
Vol. 0 No. 0 IPSJ Journal 1959

Regular Paper

Instruction Set Architecture

for Parallel Queue Processor

MARKOVSKIJ Arsenij,† ABDERAZEK Ben,†

SHIGETA Soichi,† HALCHAM Kutluk,† SOWA Masahiro†

and YOSHINAGA Tsutomu†

1. Introduction

In this paper we present the design and anal-
ysis of Instruction Set Architecture (ISA) for
Parallel Queue Processor (PQP). It is the most
critical stage during the design of a new ar-
chitecture. Computer architect must clearly
understand consequences of decisions made in
ISA for the whole success of research. ISA
strongly affects all aspects of system: compila-
tion time, code size, hardware complexity and
performance, etc. Program size is an impor-
tant concern in many applications, especially
for those requiring small memory footprints.
The Queue-based instruction set is a promis-
ing approach for reducing code size and sys-
tem complexity. Our Instruction Set consists
of fixed-length 2-byte instructions. First, we ex-
plain formats used in our instruction set. Then
we make preliminary evaluation of PQP pro-
gram size through a set of simple benchmarks.

Parallel Queue Processor is based on Queue
Computational Model (QCM) which uses
Queue (FIFO memory) instead of registers as
an intermediate storage of operands. This al-
lows significant reduction in ALU instruction
length because we do not need to specify regis-
ter names — location of operands and results is
implicit. Unfortunately, there are other instruc-
tion classes such as Load/Store and Branches
that can not be shortened so easily. In such
case variable-length ISA would lead to the most
compact code. On the other hand variable-
length instructions complicate Instruction De-
code Unit of CPU. As a tradeoff between code-
size and hardware complexity we choose 2-byte
fixed-length ISA.

† Graduate School of Information Systems,
University of Electro-Communications, Tokyo

2. Instruction Set Architecture

Main types of instructions are:
• ALU (add/sub, logical, shift, mul/div)
• Load/Store
• move from/to Queue to/from Registers
• branch
2.1 ALU
ALU-type instructions include perform ad-

dition/subtraction, logical, shift, multiplica-
tion/division operations. Their format is given
on Fig. 1(a). Most Significant Byte (bits 15-8)
specifies opcode. Bit 7 (called p-bit) selects one
of 2 ALU addressing modes:
• Produced-Consumed Order addressing mode

is used when p-bit is cleared. On Fig. 2(a)
ADD instruction “consumes” 2 operands
from the Head of Queue marked by QH
(Queue Head) pointer, performs computa-
tion, and writes back (“produces”) the re-
sult at the Tail of Queue which is marked
by QT (Queue Tail) pointer. Bits 6-0 are
left unused.

• Produced Order addressing mode (p-bit is
set) gives a freedom to choose the second
operand by specifying its offset (bits 6-0)

OPCODE p offset

OPCODE BAR displacement

OPCODE not used

OPCODE displacement

ALU

15

15

15

15

0

0

0

0

7

89

89

7

BAR

load/

store

move

branch

(a)

(b)

(c)

(d)

Fig. 1 Major instruction formats

1－73

3F-5 情報処理学会第66回全国大会



IPSJ Journal 1959

+

QH QT

+

QH QT
-3

(a)

(b)

QUEUE

ADD

ADD -3

Fig. 2 Produced-Consumed (a) and
Produced Order (b) ALU addressing modes

from QH. On Fig. 2(b) the second operand
of ADD -3 instruction is found at QH − 3.
This approach allows us to reuse data that
was “consumed” previously.

2.2 Load/Store
PQP is load-store machine. To access data

memory we use Displacement addressing mode
where Effective Address (EA) of memory is sum
of displacement and Base Address (BA):

EA = BA + displacement
PQP has 4 Base Address Registers (BAR) to
store Base Address. Format of load/store
instructions is given on Fig. 1(b). Bits 15-
10 specify opcode, bits 9-8 select particular
BAR, and Least Significant Byte (bits 7-0)
is displacement. In cases when 1-byte is not
enough6) displacement may be extended till
2 bytes by mean of special instruction called
COVOP.

2.3 Move
These instructions (see Fig. 1(c)) move data

between Queue and BAR. Bits 9-8 specify par-
ticular BAR, and Least Significant Byte is left
unused.

2.4 Branch
Branches (see Fig. 1(d)) are PC-relative —

Target Address (TA) is a sum of displacement
(bits 7-0) and Program Counter (PC):

TA = PC + displacement

3. PQP simulator

We wrote PQP Simulator using Verilog HDL
programming language. The size of simulator
is about 2,000 lines. It outputs the following
information:
• very detailed information about instruction

set usage like instruction distribution in the

Table 1 Program size of PQP vs. MIPS

benchmark name FFT Fibonacci
program size reduction (%) 35 37

program.
• run-time program size
• program execution time (in clock cycles)
• maximum and average Instruction Level

Parallelism (ILP)
We wrote several simple programs for PQP

and MIPS instructions sets and compared cor-
responding code sizes. Preliminary results are
given in Table 1. At this moment we are
concentrated on writing more extensive bench-
marks.

4. Conclusions

In this paper we presented the design of In-
struction Set Architecture for Parallel Queue
Processor. We also wrote PQP Simulator using
Verilog HDL programming language. Prelimi-
nary simulation results show that PQP program
size is about 35% smaller than corresponding
MIPS code.

References

1) B. R. Preiss, “Data flow on a queue machine”,
PhD thesis, Department of Electrical Engineer-
ing, University of Toronto, 1987.

2) S. Okamoto, A. Maeda, M. Sowa, “Super-
scalar processor based on queue machine com-
putation model”, IPSJ SIG Notes, vol.98,
no.37, ARC–129–3, pp.13–18, May 1998.

3) S. Okamoto, H. Suzuki, A. Maeda, M. Sowa,
“Design of a superscalar processor based on
queue machine computation model”, IEEE
PACRIM’99, pp.151–154, August 1999.

4) M. Sowa, “The foundation of parallel queue
machine”, Technical Report SLL–00330, Dis-
tributed Processing Laboratory, Graduate
School of Information Systems, University of
Electro-Communications, Tokyo, 2000.

5) A. Markovskij, “Producer-order parallel queue
processor architecture design”, Master the-
sis, Graduate School of Information Systems,
University of Electro-Communications, Tokyo,
2002.

6) J. L. Hennessy, D. A. Patterson, Computer
Architecture A Quantitative Approach, Mor-
gan Kaufmann Publishers, San Francisco, Cal-
ifornia, 2003.

1－74




