Efficient VLSI Decompositions for de Bruijn Graphs *

Hiroyuki KAWAKITA¹, Toshinori YAMADA², and Shuichi UENO¹[†]

1 Department of Communications and Integrated Systems, Tokyo Institute of Technology \ddagger

2 Department of Information and Computer Sciences, Saitama University §

1 Introduction

This paper shows efficient VLSI decompositions for de Bruijn graphs, which have been found using simulated annealing based on some known sufficient conditions.

A VLSI decomposition of a digraph (directed graph) G is a collection of isomorphic vertex-disjoint subdigraphs of G which together span G. A digraph H isomorphic to the subdigraphs comprising the decomposition is called a *building block* for G. The *efficiency* of H, denoted by *eff*(H : G), is the fraction of the arcs (directed edges) of G which are present in the copies of H. If H is a building block for any digraph in a family of digraphs $\{G_n\}$, H is called a *universal building block* for $\{G_n\}$. Finding an efficient building block for G is motivated by the design of an efficient single VLSI chip with the property that many identical copies of this chip could be wired together to form a circuit represented by G.

We denote the vertex set and arc set of a digraph G by V(G) and A(G), respectively. An arc from vertex u to v is denoted by (u, v). The nth order dary de Bruijn graph B_n^d is a digraph with $V(B_n^d) =$ $\{0, 1, \ldots, d-1\}^n$, and arcs from each vertex $x_1 x_2 \cdots x_n$ to the vertices $0x_1x_2\cdots x_{n-1}, 1x_1x_2\cdots x_{n-1}, \ldots$, and $(d-1)x_1x_2\cdots x_{n-1}$. A universal d-ary de Bruijn building block of order n is a universal building block for $\{B_m^d \mid m \geq n\}$. It is known that if H is a universal d-ary de Bruijn building block of order n then $eff(H:B_m^d) = |A(H)|/|A(B_n^d)|$ for every $m \ge n$, which means that the efficiency is independent of m[1, 5]. A binary de Bruijn graph represents circuit diagram for a parallel Viterbi decoder. A universal binary de Bruijn building block of order 7 with efficiency of 0.754 is used by JPL to construct a 64-chip VLSI decomposition for B_{13}^2 , which is used to build a single-board Viterbi decoder[1, 2].

Let $X = (x_0, x_1, \ldots, x_k)$ be a sequence of k + 1 vertices, and $Y = (y_1, y_2, \ldots, y_k)$ be a sequence of k arcs of a digraph. (X, Y) is called a path of length k if the following two conditions are satisfied: $1)y_i = (x_i, x_{i-1})$ or $y_i = (x_{i-1}, x_i)$ for any i $(1 \le i \le k)$; $2)x_i \ne x_j$ for any i and j with $0 \le i < j \le k$. (X, Y) is also called a (x_0, x_k) -path. A path (X, Y) is called a cycle if $x_0 = x_k$. y_i is called a forward arc if $y_i = (x_{i-1}, x_i)$, and a backward arc otherwise. A dipath is a path with no backward arcs. A dipath (X, Y) is also denoted by X for short. If a path has f forward arcs and b backward arcs, we define the *net length* of the path to be |f - b|.

A cycle is said to be balanced if the net length of the cycle is equal to 0. A cycle is said to be unbalanced if it is not balanced. For a cycle (X, Y), the maximum subnet length of (X, Y) is defined to be the maximum net length of a subpath of (X, Y). A digraph G is connected if there exists a (u, v)-path for any vertices $u, v \in V(G)$.

For a connected digraph G, a mapping $\rho: V(G) \to \mathbb{Z}$ is called a rank function for G if $\rho(y) = \rho(x)+1$ for every $(x, y) \in A(G)$. A balanced cycle C is said to have property \mathcal{D} if both $|\{x \in V(C) | \ \rho(x) = \min_{y \in V(C)} \rho(y)\}|$ and $|\{x \in V(C) | \ \rho(x) = \max_{y \in V(C)} \rho(y)\}|$ are even for any rank function ρ for C. A digraph G is graded of rank r if there is a rank function $\rho : V(G) \to$ $\{0, 1, \ldots, r\}$. G is graded if G is graded of rank r for some r.

The cycle space of a digraph G is a vector space generated by the cycles of G. A basis of the cycle space is called a *fundamental k-basis* if the basis is consisting of fundamental cycles with respect to a spanning tree such that the maximum subnet length of each fundamental cycle is at most k.

The following sufficient conditions can be found in the literature.

Theorem I [5] Let H be a connected spanning subdigraph of B_n^2 . If H is graded and has a fundamental (n + 1)-basis of the cycle space, and every cycle of Hhas property \mathcal{D} then H is a universal binary de Bruijn building block of order n.

Theorem II [4] Let H be a connected spanning subdigraph of B_n^d . If H is graded and has a fundamental n-basis of the cycle space then H is a universal d-ary de Bruijn building block of order n. In particular, a spanning tree of B_n^d is a universal d-ary de Bruijn building block of order n.

Our universal building blocks have been found using simulated annealing based on sufficient conditions above.

2 Results

We used simulated annealing to find an efficient universal d-ary de Bruijn building block of order n. A configuration is a spanning tree of B_n^d . The neighborhood of a spanning tree T is the spanning trees T' such that |A(T') - A(T)| = 1. For a spanning tree T of B_n^d , let H_T be a unique maximal universal d-ary de Bruijn building block of order n obtained from T by adding arcs of B_n^d in such a way that H_T satisfies the condition of Theorem I if d = 2, and the condition of Theorem II if $d \geq 3$. The cost of T is defined as $1 - eff(H_T : B_n^d)$.

^{*}DeBruijn グラフの効率的な VLSI 分解

[†]川喜田 裕之, 山田 敏規, 上野 修一

[‡]東京工業大学 集積システム専攻

[§]埼玉大学 情報システム工学科

$n \setminus d$	2			3			4			5			6		
	a_n	e_n	[2]	a_n	e_n	[3]									
1	1	0.250	0.250	2	0.222	0.000	4	0.250	0.000	6	0.240	0.000	9	0.250	0.000
2	3	0.375	0.375	11	0.407	0.222	27	0.422	0.188	53	0.424	0.160	92	0.426	0.139
3	8	0.500	0.500	44	0.543	0.296	140	0.547	0.234	343	0.549	0.192	703	0.542	0.162
4	19	0.594	0.594	153	0.630	0.395	647	0.632	0.340	1946	0.623	0.294	4840	0.622	0.258
5	43	0.672	0.672	499	0.684	0.519	2790	0.681	0.457	10476	0.670	0.403	_	_	0.359
6	92	0.719	0.719	1584	0.724	0.604	11707	0.715	0.546	_	_	0.490	_	_	0.442
7	193	0.754	0.754	4954	0.755	0.661	_	-	0.612	_	_	0.560	_	_	0.512
8	399	0.779	0.777	_	_	0.700	_	-	0.662	_	_	0.616	_	_	0.570
9	819	0.800	_	_	_	0.726	_	-	0.700	_	_	0.661	_	_	0.619
10	1673	0.817	_	_	_	0.743	_	-	0.728	_	_	0.697	_	_	0.659
11	3412	0.833	—	—	_	0.755	_	_	0.749	_	—	0.725	_	_	0.693

Table 1: The most efficient known universal *d*-ary de Bruijn building blocks.

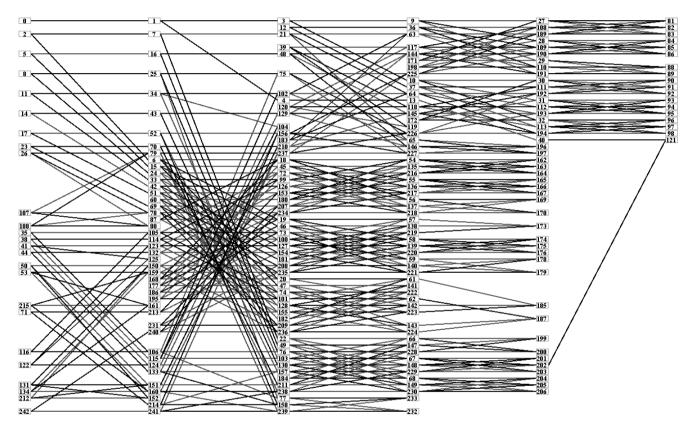


Figure 1: The most efficient known universal ternary de Bruijn building block of order 5.

Table 1 lists the number of arcs and efficiency of the most efficient H_T we have been able to find using simulated annealing, together with the efficiency obtained so far in the literature, [2] for d = 2 and [3] for $d \ge 3$. In the table a_n and e_n denote the number of arcs and the efficiency of H_T , respectively.

The best known universal ternary de Bruijn building block of order 5 is shown in Figure 1, in which the ternary strings are represented by their decimal equivalents, and all edges are directed from left to right.

References

 O. Colins, S. Dolinar, R. McEliece, and F. Pollara. A VLSI decomposition of the de Bruijn graph. J. ACM, Vol. 39, No. 4, pp. 931–948, Oct. 1992.

- [2] S. Dolinar, T.-M. Ko, and R. McEliece. Some VLSI decompositions of the deBruijn graphs. *Discrete Math.*, Vol. 106/107, pp. 189–198, 1992.
- [3] P. Kopřiva and P. Tvrdík. Decompositions of de Bruijn Networks. Proc. 1998 International Conference on Parallel and Distributed Systems, pp. 580–587, 1998.
- [4] T. Nishiyama, T. Yamada, and S. Ueno: On VLSI Decompositions for d-ary de Bruijn Graphs; *Technical Report of* the Institute of Electronics, Information and Communication Engineers, Vol.100, No.568, pp.47-54, 2001.
- [5] T. Yamada, S. Imai, and S. Ueno. On VLSI Decomposotions for deBruijn Graphs. Proc. 1999 IEEE International Symposium on Circuits and Systems, pp. VI 165–VI 169, 1999.