
Fractal Based
VQ Image Compression Algorithm

Chuanfeng Lu and Qiangfu Zhao
The University of Aizu

Aizuwakamatsu, Japan 965-8580
Email: �m5061125,qf-zhao�@u-aizu.ac.jp

Abstract— In this paper we study VQ (vector quantization)
based image compression. So far many methods have been
proposed in the literature. Examples include LBG algorithm, self-
organizing feature map, and so on. Although VQ based image
compression is theoretically useful, it is still not practical mainly
for two reasons. The first one is that the computation amount
is too big, and the second is that the compression ratio will be
very low if the code size is too small or too big. In this paper, we
try to solve the first problem by accelerating the winner-take-
all algorithm. The basic idea is to insert a new procedure in
each learning cycle to reduce the approximation error. We also
propose a method to solve the second problem by combining VQ
and the IFS (iterative function system). The idea is to reduce
the codebook size by encoding each code further using one or
a few IFS codes. By so doing we can increase the compression
ratio without increasing the error very much. The efficiency of
the proposed methods will be shown through experiments with
several well known images

I. INTRODUCTION

Vector quantization (VQ) emerged as a powerful approach
for image compression, after LBG (Linde, Buzo and Gray)
algorithm was introduced. Kohonen’s self-organizing feature
map (SOFM) can also be used to design the codebook for
vector quantization, which is known to have comparable per-
formance to LBG algorithm. In this paper a new compression
algorithm is proposed in order to improve the VQ algorithm.
The basic idea is re-compress the codebook using the iterated
function system (IFS) algorithm. We also propose a new self-
organizing learning algorithm which can converge much more
faster than the conventional one.

II. REVIEW OF VQ AND FRACTAL ALGORITHM

Vector quantization (VQ) is a generalization of scalar quan-
tization. For image code, adjacent data items in a image are
correlated. There is a good chance that the near neighbors of
a pixel � will have the same gray level as � or very similar.
This can be expanded to block of pixels. Thus there is an
opportunity to approximate many similar separate blocks with
one ������. However there exist a so-called trade off relation-
ship between compression ratio and compression quality. The
higher the reconstruction quality is, the lower compression
ratio will be, and vice versa.

Unlike VQ, Fractal algorithm is a relative new method
in image compression. Fractal have been popular since the
1970s and have many applications. Applying fractals to image
compression is done by means of iterated function system

(IFS). IFS compression can be very efficient, achieving ex-
cellent compression factors. The IFS encoder partitions the
image into parts called ranges, then match each range to some
other part called a domain to find the most similar one, and
produces affine transformation parameters. The compressed
file maintains a sequence of these parameters instead of the
small image blocks.

III. IFS BASED VQ

Although there are many references in the literature but
the VQ algorithm still can not be used prevalently for image
compression, since the initialization and storage space for
codebook are two hard problems to be resolved. It is well
known that the compressed stream after VQ compression
consists of two parts: codebook and index. In order to improve
the compression ratio further we need to reduce codebook or
index size. However it is very difficult to re-encode index any
more. Alternatively we can reduce the codebook. Codebook is
a set of vectors, i.e. many small image blocks. The problem
is which approach is appropriate for block image coding. IFS
brings to mind. IFS encoder can denote blocks with affine
transformation coefficients, the larger the block is, the higher
compression ratio we can obtain. Strictly speaking this is a
re-compression approach, and the distortion will be worse.
Instead, the encoding performance of VQ based IFS should
be improved.

Though a LBG is simple and fast algorithms, in order to
study and exploit the neural networks application in image
compression area, the Kohonen neural network (KNN) with
self-organized (SO) learning is employed to construct the
codebooks. To build a � member � dimensional codebook,
the KNN required has � inputs and � outputs. Since the
learning process of SO is very slow, a concept ��	���
� from
LBG algorithm is used to accelerate the learning process. The
learning process is as follows:

1) Initialize the weights (codebook) at random
2) Compare the training examples with each code-vector

using Euclidean distance measure, and identify the clos-
est one which is often called the �
		��.

3) A descending learning rule is employed to update the
�
		��.

4) After each training iteration, focus on every code-vector
within the current codebook, find all the neighbors in the

2－387

3Z-7 情報処理学会第66回全国大会



sample space. Calculate the ��	���
� of these neighbors,
and replace the corresponding code-vector.

5) Go on next training iteration.

We selected two well known 256 gray level image: Lenna and
Mandrill through out this experiment, the size is ��� � ���.
The performance after ten learning cycles is shown in Table
II, which is almost the same as the result obtained by the
LBG algorithm (Table I). In each learning cycle, the neurons
are moved to the centers of different clusters, as a result the
neural network can learn much faster than conventional SO
algorithm.

After VQ, an IFS algorithm is used to re-compress the code-
book, in this experiment we select Fishers’ Quatree method.
Since it is a bench mark for many papers in this area, can
represent the generality in some extend. The encoding process
is shown below:

1) Set a small value to the tolerance, and the minimum
partition size.

2) Correspond to the codebook construct a domain pool
from original image.

3) For each code-vector, find the most similar domain from
the domain pool. If the error rate is smaller then the
tolerance output the affine parameters; else if current
partition size is big than the minimum, divide it into 4
equal partitions for each partition repeat this step, until
the tolerance is satisfied or reach the minimum partition.

The decoding process is a simple two-step process. First,
reconstruct the codebook from affine parameters. Then, base
upon the index sequence draw back the image. The final
result is shown in table III. Fig 2,3 are used to show the
reconstructed quality. To obtain a high reconstructed quality,
we use a very small tolerance which cause that all partition
reached the minimum size. By doing so the quality dose not
change very much, but the compression ratio is improved, the
increment gain is the largest for the case of �����, the reason
is when vector size change to large, the index size becomes
very small almost be considered as zero.

IV. CONCLUSION AND REMARKS

In this paper a hybrid image compression algorithm has
been proposed, the originality is to re-encode the codebook
using the IFS algorithm. Experimental results have shown
that this method can increase the compression ratio without
increasing the distortion too much. A new learning algorithm
for KNN has also been proposed to improve the learning
speed.

REFERENCES

[1] Y. Linde, A. Buzo and R. M. Gray, ”An Algorithm for Vector Quantiza-
tion”, IEEE Trans. Communications, Vol. 28, No. 1, 1980, pp. 84-95.

[2] Self-Organization and Associated Memory (context) - Kohonen - 1988.
[3] Fractal Image Compression: Theory and Application, Yuval Fisher (ed.),

Springer Verlag, New York, 1995.

TABLE I

LBG COMPRESSION PERFORMANCE

128 256 512 1024
�� � 31.0/18.2 32.0/12.7 33.2/9.8 34.4/7.1

Lenna �� � 27.8/23.2 28.9/12.7 30.5/7.0 32.9/3.7
��� �� 25.6/7.8 28.0/3.9 31.3/1.9 35.8/0.95
�� � 23.5/18.2 24.1/12.7 24.8/9.8 25.6/7.1

Mandrill �� � 21.1/23.2 21.6/12.7 22.2/7.0 23.3/3.7
��� �� 20.3/7.8 21.2/3.9 23.2/1.9 26.6/0.95

TABLE II

VARIATION KNN PERFORMANCE AFTER TEN TIMES LEARNING

128 256 512 1024
�� � 31.0/18.2 32.0/12.7 33.2/9.8 34.4/7.1

Lenna �� � 27.8/23.2 28.9/12.7 30.5/7.0 32.9/3.7
��� �� 25.6/7.8 28.0/3.9 31.3/1.9 35.8/0.95
�� � 23.5/18.2 24.1/12.7 24.8/9.8 25.6/7.1

Mandrill �� � 21.1/23.2 21.6/12.7 22.2/7.0 23.3/3.7
��� �� 20.3/7.8 21.2/3.9 23.2/1.9 26.6/0.95

TABLE III

VQ + IFS COMPRESSION PERFORMANCE

128 256 512 1024
�� � 29.65/20.47 32.21/15.06 33.20/12.79 34.37/10.66

Lenna �� � 27.53/51.15 28.68/31.98 30.57/20.47 32.84/12.19
��� �� 25.42/29.24 27.99/15.05 31.35/7.27 35.65/3.92
�� � 23.74/20.47 24.02/15.06 24.85/12.79 25.53/10.66

Mandrill �� � 21.04/51.15 21.57/31.98 22.16/20.47 23.14/12.19
��� �� 20.63/29.24 21.25/15.05 23.09/7.27 26.39/3.92

Fig. 1. �� � codebook:128 PSNR ����� ratio:�����

Fig. 2. �� � codebook:128 PSNR ����� ratio:�����

2－388




