iR R Dec. 1999

REME

HOREBMEEREDED a—ILEEIC L HEE - TOMEL
A Bt g oW OE R

HERBMRI 0TI /858D, SHEAFEPHEORNRL LTRSS ZERTRREHFEVRAT A
Thb.

EEORE L NACHYT AEREAF LUV E LTEBOH BT TR OMTAZ LI
L oT, BARORRICE CLBNREREOHESY, BARATRREY - LTRET 28
TRERRATH Y, WHEEMES, HEHEMRECRITZ 7Y r—a yOEREHRICBZ
RHZEWTED.

LiL, BERBHREELEETIHE, SEONERELa—F IO LI LTRRTS
POBRIZE - T, FOEEIRMET BB L ETHRLEO ML —FAT7BELD.

EEOHBRBRAREFETIE, LFEER FFEOCARICRo ECRMHEZRET 2 E
TEIHENBZ LH£L, %%m&%m%%wfmm%%&ﬁﬁ_ﬁLtE%EWKéioﬁ%w
V. BT, AREBELZVECKEBLREEONBNRREFELER LY. 22 TED
X5 rEEFEERET 3720/ & LT, Monad-Transformer % & B\ .

ERTIREY, BCEBRMNREBOVW 20BN E, FIRTERMESLICHN LAEEY 2
DL LTEBETADDOBMEAERL, RIZTu IR0 5 A0FREICIET, LRI
RHSEE L EITHR L BB L EROREREL MBRT 200, ¥ —T =24 RAERETD. &
BIZEBOSHEVAT LAOBEICBITAMBEARLICETsEEERB ).

Modular Implementation Technique for
Efficient Reflective Programming Languages

YUTAKA SAEKI' and TAKUO WATANABET

Reflective programming languages are languages which enable user programs to run at
the defining language level (meta-level), and act as a part of the interpreter. So reflective
languages can provide high extensibility.

But in fact, in most of implementations of such a language, the given way of extension is
not flexible enough. Because in the traditional methodology of defining reflective language
is structuring the language as a meta-circular interpreter, so if we try to provide extensibil-
ity as possible. The performance to execute such programs are too low to build practical
applications.

Some reflective systems restrict extensibility of the language, and solve meta-level compu-
tations at compile-time. But, if what we can do at meta-level is limited hardly, or extensions
have effect on only statically, there is less advantage of reflection about extension.

In this paper, we propose a modular implementation technique of reflective languages.
To provide the mechanism, we define some language building-blocks. And then we build a
meta-continuation based reflective language as an interpreter and a compiler for the normal
(non-reflective) language.

Our goal is designing interfaces to let the programmer possible to select the implementation
of the reflective language and make user to be able to specify the language for the purpose
of each program-pieces. So we conclude what is the most efficient combination of language
modules for some domains.

(ERL 1146 A 17 BRFE)

+ ARERS IR AR BB IR AT IR
School of Information Science, Japan Advanced Insti-
tute of Science and Technology

75



