] | # || t6 4 |l. Hence, it does not hold
that || s|| = ||£]| implies [[s6 4[| = ||¢6]] for
any ground substitution #:¥ — 7T(FUB){ in
general.

The above example explains why each bound
variable is restricted into a basic type to guar-
antee the stability of ground substitutions.

Lemma 19 The TRPO is stable under
ground substitutions, i.e., || s|| >rrpo || t] im-
plies || s6 L || >rrpo ||t L] on T(\F) for any
ground substitution 8:x — T(FUB)J.

Proof. See appendix. O

Lemma 20 For any well-founded ordering
>y 7 on A\ F there exists a well-partial ordering
>) 7 on A\ F such that >, x C >3 5 and >TrpPo
€ >TrPO-

Proof. By structural induction we can show
that if > C >* then >rrpo C >Trpo- Fur-
ther we can show that every well-founded order-
ing is contained in a total well-founded order-
ing. Since every total well-founded ordering is a
well-partial ordering, there exists a well-partial
ordering >* on \ F. O

Theorem 21 Let R be a HRS on normal-
ized terms. Let >y r be a well-founded ordering
on \F. If for any rewrite rule l — r in R we
have l >ggrpo T, then R is terminating.
Proof. Since theorem 16 and lemma 20,
there exists a simplification ordering >%zpo on
TAF). Forany l — r € R, ||[104]|| >rrPO
|| 76} ]| holds on T(\ F) for any ground substi-
tution 8: ¥ — T(FUB) | because of | >grpo T
and lemma, 19. Since >7rpPo C >Fppo, 1101 ]]
>rrpo |70 1] holds. From theorem 10, it fol-
lows that the HRS R is terminating. |
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Example 22 We show the termination
property of the following HRS R7).
S = {term, form}, F = {~:form — form,
A, V:iform — form — form, ¥V, J:(term —
form) = form}, X = {P, Q:form, P':term
— form, z:term} and

PP
(P AQ)—=(=P)V(=Q)

R=1 ~(PVQ)—=(=P)A(=Q)
-V(Az.P'(z)) = 3\ z.~P'(z))
AN z.P'(z)) = V(A z.mP'(z)).

We give the precedence — >, £ V, = >y £ A,
T>aF 3 >AF )\f‘C>rm—>(term—)form)a T >aAF
V >\ r Aform —(term — form)- Then, = —~ P
>urpo P.~ (PAQ) >grpo (R P)V (mQ), -
(PV Q) >urro (= P) A (= Q), =V (A2.P'(z))
>urpo 3 Az~ P'(z)) and - 3 (\z.P'(z))
>prpo ¥V (Az.m P'(z)) hold. Hence, R is ter-
minating by theorern 21.

Example 23 We show the termination
property of the following HRS R.
S = {Nat, List}, F = {f:Nat — Nat, g:(List
~ List) — List — Nat, h:List — Nat, f:List
— List, g:(Nat = Nat) — Nat — List, h:Nat
— List}, ¥ = {X:List — List, x:List, Z:List,
Y:Nat — Nat, y:Nat, W:Nat} and

Rz{ fla\z.X(2),2)) = WZ)
FaOy.Y(y), W) = h(W).

We give the precedence f >, h and f>F
h. Then, f(g(\z.X(x),Z) >nrro h(Z) and
f@\y.Y (y),W)) >urpo h(W) hold. Hence,
R is terminating by theorem 21.

On the other hand, Jouannaud and Rubio’s or-
dering®)%) cannot deal with this example. Let
75 be a quasi-ordering on 7Ts. A normal-
ized term s:0 is type compatible if t:7 is type
compatible and o 1, 7 for any subterm ¢:7
of s. Since their ordering ‘works on only type
compatible terms and f(g(\z.X(z),Z)):Nat >
Az.X(z):List — List, we have Nat 7, List
— List when the quasi-ordering 7, is a re-
cursive path orderimg on 7s. Hence, we have
Nat ¢ List. Since f(g(\y.Y (y),W)):List >
Ay.Y{(y):Nat — Nat and the type compatibil-
ity, it is obtained that List 7 Nat — Nat.
Hence, we have List ¢ Nat. So Nat # List

— List and List . Nat — Nat by List ~g
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Nat. This is contradiction to the type compat-
ibility. Thus termination of R on type compat-
ible normalized terms cannot be shown by their
ordering when 7, is a recursive path ordering
on Ts.

5. Envelope for Typed Terms

The envelope G- is a subset of \ F such that
every constant symbol occurring in ground alge-
braic terms with the type 7 is contained in G,
i.e, Fun(s) C G, for any ground algebraic term
s:7. Let X0y — ... — 0, — b be a variable
with an output type b and let 6 a ground nor-
malized substitution such that X0 = Mz ...
Tpt:oy = ... = 0, = b € T(F)]. Then, for
any ground normalized terms s;:01, ..., $,:0n,
we have Fun(|] X6 (s1,...,sn)4 ||) € Gp. This
property allows us to treat the variable X as a
constant symbol with the output type b in the
TRPO under appropriate conditions about G5.
In fact, if we can give a precedence >, » satis-
fying a >, 7 B for all 8 € Gy, then a(ty,...,t,)
>rrro || X8 (s1,-..,80)) || follows from the
definition of the TRPO. This means that X
plays in the TRPO like a constant with a >, »
X.

First, we define the envelope and the prece-
dence between constants and free variables as
follows.

Definition 24 We define the envelope G
(€ A F) inductively as follows.
(1) o fiy = ... > 7 = 7 € Fimplies f €
G-.
b )\o—)(r—)a)a cr € Gr 0.
(2) o gooy = ... 520, 20 € G, and g €
FUBimply Gy, U ... UGy, CG,.
* )\ (n—o) € G, implies G, C G-.

Example 25 We consider the following sig-
nature: F = {0:Nat, s:Nat — Nat, +:Nat —
Nat — Nat, nil:List, cons:Nat — List — List,
map:(Nat — Nat) — List — List}. Then,
Gnat = {0, s, +} and Grist = {nil, cons, map,
/\Nat—)(Nat—ﬁNat): CNat, 0, 8, +}-

Lemma 26 Let s be a ground algebraic
term with a type 7. Then, Fun(s) C G, holds.
Proof. It is straightforward by the definitions
of the interpretation function and of algebraic
terms. O

By using envelopes we can extend the prece-
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dence >, » on )\ F to that on A\ F U X as fol-
lows. Let @ € A\ F and let Y be a free variable
with an output type . Then we define o >, &
Y if o >, 5 8 for any 8 € Gp. We say the
TRPO (HRPO) with envelopes shortly when
the TRPO is based on this extended precedence
SyrFpOonAFUX.

Lemma 27 Lets = afs1,...,5,) (n > 0) be
a algebraic term and X a free variable with an
output type b. If a >, » X then s >rrpo t for
any ground algebraic term ¢:b.
Proof. Trivial from the definitions of & >
X and of the TRPO. ]

We next show that the TRPO with envelopes
is stable under ground substitutions.

Lemma 28 The TRPO with envelopes is
stable under ground substitutions, i.e., | s||
>rrpo ||t|| with envelopes implies |56 ||
>rrpo ||[t01]] on T(NF) for any ground sub-
stitution 8:X — T(FUB) .

Proof. See appendix. O

Lemma 29 For any well-founded ordering
>\ 7 on \F there exists a well-partial ordering
>’;‘]_- on A\ F such that >y r C >N 5 and >TRpo
C >4 ppo With envelopes.

Proof. It is straightforward by the same ar-
guent of lemma 20. a

From now on we restrict /8 | as a ground term
in the reduction C[I0]] = C[rf]] in the rest
of this paper.

Theorem 30 Let R be a HRS on normal-
ized terms. Let > be a well-founded ordering
on \F U X. If for any rewrite rule | — r in
R we have | >yrpo 1 with envelopes, then R
is terminating.

Proof. Since theorem 16 and lemma 29,
there exists a simplification ordering > po on
T(AF). For any I - r € R and any ground
substitution 6 : X — 7'(fU B) 3, H 7R || >TRPO
|76 1] holds on T (X F) since | >grpo r and
lemma 28. Since »7rrpo C >Fppo With en-
velopes, [181] >%rpo ]|r9,L || holds. From
theorem 10, it follows that the HRS R is termi-
nating. O

Simplification Ordering for HRés 7

The following example explains how to apply
the HRPO with envelopes to prove termination.

Example 31 Consider the following basic
types, signature and HRS R: S = {Nat,
List}, F = {nil:List, cons:Nat — List —
List, map:(Nat — Nat) — List — List, 0:Nat,
s:Nat — Nat, +:Nat - Nat — Nat}, X =
{X:Nat — Nat, N:Nat, L:List, z:Nat} and

map(\ z.X (), nil) — nil
R =< map(Az.X(z),cons(N, L))
— cons(X (N),map(\z.X (z), L)).

To prove the termination property of R we use
the precedence: map >,  cons, 0, s, + and
status(map) = mult. Since it is obvious that
map(Az.X (z),nil) >prpo nil, we consider the
second rule. From definition 24 we can obtain
Gnat = {0,5,+}. Since map >, » f for any f
€ Gpngt, we have map >, X. Hence, map
(Az.X(z),cons (N,L)) >urpo X(N) holds.
Thus map (\z.X (x),cons (N,L)) >urpo cons
(X(N),map (\z.X(x),L)) follows. Therefore,
HRS R is terminating by theorem 30.

6. Related Works

In this section, we compare our higher-order
recursive path ordering with Jouannaud and
Rubio’s ordering®+®). We consider the follow-
1ng HRS R:

= {Nat, List}, F = {app:(Nat — Nat)
— Nat — Nat, list:Nat — List, twice:Nat —
List, cons:Nat — List — List, ml:List, 0:Nat,
s:Nat — Nat, +:Nat — Nat — Nat}, X =
{X:Nat — Nat, Y:Nat, z:Nat} and

list(app(\z.X(z),Y)) = twice(X (Y))
R =< twice(Y)— cons(Y,cons(Y,nil))
list(Y) — cons(Y, nil).

We first show termination of R by applying
our ordering with envelopes. From the defini-
tion of envelopes we have Gnq = {app, 0, s,
+, ANat —(Nat — Nat)> cNat}- Give the follow-
ing precedence: list >, r twice >, » cons, nil
and list >, 5 X, ie., list >, 5 a for any «
€ Gnat- Then, list(app(\z.X(2),Y)) >urPo
twice(X (Y)) with envelopes. From theorem 30
it follows that HRS R is terminating.

Jouannaud and Rubio’s ordering®%) cannot
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be applied to the above R for proving termina-
tion because of the type compatible term limi-
tation. Let 7 be a recursive path ordering on
7s. In this case, list(app(\z.X(z),Y")) is not a
type compatible normalized term. More pre-
cisely, app(Az.X(z),Y):Nat > Xz.X(z):Nat
— Nat and Nat 75 Nat — Nat by Nat —
Nat 7, Nat. Thus termination of R cannot
be proven by their ordering.

Next, we consider the following HRS R:

S={b b}, F={f:(t) = V)b gt —=b,
d:b, et =V, hi(b->b) >V} x={Xb —
b, Y:b — b, z:b, y:b} and ’

R:{ fOzX(x)) = g(X(d))
e(h(Ay.Y(y))) —d.

Our ordering can prove termination of R. We
have Gy = {d, e, h, Ay (6»), o} Give the
following precedence: f >y r g, dand e >, ¢
dand f >y X,le, f >y5 aforany o €
Gy . Then, f()\ :II‘X(.'I))) >HRPO g(X(d)) holds.
Hence, HRS R is terminating.

Jouannaud and Rubio’s ordering®®) again
cannot prove termination of R. Let 7
be a recursive path ordering on 7s. Since
e(h(Ay.Y (9)):b, xy.Y(y):b = ¥ and b £
b— ¥, e(h{Ay.Y(y))) is not type compatible.

Jouannaud and Rubio®® proposed the sort
ordering on Ts as the other quasi-ordering
7.- However, the sort ordering 7, does
not work for this example. We have to show
FOz.X(2)):b > X(d):b in the first rule of R.
Thus we have b > b'. Then e(h(\y.Y (y))) is
not type compatilile for the sort ordering, be-
cause e(h(Ay.Y (y))):t and Xy.Y (y):b — b'.

7. Conclusion

We have introduced a natural framework of
a simplification ordering for analyzing termi-
nation of higher-order rewriting, and based on
this framework we have proposed a powerful
recursive path ordering on higher-order terms,
called the higher-order recursive path ordering
(HRPO). Our ordering has extended Jouan-
naud and Rubio’s ordering, which does not al-
low comparing two type incompatible terms.
We have shown thirough several examples that
our ordering can be applied to prove termina-
tion of higher-order rewrite systems to which
Jouannaud and Rubio’s ordering cannot apply.
We believe that our ordering provides very use-
ful means of proving termination which arises in

&
lﬂ_\
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various higher-order formal systems like higher-
order functional programming languages and
higher-order theorem provers.
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. = f(lluay s - - llunvdl)
Appendix = F(IIO 21 - Tour) (5160, -+, $mO)L], -,
A.1 Lemma 32. X z1 - zmeup) (510, -+, sm0)¢t|)
Lemma 32 Let S and F be finite. Then, =f(lI(Nz1 -+ Tm-ur) (t1 s tm@)d], -,
we can give a well-partial ordering > on \ F, lX @1 - @pmeun) (810, -, ta0)d])
i.e., (\F,>) is a well-partially ordered set. by induction hypothesis. O

Proof. We consider A\ F = F U £ U B where

F is a finite set.

(1) As F is finite, (F,0) is a well-partially or-
dered set where ) is the empty relation.

(2) We show that a well-partial ordering >,
can be defined on £. Let S be {by,...,bp}
where b; is a basic type (i = 1,...,n). The
total precedence on basic types and the
constructor — is given by by < b; <
< b, < —. Then, for any 7, ¢ € T,
either 7 >ppo 0 or 7 <ppo 0 (T # 0)
holds where >, po is the lexicographic path
ordering’) on types. Since >zpo is total
and well-founded, it is a well-partial order-
ing. Hence, (Ts,>rpo) is a well-partially
ordered set. The partial ordering Ao > Ar
is defined by o >1po 7. Thus, (£,>,) is a
well-partially ordered set.

(3) By the same argument as that in case (2),
we can give a well-partial ordering'c, >.
¢, on Bby o >rpo 7. Thus, (B,>.) is a
well-partially ordered set.

Therefore, (X F,>) is a well-partially ordered
set where > = >, U >, by cases (1), (2) and (3).
(Note that (A1,>1), (A2,>2) are well-partially
ordered sets and A; N Ay = () then (4; UAs,>;
U >9) is also a well-partially ordered set.) 0O

A.2 Proof of Lemma 19.:

Lemma 33 Let s and t be normalized
terms. Then, | s| = || t|| implies || s6]|
= |[t01 ]| for any ground substitution 6:X —
T(FUB) .

Proof. We show that ||s|| = ||¢|| implies
101 = ||t8 ]| by induction on the structure
of s. In the case that s = a(sy, -,s,,) with «
€ F or s == \&.81, the proof is straightforward.

We consider the case that s = a(s1,--,8m)
with @ € X. Since s = as1,--,8m) and
Isll = |tll, we have t = «a(t1, --,tm) such
that ||s;]] = || )] (1 <4 < m). Then s =
(ab)(s10,- - - ,sm0) and t0 = (aB)(t16, - - ,tm0).
Letting s’ = af, we show [|s'(510, - ,smO)||
= ||s'(t190, m8)L|| by induction on the size

of 8. If 8 = A&y %p.2; then || 501 =

;6 L || by induction hypothesis. Let s’ = Az
« T-flur,y - sun) (n > 0and f € F). Let v

= {.’l)l — 810, - Ty Sme}.
/516, - sm®)

Lemma 34 Let top(||s]]) € X and ||t] €
st™(|ls|)). Then, [0 1| € st™(|| 8 L ]]) for any
ground substitution 0:X — T(FUB) .

Proof. We consider the following cases.

(D ety stn) 1=l 1 [,/ ta |]) and ||
a (b, otn) 0Ll =a ([0 |, ] ta01
) for a € F U B.

(2) ” AT.ST 0O ” - /\a——>(r—>0' (“ 3{“”(—'67'}

) and | (Az.8)0 {7 = @ | = Aa—-}(r—)cf)(”
(s81) {z « ¢, }||). Since z € FV(s) and
z & dom(0), || (s64) {z ¢ e} || = (s {ﬂf
e PO

Lemma 19 The TRPO is stable under

ground substitutions. ‘

Proof. Let s and ¢ be normalized terms and

8:x - T(FUB)! be a ground substitution.

We assume that || s]| >rrpo ||t] and show ||

sHlJ,lll >rrpo || t01 || by induction on | ||s]] |

+

Basic Step sl + | Iltll | =2

If||s|| = cand ||t]] = 8 (o, B € X\ F), then

| s81 || >rrro || t8] || holds since || s84 || =

sl and [[ 64 || = |I2]].

Induction step:

(1) top(llsll) & x and ||s;]] >2rrPo |t for
some || s; || € st™(]| s
Since induction hypothesis and lemma 33,
we have || s;0] | >rrPo || 104 IIl. By
lemma 34, || s;01 || € st™(]|s61]]). Hence,
1641l >rrpo || 91 bolds.

(2) top(ll s 1) >x 7 top(ll £ 1), top(]| s |I) ¢ X and
| sll >7rPo || t: || for any || ¢; || € st™(|| ¢ ]).
By top(||t]]) & X, top(|[td L)) = top(||tl])

holds. From lemma 34, we have || ;0|
€ st™([| 261 1]) Since ||s| >rrro
IIt;|| and induction hypothesis, || s8]

>rrpo ||| holds for any |[t0]] €
st™ (|| t0 1 1]).

(3) top(|| 1)) = tep(||]]), top(ls|]) ¢ & and
st™ (s ) >Fapo st™ (| t])-
Since top(|| s ||) = top(||¢]]) and top(||s|])
¢ X, top(||s6l|) = top(||s]l) and
top(]| t8 4 {|) = top(|| t|) hold. Since induc-
tion hypothesis, lemma 33 and lemma 34,
st™ (| 56 L)) >Psboo st™ ([0 L) holds.
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(@) top(llsll) = top(ltl), top(|sl) & X,
st(lls ) >po st t]) and ||s|| >rrro
51| for any [ € st™ (| ¢ ).

Since top([s ) = top(l|¢]) and top(]ls |)
¢ x, top(||s0 L) = top(||s|]) and top(]|
tdl 1) = top(l|t|l) hold. Since induc-
tion hypothesis, lemma 33 and lemma 34,
st(l[s0 1)) >3 po st(l[ L) and || 564 |
>rrpo || tifd || for any || ;01 || € st™(]]
t6 ] ||) hold. o

A.3 Proof of Lemma 28.

Lemma 28 The TRPO with envelopes is
stable under ground substitutions.

Proof. Let s and ¢ be normalized terms and

8:x = T(FUB)] be a ground substitution.

We assume that || s|] >rrpo ||t]| with en-

velopes and show |, 30 || >rrpo ||t0 1] by in-

duction on | |[s|| | + | | t] |.:

Basic step: | [|sl| |-+ [lItll] =2

If || s|| = aand || ¢]| = B (e, B € A F), then
| s64 || >rrPo || 164 || holds since [|s8 | =
5]l and |6 4] = || £].

If || s|| == @and || ¢ || = X with an output type
b(a € XNF, X € X), then @« >y X. From ||
X0 ||:b and lemma 27 it follows that || s8{ ||
=a >rrpo || XOL | = 0 ||
Induction step: The cases (1), (3) and (4) in
the definition of TRPO are straightforward by
the proof of lemma 19. We only show the case
(2) in TRPO.

Case (2) top(|| sll) >z top(|lt]), top(l s )
¢ X and |s|| >rrpo |Iti]| for any [|t;] €
st™ ([ 21]).

If top(||t]]) € A, the claim follows by the
same argument as that for the case (2) of

May. 1999

lemma 19. Thus, we assume top(||t]]) € X.
Let top(||s||) = « and t = X(¢1,...,t,) where
X:01 = ... = 0, — b. Then for any ground al-
gebraic term || t6 | ||:b, we have || s )| >TrPO
|16 || because of top(|| s6 4 ||) = top(|| s ||) = a
and lemma 27. ]
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