
PQPpfB: Parallel Queue Processor Architecture in Verilog-HDL

ben a. abderazek ,† Markovskij Arsenji ,† Kazuyuki Kiuchi ,†

Musfiquzzaman Md. Akanda ,† soichi shigeta ,†

tsutomu yoshinaga † and masahiro sowa †

In this article, we describe the hardware implementation of a Simple parallel produced order
queue processor (PQPpfB) architecture that stores data in produced order scheme. Data is
inserted in the queue in produced order scheme and can be reused. This feature has a profound
implication in the areas of parallel execution, programs compactness and hardware simplicity.
We first give an overview of the processor architecture. Then, we give the implementation
method and the preliminary evaluation results.

1. Introduction and Motivations

Nowadays, the shifts in hardware and soft-
ware technology force designers and users to
look at micro architecture that process instruc-
tions stream with high performance, low power
consumption, and short program length. In
order to achieve high performance, micro ar-
chitecture research has emphasized instruction-
level parallelism processing, which has estab-
lished in superscalar architecture without ma-
jor changes to software. Since the program con-
tains no explicit information about available
ILP, it must be discovered by the hardware,
which must then also construct a plan of action
for exploiting parallelism. In short, computers
haves thus far achieved this goal at the expense
of tremendous hardware complexity − a com-
plexity that has grown so large as to challenge
the industry ability to deliver ever-higher per-
formance.
The possibility of designing a processor archi-
tecture that could offers simple hardware, high
performance and small code size, while main-
taining other characteristics is what led us to
develop a parallel queue processor architecture,
which stores data in a FIFO registers (refer to
Fig. 2) and exploits parallelism dynamically.
Since the Queue word is designated implicitly in
the instruction, the instruction length becomes
short and it has independence from the phys-
ical operand queue word. Moreover, since the
assignment of queue word is based on a single
assignment rule (SAR), WAR hazard does not
occurs.

† Graduate School of Information Systems, The Uni-
versity of Electro-Communications, Tokyo, Japan

In this paper we propose a Simple parallel pro-
duced order queue processor (PQPpfB) archi-
tecture that stores data in produced order and
offers much lower hardware complexity than
RISC, STACK or our earlier proposed queue
processor architecture1),2) .

2. PQPpfB System Architecture

The PQPpfB architecture has six pipelining
stages as described bellow:
(1) Fetch: 12 bytes are fetched from the mem-
ory and inserted into a fetch buffer. The ad-
dress used to access the memory is also used
to access a branch target buffet (BTB). These
accesses are done at the same time. The ac-
cessing address hits in the BTB, the informa-
tion stored in the BTB is known right after the
access. The branch type (kind) can be used to
choose the prediction source before the branch
is decoded (refer to Fig. 2); (2) Decode: de-
code the function and the operands; (3) Queue
computation: Calculate the queue head and tail
values; (4) Barrier Queue: Insert Barrier; (5)
Issue: Find executable instructions and issue
them; and (6) Execution: Execute instructions
and update queue registers and memory. The
queue computation stage computes QH and QT
values of each instruction. They are the value
when each instruction is to be executed in se-
rial. The issue stage checks the data in the
queue that each instruction requests and checks
the execution unit availability. Then it issues
the instruction if there are. The architecture
of the PQPpfB processor is shown in Fig. 1.
It consists of a fetch Unit (FU), a decode unit
(DU), a Queue computing Unit (QCU), a Bar-
rier Queue Unit (BQU), an issue unit (IU), and
an execution unit (EU).

1－71

3F-4 情報処理学会第66回全国大会

PC
program counter FETCH UNIT (FU)

fetch buffer (FB)

INSTRUCTION DECODE UNIT (DU)

QUEUE COMPUTATION UNIT (QCU)

 instruction buffer (DB)

(QB)

IN
T

E
G

E
R

 I
N

ST
 Q

U
E

U
E

M
E

M
O

R
Y

 IN
S

T
 Q

U
E

U
E

FL
O

A
T

IN
G

-P
 I

N
ST

 Q
U

E
U

E

IS
S

U
E

 a
nd

 B
ar

ri
er

 U
ni

t

load/Store Unit
Integer Unit

floating point unit

Shift nit and Branch Unit

EXECUTION UNIT
Q

u
eu

e C
on

trol

QCU

QQUEUE REGISTER

Circular
Q ueue

PQPp Core

dpathfd.v

qcu.v

issue.v
bqu.v

eu.v

Fig. 1 System Architecture

PC

BA BT PV

SE
L

E
C

T

Branch Prediction
/erro Handling

R
ed

ir
ec

t

next sequential

BA BT PV

update

EXE

0

31

BK
BK

BK: Branch Kind
BT: Branch target
BA: Branch address
PV: Prediction Value

Fig. 2 Branch Instructions Handling Mechanism

3. Implementation Results

The processor was designed in RTL model
and successfully integrated and simulated with
Synopsis Verilog XL simulator. Figure 4 de-
scribes the modules which were designed and
integrated to form the processor core.

PQPpfB Special Registers and Queue Registers naming convention

64 x 33
Queue Register

r0 (d0)

r1(d1)

r2(d2)

r3(d3)

r4(a0)

r5(a1)

r6(a2)

r7(a3)

PC

ICR

EPC

IRA

SP

r12

r13

r14

QH

QT

LQH

r15

rv1

rv2

rv3

rv4

r8

r9

r10

r11

rv5

rv6

rv7

rv8

a0~a3 (r0~r3): address register
d0~d3 (r4~r7): data register
r8~r15: random access register
rv1~rv4: reserved register (for future expansion)
ICR: interrupt cause register
PC: Program counter
SP: stack pointer
IRA: Interrupt return address
EPC: Exception program counter
QH: Queue Head pointer
QT: Queue Tail pointre
LQH: Live queue Head pointer

Fig. 3 Hardware Registers

Source Module Description

inst_define.v instructions definition (119 instructions)

top.v top file module

dpathfd.v data path, fetch and decode module

qcu.v queue computation module

bqu.v barrier queue module

issue.v instruction issue module

eu.v instruction execution module

Total verilog HDL code: 2275 (ln)

Fig. 4 Verilog HDL code Implementationn of the
PQPpfB processor. The whole code was in-
tegrated and the netlists for the main mod-
ules successfully exported with Synopsis FPGA
Compiler II tool.

4. Conclusion and Future Work

In this article, we presented an overview of
a novel simple parallel Queue processor archi-
tecture (PQPpfB) that uses queue register for
operand and results manipulations. The pro-
cessor was designed in RTL model and success-
fully integrated and simulated with Synopsis
Verilog XL simulator. Our Future work is to
verify its functionality and overall performance
in an Altera APEX FPGA board and realistic
bencmark programs.

References

1) PQPpfB project: http://www.sowa.is.uec.ac.jp
2) Sowa M., B. A. Abderazek, and al.: Proposal

and Design of a Parallel Queue Processor Ar-
chitecture (PQP), 14th IASTED Int. Conf. on
Parallel and Distributed Computing and Sys-
tem, Cambridge, USA,pp.554-560 (2002).

1－72

