4L-1

goobbobbeecd g

A STATISTICAL LEXICON BASED ON HMMS

Rainer Gruhn, Satoshi Nakamura

ATR Spoken Language Translation Res. Labs.
2—2-2 Hikaridai, Keithanna Gakkentoshi, Kyoto 619-0288, Japan

rainer.gruhn@atr. jp

ABSTRACT

This paper introduces a novel approach towards
pronunciation modeling for pronunciation rescoring.
Rather than explicitly representing pronunciation vari-
ations, a discrete HMM is provided for each word, mo-
deling seen and allowing unseen pronunciation varia-
tions. Phone substitutions, deletions and insertions are
equally covered. The approach is evaluated on non-
native speakers speech recognition task.

1. INTRODUCTION

A lot of work has been reported about pronunciation
modeling [1]. Many approaches follow the similar basic
scheme of comparing manual or automatically generated
phoneme transcriptions to some baseline transcription.
Variation information can be extracted from the differ-
ences. Typically it is represented in the form of rules,
which can be weighted based on occurence frequency,
likelihood, confusability or other measures. These rules
are applied to a baseline lexicon in order to generate
some adapted lexicon or to optimize an acoustic model.
Unfortunately this approach usually brings only little
improvement,.

In this research, we suggest a new data-driven ap-
proach to deal with pronunciation variations. It is based
on word-level pronunciation HMMSs, which are applied
to rescore n-best hypotheses. Our target is to improve
the performance of a continuous speech recognition sys-
tem on a challenging speaker group such as non-native
speakers.

Similar to the standard approach, we generate a
phonetic transcription with phoneme recognizer. These
phoneme sequences are used as training data for dis-
crete word HMMs; one HMM for each word. There is
no attempt to explicitly represent the phoneme varia-
tions. Even variations unseen in the training data are
allowed, as a certain floor probability exists for all possi-
ble phoneme sequences for each word. The HMM train-
ing process will implicitly take care of all variation- and
likelihood issues, unlike in other approaches, e.g. rule
firing frequencies do not have to be calculated.

2. WORD HMMS

As illustrated in Fig. 1, two levels of HMM-based recog-
nition are involved in this approach:

e Acoustic level: phoneme recognition to generate
the phoneme sequence S; from the acoustic fea-
tures O;

e Phoneme label level: For training, the phoneme
sequences S; are considered as input. For all
words, a discrete word HMM 1is trained on all in-
stances of that word in the training data. The

e ¢ ¢+ 1+ 1+ ¢+ |1 1 | | acoustic
f ‘ feature vectors

1 P2 U3 Y s "6 "7 "8 9 P10 C11 T12

phoneme recognition to
generate phoneme sequences
| | || % { } % { phonemes

[ I LI
s, s, EN s, s, s,

N

train discrete HMM for each word
0 O 0 on all instances of that word
O—0O—0O

Figure 1: Two layers of HMMs are required to generate

pronunciation vartants and their likelthoods: an acous-

tic level for phoneme recognition and the phoneme label
level for word model training.

models are applied for rescoring, generating a pro-
nunciation score given the observed phoneme se-
quence S; and the word sequence.

The first step requires a standard HMM acoustic
model, and preferably some phoneme bigram language
model as phonotactic constraint. The continuous train-
ing speech data is segmented to word chunks based
on time information generated by viterbi alignment.
Acoustic feature vectors are decoded to an 1-best se-
quence of phonemes.

For each word in the vocabulary, one discrete untied
HMM is generated. Figure 2 shows an example for the
word “and”.
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Figure 2: An example discrete word HMM for the word
“and”, initialized with two pronunciation variations for
the first phoneme.

The models are initialized on the phoneme sequence
in some baseline pronunciation lexicon. The number
of states for a word model is set to be the number of
phonemes in the baseline pronunciation, plus enter and
exit states. Each state has a discrete probability distri-
bution of all phonemes, giving the baseline phoneme a
high probability and all other phonemes some low but
non-zero value. Forward transition between all states is
allowed, with initial transition probabilities favouring a
path that hits each state once.
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The probability distribution as well as the transition
probabilities are reestimated on the phoneme sequences
of the training data. For each word, all instances in the
training data are collected and analyzed. The number
of states of each word model remains static. Phoneme
deletions are covered by state skip transitions, phoneme
insertions are modeled by state self-loop transitions.

Data sparseness is a common problem for automa-
tically trained pronunciation modeling algorithms. In
this approach, pronunciations for words that do appear
sufficiently frequent in the training data, the pronunci-
ations are generated in a data-driven manner. For rare
words, the algorithm falls back on baseline phoneme se-
quences from a given lexicon. This combination should
make it more robust than for example an application
of phoneme confusion rules on a lexicon (as e.g. in [2])
could.

3. EXPERIMENTS

3.1. Phoneme recognition

For evaluation, we used a non-native database collected
at ATR and consisting of 11 Japanese speakers of En-
glish. About 12 minutes of read speech are available per
speaker, which was divided into ten minutes for training
and two minutes as test set. The task domnain is hotel
reservation.

The non-native training data set is segmented into
single words based on time information aquired by
viterbi alignment. On these word chunks, phoneme
recognition is performed. To archieve higher phoneme
recognition accuracy than with monophones, a right-
context biphone model is applied. In the resulting
phoneme string, the context is not considered, though.
The phoneme recognition accuracy for the non-native
task is 34.68% relative to the canonic transcription. The
biphone acoustic model in this experiment is trained on
the Wall Street Journal (WSJ) read speech corpus [3]
The phoneme set consists of 43 phonemes plus silence.
In the second level of processing, the rescoring, oc-
curences of silence are ignored. The HTK toolkit [4]
is used for all training and decoding steps.

3.2. Word HMM initialization

The discrete probability distribution for each state is
initialized depending on the “correct” phoneme se-
quence(s) as given in the lexicon. The correct phoneme
has a probability of 0.99; if more than one pronunciation
variant is included in the lexicon, the variations all have
the same probability. All other phonemes are assigned
some non-zero probability.

The transition probabilities depend on the number
of succeeding phonemes in the baseline lexicon. The
probability to skip k& phonemes is initialized to 0.05%.
Insertions are allowed with a chance of 0.05. The tran-
sition to the next state therefore has a probability of
slightly below 0.9.

3.3. Rescoring

The HMM pronunciation models are applied in the form
of rescoring the n-best decoding result. On an utterance
in the test data, both a 1-best phoneme recognition and
a standard n-best recognition (on word level) is per-
formed. For each of the n-best sequences, we apply a
forced alignment using the discrete pronunciation mod-
els, the phoneme sequence as input features and the
word sequence as labels. The resulting score is the pro-
nunciation score.

This pronunciation score is combined with the
weighted language model score for this hypothesis. The
hypothesis archieving the highest total score among the
n-best is selected as correct. Figure 3 shows the perfor-
mance for various language model weights. The best
performance is 29.04% word error rate (WER) com-
pared to baseline performance in this experiment of
32.54%.
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Figure 3: Word error rate for rescoring of n-best based
on pronunctation score combined with weighted language
model scores.

4. CONCLUSION

Word error rate could be improved by a relative 10.8%
with pronunciation rescoring, showing the effectiveness
of the approach for non-native speech. The full strength
of the approach may not be achieved in this evaluation
because of lack of non-native training data, which fre-
quently forces word models to default to the standard
pronunciations. Also, considering the acoustic score to-
gether with pronunciation and language model score
could be a helpful extension.
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