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1. Introduction

In this paper we present the design and anal-
ysis of Instruction Set Architecture (ISA) for
Parallel Queue Processor (PQP). It is the most
critical stage during the design of a new ar-
chitecture. Computer architect must clearly
understand consequences of decisions made in
ISA for the whole success of research. ISA
strongly affects all aspects of system: compila-
tion time, code size, hardware complexity and
performance, etc. Program size is an impor-
tant concern in many applications, especially
for those requiring small memory footprints.
The Queue-based instruction set is a promis-
ing approach for reducing code size and sys-
tem complexity. Our Instruction Set consists
of fixed-length 2-byte instructions. First, we ex-
plain formats used in our instruction set. Then
we make preliminary evaluation of PQP pro-
gram size through a set of simple benchmarks.

Parallel Queue Processor is based on Queue
Computational Model (QCM) which uses
Queue (FIFO memory) instead of registers as
an intermediate storage of operands. This al-
lows significant reduction in ALU instruction
length because we do not need to specify regis-
ter names — location of operands and results is
implicit. Unfortunately, there are other instruc-
tion classes such as Load/Store and Branches
that can not be shortened so easily. In such
case variable-length ISA would lead to the most
compact code. On the other hand variable-
length instructions complicate Instruction De-
code Unit of CPU. As a tradeoff between code-
size and hardware complexity we choose 2-byte
fixed-length ISA.
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2. Instruction Set Architecture

Main types of instructions are:
• ALU (add/sub, logical, shift, mul/div)
• Load/Store
• move from/to Queue to/from Registers
• branch
2.1 ALU
ALU-type instructions include perform ad-

dition/subtraction, logical, shift, multiplica-
tion/division operations. Their format is given
on Fig. 1(a). Most Significant Byte (bits 15-8)
specifies opcode. Bit 7 (called p-bit) selects one
of 2 ALU addressing modes:
• Produced-Consumed Order addressing mode

is used when p-bit is cleared. On Fig. 2(a)
ADD instruction “consumes” 2 operands
from the Head of Queue marked by QH
(Queue Head) pointer, performs computa-
tion, and writes back (“produces”) the re-
sult at the Tail of Queue which is marked
by QT (Queue Tail) pointer. Bits 6-0 are
left unused.

• Produced Order addressing mode (p-bit is
set) gives a freedom to choose the second
operand by specifying its offset (bits 6-0)
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Fig. 1 Major instruction formats
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Fig. 2 Produced-Consumed (a) and
Produced Order (b) ALU addressing modes

from QH. On Fig. 2(b) the second operand
of ADD -3 instruction is found at QH − 3.
This approach allows us to reuse data that
was “consumed” previously.

2.2 Load/Store
PQP is load-store machine. To access data

memory we use Displacement addressing mode
where Effective Address (EA) of memory is sum
of displacement and Base Address (BA):

EA = BA + displacement
PQP has 4 Base Address Registers (BAR) to
store Base Address. Format of load/store
instructions is given on Fig. 1(b). Bits 15-
10 specify opcode, bits 9-8 select particular
BAR, and Least Significant Byte (bits 7-0)
is displacement. In cases when 1-byte is not
enough6) displacement may be extended till
2 bytes by mean of special instruction called
COVOP.

2.3 Move
These instructions (see Fig. 1(c)) move data

between Queue and BAR. Bits 9-8 specify par-
ticular BAR, and Least Significant Byte is left
unused.

2.4 Branch
Branches (see Fig. 1(d)) are PC-relative —

Target Address (TA) is a sum of displacement
(bits 7-0) and Program Counter (PC):

TA = PC + displacement

3. PQP simulator

We wrote PQP Simulator using Verilog HDL
programming language. The size of simulator
is about 2,000 lines. It outputs the following
information:
• very detailed information about instruction

set usage like instruction distribution in the

Table 1 Program size of PQP vs. MIPS

benchmark name FFT Fibonacci
program size reduction (%) 35 37

program.
• run-time program size
• program execution time (in clock cycles)
• maximum and average Instruction Level

Parallelism (ILP)
We wrote several simple programs for PQP

and MIPS instructions sets and compared cor-
responding code sizes. Preliminary results are
given in Table 1. At this moment we are
concentrated on writing more extensive bench-
marks.

4. Conclusions

In this paper we presented the design of In-
struction Set Architecture for Parallel Queue
Processor. We also wrote PQP Simulator using
Verilog HDL programming language. Prelimi-
nary simulation results show that PQP program
size is about 35% smaller than corresponding
MIPS code.
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