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Abstract: In event-driven programming we can react to an event by binding methods to it as handlers, but such a
handler binding in current event systems is explicit and requires explicit reason about the graph of event propaga-
tion even for straightforward cases. On the other hand, the handler binding in reactive programming is implicit and
constructed through signals. Recent approaches to support either event-driven programming or reactive programming
show the need of using both the two styles in a program. We propose an extension to expand event systems to support
reactive programming by enabling the automation of handler bindings. With such an extension programmers can use
events to cover both the implicit style in reactive programming and the explicit style in event-driven programming. We
first describe the essentials of reactive programming, signals and signal assignments, in terms of events, handlers, and
bindings, then point out the lack of automation in existing event systems. Unlike most research activities we expand
event systems to support signals rather than port signals to event systems. In this paper we also show a prototype
implementation and translation examples to evaluate the concept of automation. Furthermore, the comparison with the
predicate pointcuts in aspect-oriented programming and the details of the experimental compiler are discussed.
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1. Introduction

Recently reactive programming attracts a lot of interest since
the need for reactive programs is steeply increasing, for exam-
ple applications for mobile devices and web browsers. FRP
(Functional-Reactive Programming) [7], [12], [25], [34], [35],
[36] successfully introduces signals into functional program-
ming. The concept of signals might come from data-flow lan-
guages [3], [4], [6], [16], [33], where variables are described as
continuous data streams rather than states at a specific time. Such
variables are signals, which can participate in the calculation to
generate other signals or be given to functions for triggering the
reactions; they are very declarative. This programming style is
widely used in hardware design and spreadsheet programs, where
the expressions are usually described without explicitly specify-
ing the time. When FRP introduces signals into functional pro-
gramming for reactive programs such as GUI programs, a time
signal and event streams are also used in order to properly de-
scribe the temporal states in the program. An event denotes some-
thing happening, for example a mouse click occurs, and an event
stream is a series of events on the timeline. Programmers can use
event streams with the time signal to get a constant value (snap-
shot) of a signal at a specific time. They help to describe the states
on the timeline more specifically while keeping the description
declarative. This style is followed by several research activities
and inspires the contributions towards writing GUI libraries for
FRP [10], [27]. In these systems signals are given to describe the
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propagation of value change and then the compiler can translate
them to some kind of events underneath.

The OO (Object-Oriented) community has been developing
events, which look similar to signals but actually different. In
OO languages that directly support event-driven programming,
events are first-class objects, and an event handler bound to a
specific event is implicitly invoked when that event happens. Al-
though the OO community notices the convenience of using sig-
nals, OO languages have not been directly integrated with sig-
nals. Signals are brought into existing event systems, and existing
GUI libraries are wrapped in FRP style [18], [22], [30]. Although
events have been used with objects for a long time and well in-
tegrated into OO languages, propagating values by events is not
implicit enough as propagating by signals. All handler bindings,
in other words the statements for setting up the methods that re-
act to specific events, must be explicitly specified according to the
graph of event propagation. Even for a straightforward use case
of events, programmers have to prepare all events and handlers,
and bind them together one by one. For a complex event scenario
programmers need to prepare too many events and handlers, and
might lead to redundant event propagation. Thus, the research
activities devoted to OO integration borrow signals from reactive
programming and focus on how to integrate signals with events
and objects. Most research results come up with a conclusion that
the existence of events is still necessary, and signals are used to
implicitly propagate parts of the change of values [31]. As a re-
sult, events and signals appear in both the FRP solution and the
OO integration.

This research is targeted at allowing programmers to use both
the implicit style and the explicit style in a program since the re-
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search activities mentioned above show the need of using both the
two styles together. The contributions of this paper can be sum-
marized as follows. First, we compare event-driven programming
with reactive programming to point out the need of implicit bind-
ing in event systems. Second, we show how event systems can
be expanded to cover the implicit style in reactive programming
by enabling the automation of handler bindings. In order to show
the feasibility of our idea, we give a prototype implementation of
the automation on an event system, and discuss the advantages
over ones without the automation. The issues that might happen
when implementing this concept on OO languages are discussed
as well. Moreover, the analysis on the essentials of reactive pro-
gramming might give a better understanding of events and sig-
nals. Note that this paper is an extended journal version of the
one we presented at COMPSAC2015 *1. The contents we added
to this extended version include:
• A more complicated event example in Sections 4.4 and 4.5

to show how the automation works among different objects.
We first introduce a kind of graph that makes it easier to
check the dependencies among events and handlers on dif-
ferent objects. Then how our compiler infers through object
references is explained.

• The details of our compiler implementation in Section 5.1.
After briefly explaining the implementation of the event sys-
tem we based this proposal on, how the idea of automation

can be concretely implemented is demonstrated with sample
code.

• Qualitative analysis of our reactive extension in comparison
with others. In Section 5.4 we compare with the original
event system and in Section 5.5 we compare with the pred-
icate pointcuts in aspect-oriented programming. At the end
of Section 6, we also compare the the meanings of reactive
used in FRP and other event enhancements.

2. Motivating Example

Programs written in reactive programming can also be imple-
mented by event-driven programming, though the code might
look quite different. Here we take the example of spreadsheet
programs to discuss the equivalence between what reactive pro-
gramming can do and what event-driven programming can do.
Although spreadsheet programs are developed for accounting,
they can be regarded as an interactive programming environment.
Cells are fields (or variables), and sheets are some sort of objects
that hold a large number of fields. We can give a cell a constant
value or an expression, where formulas can be used to perform
complex calculations. Figure 1 shows a sheet in a spreadsheet
program, where B1 and C1 are given constant values: 2 and 1 re-
spectively, and A1 is given an expression “B1 + C1”. As a result,
the value in the cell A1 will be always equal to the sum of the
values in the cells B1 and C1 even if you arbitrarily change the
value of B1 or C1.

Such a sheet defined in spreadsheet programs can be easily im-
plemented by FRP [12] languages. For example, Fig. 2 shows an

*1 Enabling the Automation of Handler Bindings in Event-Driven Program-
ming. YungYu Zhuang and Shigeru Chiba. Year: 2015, Volume: 2,
Pages: 137–146, DOI: 10.1109/COMPSAC.2015.48, Publisher: IEEE.

Fig. 1 A sheet in a spreadsheet program.

Fig. 2 Using Flapjax to implement the sheet example.

Fig. 3 Using EScala to implement the sheet example.

implementation in Flapjax [22], which is a JavaScript-based lan-
guage supporting FRP. This program uses HTML elements to
draw the sheet and cells, then gets and sets signals from/to the
cells. Here we do not explain the syntax of Flapjax in detail but
focus on the assignment in Line 18. We can consider the assign-
ment without the declaration of a:
a = b + c;

Note that what the three variables hold are signals rather than
constant values. The assignment looks not much different from
the one in imperative programming languages such as Java, but
the meaning is quite different. Whenever b or c is changed, a

is updated automatically. The assignment is always effective and
looks like an equation (although it is not bidirectional: only the
change of the right-hand side can trigger the update of the left-
hand side). Signals are very similar to the cells in spreadsheet
programs, and thus can easily describe the expression in the sheet
example. In reactive programming all updates are automatic and
implicit.

On the other hand, such an assignment in imperative program-
ming languages is only effective just after the assignment is exe-
cuted, and the value at the left-hand side might not be the same
as the one at the right-hand side later until the assignment is exe-
cuted again. Nevertheless, it is still possible to implement such a
program by imperative programming languages with events; we
can use events to denote the value change and ask an event han-
dler to execute the assignment again. Here we use EScala [15], an
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event system that provides events, handlers, and bindings based
on Scala [26], to write the sheet example. EScala allows declaring
a special kind of field named event to denote something happen-
ing. The event can be either implicitly triggered before/after a
method call or imperatively triggered through a method-call syn-
tax. As shown in Fig. 3, we have two methods setB and setC,
which set the fields b and c respectively (Lines 5–6). Then we
can declare two events eb and ec that denote the happening of
value change of b and c through setB and setC using the primi-
tive afterExec given by EScala, respectively. Line 8 says that eb

is the event occurring after the method setB is executed—here we
assume that setB only changes the value of b and leave the dis-
cussion about join point model in Section 3. Line 9 is interpreted
similarly for ec. The next step is preparing a handler that reacts to
the two events properly. As in most event systems, methods play
the role of handler in EScala. As shown in Line 10, in this exam-
ple we need a handler ha that executes the assignment for updat-
ing the value of a according to the values of b and c. Finally we
have to connect the events and the handler, or else the latter is un-
related to the two events (Lines 11–12). The two statements mean
that ha should be executed after eb and ec *2. Such statements are
handler bindings, which bind the handler to events. The calcula-
tion in the event version is the same as the signal version, but it is
manual and explicit. All events must be manually declared, and
the handler bindings for them must be manually stated as well.
These drawbacks not only make the code longer but also increase
the risk of bugs. When the body of ha (Line 10) is modified,
we must carefully update the handler bindings in Lines 11–12 to
ensure consistency between the bindings and the handler body.

The observation that both the paradigms can implement reac-
tive programs motivates us to analyze the essentials of reactive
programming from the viewpoint of event-driven programming.
By comparing the essentials of reactive programming with event-
driven programming we can know how to expand event systems
to cover the implicit style in reactive programming.

3. An Expanded Event System Supporting Re-
active Programming

In this section we propose an expanded event system that can
cover both event-driven programming and reactive programming.
To know what the extension should be, we clarify what the essen-
tials of reactive programming are and point out what is necessary
to support them in event-driven programming. We first describe
how these essentials work in reactive programming, and then de-
scribe them in terms of events, handlers, and bindings. The com-
parison between the two descriptions reveals an insufficiency in
existing event systems, and led us to propose the expanded event
system.

*2 Note that EScala supports event composition to improve the abstraction,
but here we just enumerate events and bind the handler to them individ-
ually to simplify the explanation. For example, we can declare a com-
posed event instead of eb and ec as shown below:
evt ebc[Unit] = afterExec(setB) || afterExec(setC)

Fig. 4 The signal assignment in the sheet example.

3.1 The Essentials of Reactive Programming
The essentials of reactive programming are signals and sig-

nal assignments. Figure 4 (a) shows the signal assignment in the
sheet example mentioned in Section 2, where a is a signal and
b + c is the expression assigned to the signal. We can give the
description of signals and signal assignments as follows:
• A signal (i.e., behavior) is a time-varying field or variable,

the value of which is implicitly reevaluated when any of the
signals involved in its reevaluation varies. Then its value
change also implicitly causes all the reevaluation that it is
involved in.

• A signal assignment is composed of a signal and the expres-
sion assigned to the signal. The signal expression describes
how to reevaluate the value of the signal. It also implies
which signals are involved in this reevaluation and the ex-
pression has to be reevaluated for setting the value of this
signal when any of the involved signals varies. Here the in-
volved signals are the signals that are read in the expression.

In the sheet example a is the signal, the value of which will be
implicitly reevaluated when any of b and c varies according to the
expression in the signal assignment “a = b + c”.

3.2 In Terms of Events, Handlers, and Bindings
Although event-driven programming and reactive program-

ming are different paradigms, what they can do are very similar.
They both can be used to implement reactive programs such as
the sheet example we mentioned in Section 2. We can also trans-
late the essentials of reactive programming, signals and signal

assignments, into a description in terms of events, handlers, and
bindings as listed below:
• A signal is translated to a field or variable whose value will

be set when any of the events involved in its reevaluation
occurs.

• A signal assignment is translated to a handler for setting the
value of the field (or variable) at the left-hand side by reeval-
uating the expression at the right-hand side. Furthermore,
this handler is bound to all events involved in the expres-
sion at the right-hand side. Here the involved events are the
value change of the fields (or variables) read in the expres-
sion. Whenever such an involved event occurs, the handler is
executed to reevaluate the expression and then set the value
of this field (or variable).

Figure 4 (b) shows how the signal assignment in the sheet exam-
ple is translated in an event system. This signal assignment is
described as a handler for executing “a = b + c” to update the
value of a. Note that we can simply say the handler is bound to
all the involved fields (or variables) inside itself since the field (or
variable) at the left-hand side is written rather than read.
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Fig. 5 The extension must be able to automatically infer the involved events
and implicitly bind the handler to them.

3.3 The Expanded Event System
By comparing the two descriptions we can know that it is pos-

sible to translate a signal assignment to a handler. However, in
existing event systems programmers have to manually check the
body of the handler and infer the involved events by themselves.
There is no mechanism to bind a handler to multiple events at
once without event composition, either. Programmers have to
enumerate the involved events or specify certain rules to filter
the involved events manually. Once the body of the handler is
modified, the bindings might be no longer consistent with the
handler body. In other words, existing event systems lack a kind
of automation, which means automatically inferring the involved
events and implicitly binding the handler to them.

As shown in Fig. 5, an extension to event systems for support-
ing reactive programming must provide such automation in han-
dlers, which means that a handler can be implicitly bound to all
the involved events that are automatically found inside itself. If
an extension can enable the automation in handlers, all existing
reactive mechanisms can be simply translated to events and han-
dlers.
3.3.1 Automatic Inference

The extension must be able to automatically infer all the in-
volved events in a handler. As shown in Fig. 5, the involved
events, eb and ec, are the events for the value change (or more
broadly, the setting) of the fields (or variables) that are read in the
handler, b and c. In the terminology of AOP (Aspect-Oriented
Programming) these involved events are the join points matched
by the set pointcuts for the fields that are read in the handler.
Furthermore, we can consider the handler in a more generic way
since the body of a handler in event systems might have method
calls and conditional branches. In that case, the fields (or vari-
ables) that are read in the methods called by the handler must
be recursively inferred since they might also be involved in the
reevaluation. The fields (or variables) in all conditional branches
should also be taken into account since any of them might be in-
volved in the reevaluation at runtime.
3.3.2 Implicit Binding

The extension must also be able to implicitly bind a handler
to all the involved events inside itself. When any involved event
inside the handler occurs, the handler will be executed to update
the values of fields (or variables). Such a binding must be implicit
enough to bind a handler to multiple events without specifying
the events individually. Event composition is not satisfying either

since we still need to explicitly compose individual events into a
higher-level event. A similar concept is the filter in event systems
or the predicate in AOP, but they are usually used to filter events
selected by other event detectors and compose the result into a
higher-level one.

4. A Prototype Implementation

In order to show the feasibility of automation, we expand
DominoJ [37] (DJ) to ReactiveDominoJ (RDJ) by enabling the
automation in method slots as an example of such an expanded
event system. DJ is a language that supports event-driven pro-
gramming, which motivates us to propose RDJ. Note that RDJ
is a prototype implementation and has several limitations, but the
extension we proposed in Section 3 is more generic and can be
implemented in any event system.

4.1 Method Slots and DominoJ
DJ is a Java-based language developed for introducing method

slots, a generic construct supporting multiple paradigms. A
method slot is an object’s property, which can hold more than one
closure at the same time. DJ replaces the methods in Java with
method slots. All method-like declarations in DJ are method slot
declarations. For example,
public void setX(int nx) { this.x = nx; }

the method-like declaration for setX is a method slot declaration.
It is some sort of field that holds an array of closures. When the
method slot is called, all closures in it are executed in order with
the same given arguments and the value returned by the last one
will be regarded as the return value of this method slot (if its re-
turn type is not void). The body of a method slot declaration is the
default closure; it is optional. If the default closure is declared, it
will be created and inserted into the array when the owner class
is instantiated. At runtime the closures in a method slot can be
added or removed using assignment operators, for example using
+= operator as shown below:
s.setX += o.update;

means that creating a closure calling the method slot o.update

and appending it to the end of array in s.setX.
We can use DJ as an event system. A method slot declaration

is equivalent to an event declaration. When the method slot is
called, the event (i.e., the join point in the terminology of AOP)
occurs and the handlers (closures) in it are executed. The default
closure of a method slot can be regarded as the default handler
for this event. Besides imperatively triggering by calls, a method
slot can also be implicitly triggered after or before other method
slot calls by using the assignment operators:
〈event〉 〈assignment operator〉 〈handler〉;

The statement using += operator we showed above is used to let
the event (method slot) update on an object o be triggered after
s.setX is triggered. Note that in DJ a method slot can be not only
an event but also a handler for other events. Thus, there is no
difference between event-event binding and event-handler bind-
ing, and all the bindings are dynamically set at runtime by the
assignment operators.

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.4

Fig. 6 A simplified sheet example using fields.

Fig. 7 The inference in the braces operator.

4.2 A New Syntax for Enabling the Automation
RDJ allows using the braces operator to enable the automation

in method slots (i.e., handlers) in DJ. For example, if we have a
method slot updateA in a class Sheet as shown in Fig. 6, we can
use the following statement to enable the automation in updateA:
{this.updateA} += this.updateA();

When the value of b or c is set by setB/setC, this.updateA() will
be executed to update the value of a. In other words, the statement
means that binding the handler this.updateA() to all the involved
events inside itself as we described in Section 3. The braces op-
erator makes it possible to bind a handler to a set of events that
are involved in its body without explicitly specifying them.

The braces operator selects the involved events inside a method
slot by checking all closures in it at runtime. The semantics of the
inference in the braces operator is described by a piece of pseu-
docode as shown in Fig. 7, where M is a method slot and OM

is the owner object of M, getClosuresIn returns all the closures
in a specified method slot, findFieldsReadIn returns all the fields
read in a specified closure, findMethodSlotsThatWrite returns all
the method slots that write the specified field in the default clo-
sure, and findMethodSlotsCalledIn returns all method slots that
are called in a specified closure. First, all the involved fields in
the method slot, which are the fields read during executing the
closures in this method slot, are inferred (Lines 3–4). Then all the
method slots that write any of these involved fields are regarded as
the involved events and selected (Lines 6–8). Take Fig. 6 as an ex-
ample. {this.updateA} infers a set of method slots that write any
of the involved fields, this.b and this.c, and thus the method slots
that write this.b or this.c, this.setB and this.setC, are selected.
Any method slot that is called in any closure of the method slot
given to the braces operator are recursively inferred (Lines 9–11)
since the fields read in the called method slots are also involved
in the execution of this method slot. In this example no method
slots are called in updateA, so that this step is skipped. If an-
other method slot d.print is called in updateA, where d is a field
added to Sheet to hold an object instance of another class Debug

as shown in Fig. 8. Then the set of involved events inferred by
{updateA} can be considered as shown below:

Fig. 8 Another class Debug.

Fig. 9 The braces operator infers the writers.

{this.updateA}

→ (this.setB, this.setC)∪ {d.print}

→ (this.setB, this.setC)∪ (d.setE, d.setF, d.setG, d.resetG)
→ (this.setB, this.setC, d.setE, d.setF, d.setG, d.resetG)

Note that only the method slots that belong to the objects held in
the fields in this owner object are recursively inferred (Line 10 of
Fig. 7). To simplify the design, we simply ignore the method slots
that belong to the objects held in local variables and parameters.
The design decision and the limitation of RDJ will be discussed
in a later subsection.

Some readers might notice that in Fig. 7 we only consider the
fields and the method slots on the same object (Lines 5 and 7).
It is a simplified inference in RDJ based on OO design rather
than a limitation of the extension we proposed in Section 3. We
observed the convention of OO design and made the assump-
tion: usually fields are only directly used inside the owner ob-
ject and other objects must access them through getters and set-
ters. We can consider the relation between all the method slots
reading a field and all the method slots writing the field as an
extended getter-setter relation. We name it reader-writer rela-
tion since there might be more than one getter/setter and a get-
ter/setter might get/set more than one field. The reader-writer re-
lation extends getter-setter relation to N-to-N and is not limited to
the naming scheme. The inference of the braces operator (Fig. 7)
is a process of finding all the writers by a given reader through
a set of fields on the owner object as shown in Fig. 9. For ex-
ample, in Fig. 8 using {this.getG} will select both this.setG and
this.resetG. Note that the events selected by the braces operator
are the calls to the writers. In the terminology of AOP they are
the join points matched by method pointcuts but not field point-
cuts. As a result, in RDJ the execution of a closure is atomic and
a handler cannot be bound for being executed just before/after the
field is written inside a closure. The join point model is consistent
with the one adopted by DJ, which is a region-in-time model [19].
Matching an arbitrary join point inside a closure is not supported.

To make our code clear the underscore symbol _ can be used
within the braces operator to refer to the method slot at the right-
hand side of the assignment operator. For example, enabling the
automation in updateA can be simplified:
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Fig. 10 Using Flapjax-like pseudocode (a), DJ (b), and RDJ (c) to implement the sheet example.

Fig. 11 The source code of IntCell.

{_} += this.updateA();

It is automatically translated by the RDJ compiler. In RDJ, the
method slot that we want to infer the involved events (the method
slot given to the braces operator) and the handler for reevaluation
(the method slot call at the right-hand side) are not necessarily
the same. The syntax of the braces operator allows observers to
register a handler through a public method slot for getting a noti-
fication when private fields in the subject object are written.

4.3 Rewriting the Motivating Example
To show how the automation can be used we first use DJ to

write the sheet example in Section 2 and then rewrite it by RDJ
to compare with Flapjax. In order to make it easier to compare
we assume that there were a Flapjax-like Java-based language,
which could be used to rewrite Fig. 2 to Fig. 10 (a). The class Int-

Cell (Fig. 11) is used to emulate the HTML element and follows
the getter-setter manner in OO design rather than accessing a field
directly; it might be used to wrap a GUI component in existing li-
braries by extending a class such as the JTextField in Swing. Be-

havior is a class representing signals, the usage of which, such as
extractValueB and insertValueB, is the same as in Fig. 2. Line 14
shows the merit of reactive programming: the propagation among
signals can be simply described.

Figure 10 (b) is the DJ version, where only events are used.
Note that no additional event declaration is needed since the get-
ter/setter declarations in DJ can also be considered as the events
declared for getting/setting the field. Line 14 of Fig. 10 (a) is now
described in terms of getters and setters as shown in Line 22 of
Fig. 10 (b). However, the handler ha (updateA) will not be auto-
matically executed to update the value of a. We need to check the

body of ha and find eb and ec by ourselves as mentioned in Sec-
tion 2. Here the events eb and ec are b.setValue and c.setValue

respectively since we know the relation between getter and setter.
Then we can bind the handler this.updateA to them individually,
or prepare a higher-level event this.changed as shown in Line 20
for event composition (Lines 16–17) and bind this.updateA to
this.changed (Line 18). This program works well as the Flapjax
version in Fig. 2, but the inference is not automatic and the bind-
ing is explicit. Once the body of updateA is modified, we have
to carefully check the bindings in order to make them consistent
with the events inside the body.

Figure 10 (c) shows the RDJ version. Most lines of code are
the same as the DJ version, but the bindings and the higher-
level event in Lines 16–18, 20 of Fig. 10 (b) are eliminated. Note
that we still need a binding to enable the automation in the han-
dler (Line 16 of Fig. 10 (c)), otherwise the compiler cannot know
whether it is the implicit style used in reactive programming or
the explicit style used in event-driven programming. We use the
new syntax given by RDJ to automatically infer all the involved
events in the handler this.updateA and implicitly bind the han-
dler itself to them. By comparing Fig. 10 (a) with Fig. 10 (c), it
is also easy to see how a signal can be translated to a field as we
discussed in Section 3. The signal assignment for a in Line 14
of Fig. 10 (a) is moved to a method slot updateA (Lines 18–20
of Fig. 10 (c)), and an additional line for enabling its automation
must be stated outside of it (Line 16 of Fig. 10 (c)). On the other
hand, programmers do not have to explicitly specify which ones
are signals, and transformations to/from constant values such as
insertValueB/extractValueB are not necessary. RDJ expands the
events in DJ to make a step towards reactive programming.

4.4 Dependency Graph
In order to compare the handler bindings in DJ with RDJ, here

we use a graph to describe the dependencies among events and
handlers: a node is an event or a handler, and an edge is a de-
pendency relationship. As to the relationship, we use a solid line
to note a handler binding and use a dashed line with words for

c© 2016 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.24 No.4

Fig. 12 Manually constructing the dependency of this.changed.

Fig. 13 The clues found inside this.updateA and IntCell.

Fig. 14 Inferring the involved events based on the clues in Fig. 13.

other types of relationships. Note that here we do not distinguish
events from handlers since a method slot can be regarded as both
of them. The dependency graph of this.changed in Fig. 10 (b) is
shown in Fig. 12, which means that a higher-level event changed

depends on two events b.setValue and c.setValue, and the han-
dler updateA is bound to changed. In the DJ version we know
which events the higher-level event changed should depend on
since we have the knowledge about the default closure of the han-
dler updateA and the getter-setter relation between getValue and
setValue. We have to check the implementation of the default
closure of updateA, manually enumerate all the involved events,
and then explicitly bind them to this.changed. It is not easy to
ensure the correctness of the dependency since the dependency
behind the default closure of a method slot might be changed
later for further extension. On the other hand, in Fig. 10 (c) we
simply enable the automation in updateA, in other words using
the braces operator on it to select all the involved events, and let
the RDJ compiler do the rest. The RDJ compiler recursively in-
fers and selects all the involved events in the body of updateA

based on the clues as shown in Fig. 13 (a) and Fig. 13 (b), which
can be found in the default closure of updateA and the declara-
tion of IntCell, respectively. The inference performed by the RDJ
compiler is shown in Fig. 14, where {this.updateA} is a kind of
higher-level event as the this.changed in Fig. 12. Note that the
dashed lines are completed by the RDJ compiler and only the one
solid line needs to be constructed by programmers.

4.5 Inferring Involved Events through Object References
Figure 18 (a) is an example in DJ for demonstrating how the

braces operator infers all the involved events through object refer-
ences. This example implements a class Meter, which automat-

Fig. 15 The dependency graph of Shape constructed in Fig. 18 (a).

Fig. 16 The dependency graph of Meter constructed in Fig. 18 (a).

Fig. 17 The involved events located on different objects can be automati-
cally inferred by the RDJ compiler.

ically calculates and prints out the distance between two given
Shape objects in the Cartesian plane when either the name or the
coordinates of the two objects are changed. Note that a Shape

object can be placed on another Shape object by giving the par-

ent object as the second argument to its constructor, and its coor-
dinates will be relative to its parent object rather than the origin.
In Shape class and Meter class we define several events and bind
handlers to construct the dependency graphs as shown in Fig. 15
and Fig. 16, respectively. Now we give two Shape objects s1 and
s2, to the Meter object m, where the parent of s2 is s3. Whenever
the name or the coordinates of s1, s2, and s3 are modified, m will
recalculate the distance between s1 and s2 and print out a string.
The RDJ version of this example is shown in Fig. 18 (b), where all
events and explicit bindings for event composition are replaced
with the line of enabling the automation in this.print (Line 39).
In DJ version twelve bindings (with += operator) are used, while
in RDJ version only one binding is needed. Figure 17 shows
how the RDJ compiler infers all the involved events through the
references to these objects. This example shows that the braces
operator can not only infer the involved events located on differ-
ent objects, but can also greatly reduce the number of bindings
for event composition.
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Fig. 18 The shape and meter example in DJ (a) and RDJ (b).

Fig. 19 Only fields are taken into account.

4.6 The Limitations of RDJ
In this subsection we discuss the limitations of RDJ, which are

not the limitations of the extension we proposed in Section 3 but
might occur when implementing it on an OO language such as
DJ, especially when we are faced with making design decisions.
Only fields can be translated to signals. In Section 3, we de-
scribed a signal as a field or a variable that is written in a handler
with the automation, but in RDJ we ignore variables (i.e., local
variables and parameters). There is a limitation that a local vari-
able in RDJ cannot work as signals. As shown in Fig. 19 (a), the
assignment of the local variable a (Line 5) cannot be translated to
a handler with the automation and passed to other method slots.
The reason is that the braces operator is used for method slots,
while a method slot in RDJ is an object’s property and cannot be
declared inside a method slot body like an inner method or clo-

sure. If the assignment in Line 5 of Fig. 19 (a) can be wrapped in
a local method slot, the braces operator could enable the automa-
tion in the local method slot to let a be used as a signal later.
Only fields are used to infer involved events. In RDJ, local vari-
ables and parameters are not involved in the inference. For ex-
ample, using the braces operator on the method slot updateA in
Fig. 19 (b) cannot select involved events inside b and c. Since
RDJ is a Java-based language, where the arguments are evalu-
ated with pass-by-value strategy, a special class [18], [30] or a
first-class method slot might be necessary to wrap the expressions
passed to updateA.
The usage of the braces operator is not declarative. In RDJ, the
automation of a handler is dynamically enabled by a statement
in a method slot body rather than statically declared in its owner
class. This means the concern of enabling the automation might
be tangled with other concerns. This issue can be considered as a
consequence of allowing dynamically inferring events at runtime.
The braces operator can be regarded as a kind of event detector,
but it is not separated from other code [5]. For example, if the
automation of updateA in Fig. 6 must be enabled for all object
instances of Sheet, programmers have to add the binding state-
ment to the constructor of Sheet. However, this statement is used
to enable the automation in updateA but not directly related to
the construction of a Sheet object. A new modifier for method
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slots, for example reactive, could be introduced as syntax sugar
to make it declarative. However, this design limits the way to give
arguments and only the involved events in the default closure can
be inferred.
Difficult to filter only the events for value change. As we men-
tioned in Section 3 an expanded system should be able to infer
the events for value change or more broadly write access since the
former is a subset of the latter. However, in RDJ there is no easy
way to filter out the events occurring when writing fields with the
same values; it is hard to get only the events for value change. A
possible solution is to check the values in the fields at the begin-
ning of the handler or insert another handler to check whether the
handler should be called or not, but programmers have to manage
the history of the values for fields. The history-based language
features for AOP such as Ref. [2] or CEP (Complex Event Pro-
cessing) [9], [13], [17] might be better solutions to resolve this
issue in such an expanded event system.
Propagation loop cannot be totally avoided. When a field is not
only read but also written in a handler, enabling the automation
in this handler might cause a propagation loop. In current design
of RDJ, the compiler can avoid such a case by excluding a han-
dler from the involved events for itself. For example, even if the
updateA in Fig. 6 is modified to:
public void updateA() { a += b + c; }

enabling the automation does not bind updateA to itself. In this
case the intention is clear since an update is not expected to trig-
ger itself again. However, if two handlers are set to trigger each
other, it is hard to know the programmers’ intention. For exam-
ple, suppose that we have one more method slot named updateB

in the class Sheet in Fig. 6:
public void updateB() { b = a + c; }

and the automation in updateA and updateB are both enabled.
When updateA is called, an endless loop will happen. In mod-
ern spreadsheet programs such circular reference can be detected
and a warning will be shown. However, in programming it is
hard to detect such propagation loops until runtime. A static
analysis of the dependencies between fields should help detect
endless loops, but a loop might only appear depending on cer-
tain conditions at runtime. This issue also happens in FRP lan-
guages, and might remind readers of the advice loops in AspectJ.
What RDJ currently supports is similar to applying the concept of
!cflow(advicexecution()) in AspectJ to handlers. A more generic
solution to this issue might be introducing execution levels [32]
to reactive programming.

5. Evaluation

Since in Section 4.3 the usability of such an expanded event
system has been shown by rewriting the motivating example, in
this section we further translate complex use cases of signals to
evaluate its capability. A qualitative analysis of comparing it with
the original event system and the predicate pointcuts in AOP is
included as well. Before that, we go through the RDJ compiler
implementation to explain how it works, and measure the impact
of introducing the automation to DJ.

5.1 The Implementation of RDJ
The RDJ compiler *3 transforms RDJ code into plain Java code

and then compiles into Java bytecode as what the DJ compiler
does. In the DJ compiler, a method slot is implemented by an
array of closures with the methods for calling the closures in the
array, adding a closure to the array, and removing closures from
the array. For example, the following binding:
this.updateA += o.update;

is transformed into the following statement in Java:
this.updateA$after(c);

where c is a closure calling o.update. It means appending the clo-
sure c to the end of the array for the method slot this.update. The
RDJ compiler implementation is based on the DJ compiler im-
plementation and the semantics shown in Fig. 7, but the selection
of method slots is split into compile-time and runtime in order
to improve the runtime performance. At compile-time for every
method slot the compiler collects the writer method slots accord-
ing to its default closure and generates a helper method that binds
a given closure to all the writer method slots. Furthermore, using
the braces operator on a method slot is transformed to calling the
helper method for that method slot. Then at runtime the corre-
sponding helper method is called according to the actual type of
the owner object to collect method slots and bind the given clo-
sure to them. Note that a method slot is owned by every instance.
It is not shared among the instances of the same class.

Taking the example of Fig. 10 (c), the following helper method
is generated for using the braces operator with the += operator on
the method slot updateA:
public void updateA$helper$after(Closure closure) {

if(a != null) a.setValue$helper$after(closure);

if(b != null) b.getValue$helper$after(closure);

if(c != null) c.getValue$helper$after(closure);

}

No method slots are directly selected in this helper method since
the fields a, b, and c, which are read by updateA, are not written
by any method slot in the owner object. However, the method
slots a.setValue, b.getValue, and c.getValue are called in up-

dateA, so that the given closure is passed to the helper meth-
ods for them recursively. The body of the helper method set-

Value$helper$after is empty since no fields are read in setValue

of IntCell as shown in Fig. 11. On the other hand, the helper
method getValue$helper$after looks like this:
public void getValue$helper$after(Closure c) {

setValue$after(c);

}

The method setValue$after is a method for appending a closure
to the array of the method slot setValue, which has been gen-
erated in the DJ compiler. Note that the helper methods set-

Value$helper$after and getValue$helper$after are declared in
IntCell. After generating the helper methods the compiler trans-
forms the following binding:
{_} += this.updateA();

into the call to the helper method:
this.updateA$helper$after(c);

*3 The prototype compiler of RDJ is built on top of DJ and JastAddJ [11],
and available from https://github.com/csg-tokyo/rdominoj
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Fig. 20 How the compiler transforms a binding with the braces operator.

where c is an anonymous class which extends the Closure inter-
face of DJ and calls this.updateA(). Therefore, at runtime the
helper method updateA$helper$after is called for collecting all
method slots and binding the closure c to them. Note that for
all subclasses of PlusSheet that override updateA and all sub-
classes of IntCell that override getValue and setValue, the com-
piler generates helper methods for them individually, so that the
corresponding helper method can be called on the object accord-
ing to the actual type of the object; the dynamic method dispatch
in Java is preserved. Note that in order to simplify the imple-
mentation the RDJ compiler generates helper methods for every
method slot in every class. Furthermore, the calls to a method slot
that is not compiled by RDJ are not recursively inferred.

How the RDJ compiler generates helper methods is described
in Fig. 20. What the procedure generate helper does is basically
the same as the semantics shown in Fig. 7, but the compiler gen-
erates helper methods for all subclasses of the apparent type of
the given object. The procedure generate helper adds (suppose
that += operator is used) the given closure to collected method
slots immediately rather than returns the set of collected method
slots. The proper helper method can be selected by the dynamic
method dispatch in OOP. As a consequence, if a method slot is
selected in both different helper methods, it is difficult to avoid
binding to the same method slot twice.
A limitation of this implementation is the changes of objects.
The object referred to by a field might be changed after the bind-
ing is performed. In that case, the handler is still bound to the
previous object rather than the new one. Such usage is not rec-
ommended since it is hard to trace. For example, suppose that
there is a setter method slot setB for b in Fig. 10 (c) and at first
the object held by the field b is Ob. Then the method slots se-
lected by the braces operator in Line 16 of Fig. 10 (c) include the
setB on p and the setValue on Ob. When the object held by b is
changed to another object Ob′ by calling the setB on p, the han-
dler updateA() will be executed and thus has a chance to check
if the object held by b is the same. However, the handler is still
bound to the setValue on Ob rather than the one on Ob′ . A pos-
sible work-around is to prepare two additional handlers: one for
unbinding the handler updateA() from Ob before setB is called,
and one for rebinding the handler updateA() to Ob′ after setB is
called, either by the compiler or by programmers themselves.
A more powerful implementation is possible. As we explained

above the braces operator in the current version of the RDJ com-
piler only takes the default closure into account due to the perfor-
mance concern. In this implementation, only the default closure
is inferred for a method slot given to the braces operator. It is
possible to infer all the closures added to the given method slot at
runtime if we implement reflection API for method slots. How-
ever, in such an implementation all the selection must be done at
runtime and the performance will not be good. Another solution
is to generate helper methods for all the method slots that might
be added to the given method slot. For example, if we use the
braces operator on the method slot this.updateA as follows:
{this.updateA} += this.refresh();

and then append a closure calling another method slot log-

ger.debug to this.updateA somewhere in the program:
this.updateA += logger.debug;

It might be possible to find out all the method slots like log-

ger.debug, generate helper methods for them, and prepare a
switch for calling every helper method in the event selection
for {this.updateA}. If the statement for adding logger.debug

is executed, switching on the call to the helper method for log-

ger.debug. Then the events selected by logger.debug can also
be selected when selecting the events for this.updateA. In other
words, not only the default closure but also the closures calling
other method slots in the given method slot are inferred for se-
lecting the events. As a trade-off the whole program must be
compiled together to find out all the method slots that might be
added to the method slot given to the braces operator; separate
compilation is not available. Such an implementation is more
powerful since after using the assignment to add the closure call-
ing a method slot, we do not have to use the braces operator for
that method slot again as follows:
this.updateA += logger.debug;

:

{this.updateA} += this.refresh();

{logger.debug} += this.refresh();

Instead, we can:
this.updateA += logger.debug;

:

{this.updateA} += this.refresh();

In the latter one we do not have to apply the braces operator
again for this.refresh. Some readers might notice that investi-
gating all closures in a method slot can further improve the mod-
ularity when using the braces operators along with event-driven
programming or AOP, though it might be a little slower and dis-
able the separate compilation. In this paper we only implement
the simple one that infers the default closure for showing such an
extension to method slots is possible. Implementing such a pow-
erful one that infers all the closures in the method slot is included
in our future work.

5.2 Preliminary Microbenchmarks
To measure the impact of enabling the automation in method

slots we can consider only the inference overheads since a bind-
ing using the braces operator is eventually boiled down to the
bindings that are manually enumerated in DJ. For example, the
binding in Line 16 of Fig. 10 (c) is boiled down to the following
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Fig. 21 The metrics for measuring the impact.

bindings by inference:
b.setValue += this.updateA();

c.setValue += this.updateA();

The cost of these bindings in RDJ is the same as in DJ except
that a closure must be dynamically created to hold the arguments
passed to the handler. Since the arguments passed to the handler
might be non-literal and thus need to be dynamically evaluated,
it is not able to create the closure in advance. A way to avoid the
additional overheads is to prohibit programmers from giving non-
literal arguments to the handler. In the following preliminary mi-
crobenchmarks we compare the two implementations to separate
the overheads of creating the handler closure from the inference
overheads: RDJ1 always creates the handler closure while RDJ2
does not, though in both cases no arguments are given. The three
metrics we use to measure the impact of the inference are shown
in Fig. 21. We bind and then unbind a method slot to the involved
events of another method slot one million times to get the aver-
age. The results of running the microbenchmarks on OpenJDK
1.7.0 65 with Intel Core i7 2.67GHz 4 cores and 8GB memory
are shown in Fig. 22. Note that the DJ compiler was version 0.2
taken from DominoJ project web site, and the result shown in
each graph includes the time of performing a binding and an un-
binding. Figure 22 (a) shows that binding and then unbinding the
same number of method slots in RDJ1 always takes three times
as long as in DJ. On the other hand, the performance of RDJ2
is very close to DJ; the inference overheads are negligible and do
not grow with the breadth. The difference can be considered as
the overheads of creating the handler closure. In Fig. 22 (b) we in-
serted a number of closures that call a method slot whose default
closure carries no reference to measure the overheads of iterating
a closure. The result is linear and shows that the average of iter-
ating a closure carrying nothing is about 30ns in both RDJ1 and
RDJ2. In Fig. 22 (c) the only method slot is selected through a
number of method slot calls. Similarly, the result is also linear in
both implementations, and shows the overheads of traversing an
object are about 217ns. To benefit from both the implementations
the current version of RDJ compiler allows arbitrarily giving ar-
guments, but automatically optimizes when no arguments need to
be evaluated; the impact is not significant. Furthermore, the in-
ference overheads only appear in binding or unbinding a handler.

5.3 Translation Examples
We have shown typical translation examples of signals, but it

might be interesting to check if it is possible to translate complex
use cases such as the examples given in the REScala paper [30].
REScala is a hybrid event system that supports both events and

Fig. 22 The three microbenchmarks.

Fig. 23 Rewriting the changed example (a) to (b).

signals, and provides conversion API as primitives for complex
usage of signals. Translating such complex use cases in REScala
to RDJ not only evaluates the feasibility of the extension we pro-
posed in Section 3 but also gives a good understanding of such
kinds of primitives for signals.

The signals and primitives given in REScala can be lowered to
fields, method slots, and bindings in RDJ according to the follow-
ing translation rules. A Var is translated to a field with the same
type. A Signal is translated to a field and a method slot (handler),
and the automation for that method slot should be enabled if any
Var or Signal is used in the signal assignment. An evt (event) is
translated to a method slot that is bound to all the events given
in the event declaration by using operator +=. In general, one
line for declaring a Signal in REScala will be translated to three
lines in RDJ, and one line for declaring an evt in REScala will
be translated to at least two lines in DJ and RDJ. For a Signal,
RDJ needs one line for declaring a field, one line for declaring a
method slot for updating the value in the field, and one line for en-
abling the automation in the method slot. For an evt DJ and RDJ
need one line for declaring a method slot and at least one line for
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Fig. 24 Rewriting the hold example (a) to (b).

Fig. 25 Rewriting the fold example (a) to (b).

binding; if there are more than one event given at the right-hand
side of the event declaration, more bindings are needed for event
composition.

The first example we are going to check is the direct conver-
sion from a signal to an event as shown in Fig. 23 (a). Note that
the signal canLive in Lines 3–5 of (a) is translated to the field
canLive, the method slot updateCanLive, and the binding for en-
abling the automation in updateCanLive as shown in Lines 3–
7,10 of (b); the event shouldDie in Line 6 of (a) is translated to
the method slot shouldDie *4 and the bindings for it as shown in
Lines 8,11–12 of (b). The function changed used in Line 6 of
(a) is a primitive used to convert the signal canLive to an event,
which is exactly the call to the handler updateCanLive in (b)
since changed means the event when the given signal is updated.
Such a REScala code can be translated to RDJ code step by step,
though the lexical representation tends to be a little longer. The
next example is shown in Fig. 24 (a), where the function hold is a
primitive for converting an event to a signal. Here how to trans-
late click, circle, and lastClickOnCircle (Lines 1–3) is the same
as the steps in the previous example. However, click.hold() in
Line 4 is an anonymous signal converted from the event click, so
that we need an extra field holdClick and an extra method slot
updateHoldClick for updating holdClick as shown in Lines 3–
4 of Fig. 24 (b). Furthermore, we need an extra statement that
binds updateHoldClick to the event click (Line 11) since function
hold means updating the value of the anonymous signal when
the given event occurs. The third example is function fold as
shown in Fig. 25 (a), which is a primitive used to perform state-
ful conversion of events to signals. The function fold in Line 2
takes an initial value 0 and a function that is used to evaluate the

*4 The keyword $retval in DJ is used to get the value returned by the previ-
ous closure in the same method slot.

Fig. 26 Rewriting the snapshot example (a) to (b).

value of the signal nClick when the event click occurs. In this
case, the function taken by fold is exactly the handler for updat-
ing the field nClick—the method slot updateNClick in Line 3 of
Fig. 25 (b). Furthermore, the event at the left-hand side of fold,
click, is the event that updateNClick must be bound to as shown
in Line 6 of (b). The last example we want to discuss here is func-
tion snapshot, which is a primitive introduced to integrate signals
into event-driven computations. In Line 3 of Fig. 26 (a) function
snapshot returns a signal to lastClick whose value is updated ac-
cording to the value of another signal position when the given
event clicked occurs. In RDJ, it means assigning the value of po-

sition to lastClick when the event clicked occurs. Thus, what we
need to do is to set the value of position to lastClick in the body
of updateLastClick as shown in Line 5 of (b) and bind update-

LastClick to the event clicked (Line 9 of (b)).
To conclude, these complex use cases of signals in REScala

can be translated to RDJ code step by step according to the trans-
lation rules we explained above. It might give a clear understand-
ing of such primitives for signals since the RDJ code shows how
to describe them in an event system where the signal notation is
not given. It also shows the automation we proposed is sufficient
even in these complex use cases and then the primitives for sig-
nals can be simply translated to handler bindings. Although the
number of lines of code in RDJ is increased, it can be expected
and does not explode; it is generally two or three times as long
as in REScala. Note that the drawback that the binding in RDJ
is not declarative is not a limitation of the extension proposed in
Section 3 but the limitation of DJ. As a consequence of allowing
the addition or removal of closures in a method slot at runtime,
the binding must be a statement within the body of a method slot
rather than a declaration.

5.4 Comparing with the Original Event System
Using the braces operator to select events can avoid binding

to all involved events explicitly. The merits include writing the
dependency among events only once, improving the encapsula-
tion, and simplifying the event propagation. On the other hand, if
only parts of events need to be selected, it is not proper to use the
braces operator. In such a case, binding a handler to the events se-
lected by the braces operator will cause unnecessary event prop-
agation. In this subsection we compare with DJ since it is the
original event system that RDJ is based on. Comparing RDJ with
other event systems such as EScala might be possible, but it is not
easy to see the consequence of using the brace operator due to the
difference between them and DJ.
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Fig. 27 The difference on the event propagation constructed by DJ and RDJ.

Write the dependency once. The dependency among events in
a typical event mechanism is usually described twice. As shown
in Fig. 10 (b), once for calculating values (Line 22) and once for
making it automatic (Line 16–17). In other words, for each de-
pendency programmers have to maintain it in two places. In RDJ
the bindings for all dependencies in a method slot are reduced to
a binding to the higher-level event, so that the number of lines
of source code can be smaller. The maintainability can also be
improved since we do not have to ensure the consistency between
the binding and the calculation. The binding to a method slot with
the braces operator is always the same no matter how the source
code for the calculation is modified.
Improve the encapsulation. The inference mechanism in RDJ
improves the encapsulation of a class. Some readers might notice
that in Fig. 10 (c) it is also possible to write the following state-
ment in the body of main rather than the binding in Line 16:
{_} += p.updateA();

The braces operator improves the encapsulation of a class since
using the braces operator can bind a handler to the events inside
the object without directly touching the fields in that object. The
fields in the class can be observed through getter methods and the
observers can be unaware of the implementation of the class. In
this example the fields of PlusSheet, i.e. a, b and c, and the field
in IntCell, i.e. value, do not have to be exposed by declaring as
public while they still can be observed outside. In other words,
the fields do not have to be public and the clients can be oblivious
to the implementation details of PlusSheet.
Simplify the event propagation. It is also possible to sim-
plify the event propagation since the handler is directly bound
to the selected method slots through the fields behind the higher-
level event. Figure 27 (a) shows parts of the dependency graph
of Fig. 18 (a). When from.setX or from.moveX is executed,
from.moved and this.changed will be triggered in order and then
cause the execution of this.print. However, with the automation
the propagation is simpler. Figure 27 (b) shows the bindings even-
tually performed by the RDJ compiler. In other words, the event
propagation in a typical event mechanism is reduced to one step.
Unnecessary event propagation. In some special cases, using the
braces operator to select events for binding might cause unneces-
sary event propagation. For example, suppose that in the sheet
example we only want to update a when b is changed:
a = b + c;

However, using the braces operator on updateA in Line 18–20
of Fig. 1 (c) will select the events for both b and c. On the other
hand, in the DJ version it is obvious that programmers can config-
ure them since the bindings are manually enumerated (Line 16–
18 of Fig. 1 (b)). Similarly, in the shape and meter example

Fig. 28 Selecting events for printing two fields in AspectJ.

Fig. 29 Selecting events for printing two fields in RDJ.

(Fig. 16), it is not able to select only events for x but not y, or
to select event moveX but not event setX. This consequence is
the same in FRP languages since all variables are signals. As
we discussed in the previous subsection, REScala can satisfy this
need by providing both Var and Signal: Var is for normal vari-
ables and Signal is for signals. In RDJ, using the braces operator
can be considered as converting all fields read in a method slot to
signals. Therefore, if this is not desirable, programmers have to
properly separate those field accesses from the method slot taken
by the braces operator or manually enumerating the bindings as
in DJ. That is why we propose expanding the original event sys-
tem rather than a new system; both the implicit style in FRP and
the explicit style in the original event system are supported.

5.5 Comparing with the Predicate Pointcuts in AOP
The inference of the braces operator in RDJ can be regarded as

some sort of predicate. However, it is differnt from the predicate
pointcuts in AOP since the braces operator takes a handler body
as a hint rather than describing which events should be selected.
We can regard event composition as merging multiple sources to a
sink; the sources are lower-level events and the sink is the higher-
level event. In that sense, the predicate pointcuts in AOP is used
to describe the sources while the braces operator in RDJ takes a
sink as the hint to infer the sources. For example, a statement in
reactive programming that prints the values of two signals x and
y (we simply assume that they are variables in a Point object due
to the difference between functional-reactive languages and OO
languages) can be rewritten using AspectJ as shown in Fig. 28.
The write access to the fields x and y are selected by set point-
cut. Then predicate pointcuts such as target and within can be
used to further select the join points. The RDJ version is shown
in Fig. 29. We can move advice body to a method slot and enable
its automation by using the braces operator. The RDJ version is
very implicit while needs a method slot body for inferring which
events to select.

As an extension to AspectJ, there are also research activities
devoted to pointcuts for doing similar things as the braces oper-
ator. Dataflow pointcuts [20] are proposed to trap join points ac-
cording to dataflow. It can be used with other kinds of pointcuts
to address the origins of values between join points. However, the
implementation for Java-like languages is not trivial. A succes-
sive work [1] showed a formal and practical framework that stati-
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cally propagates dataflow tags to trace data dependencies. On the
other hand, RDJ traces method call chains rather than low-level
dataflows, so the implementation is simpler and feasible in Java.

6. Related Work

In the world of events, more and more techniques are intro-
duced to make events more powerful and expressive. For ex-
ample, Ptolemy [28] supports quantification and type for events,
EventJava [14] considers event correlation, and EScala [15] dis-
cusses implicit events found in AOP. However, such advanced
event systems still lack the implicit style in reactive program-
ming. Other research activities such as Frappé [8] and Super-
Glue [21] can be regarded as examples of using events and signals
together since they use signals in specific components. The sig-
nals are considered as objects’ properties. This approach allows
using signals in a limited scope at language level for a specific
usage.

Other examples of using events along with signals include the
library approach such as Flapjax [22]. This approach makes it
easy to use signals in existing languages since signals are rep-
resented by existing elements in the languages. There are also
several libraries developed for the reactive support in collections.
The incremental list in Scala.React [18] is a functional-reactive
data structure for Scala [26], which can automatically propagate
incremental change. Although in such libraries signals might be
implemented through events underneath, the involved events can-
not be automatically inferred. Programmers need to manually
specify which fields or variables are signals in order to ask the
underneath to create handler bindings properly.

Unlike the research activities mentioned above that introduce
the signals in FRP to make event propagation implicit, Reac-
tiveX [29] enhances the Observer pattern with regard to concur-
rency and error handling by proposing an API for asynchronous
programming and is implemented as a library in several plat-
forms and languages: Rx.NET [23] is a library on .NET for writ-
ing asynchronous and event-based programs with LINQ, and Rx-
Java [24] is the implementation for Java VM. Although those
extensions to event systems are named with the term reactive,
what they provide is asynchronous handling rather than implicit
propagation. ReactiveX helps programmers to react to the events
for data items in a collection without blocking, and prevent from
writing tangled callbacks. On the other hand, with our proposal
programmers can avoid manually enumerating events and bind-
ings, and thus make event propagation as implicit as using sig-
nals in FRP languages. In a certain sence, ReactiveX is a broad
enhancement on event handling, while our proposal is a deep en-
hancement with regard to event propagation.

7. Conclusion

We analyzed the essentials of reactive programming from the
viewpoint of event-driven programming, and pointed out the need
of implicit binding in existing event systems. To satisfy this need
we proposed an extension that enables the automation of handler
bindings to support the implicit style in reactive programming.
Then we gave an implementation to show the feasibility of such
an extension. Although the implementation is a prototype that has

several limitations, it showed the advantages over the event sys-
tem without the automation. The design decisions and limitations
happening when implementing the extension on OO languages
are discussed as well.
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