
Electronic Preprint for Journal of Information Processing Vol.24 No.5

Regular Paper

Design of Object Storage Using OpenNVM for
High-performance Distributed File System

Fuyumasa Takatsu1,a) Kohei Hiraga1,b) Osamu Tatebe2,c)

Received: November 6, 2015, Accepted: March 8, 2016

Abstract: The current trend for high-performance distributed file systems is object-based architecture that uses local
object storage to store the file data. The IO performance of such systems depends on the local object storage that
manages the underlying low-level storage, such as Fusion IO ioDrive, a flash device connected through PCI express.
It provides OpenNVM flash primitives, such as atomic batch write and sparse addressing. We designed an object
storage using OpenNVM whose goal is to maximize IOPS/bandwidth performance. Using the sparse address space,
it is possible to design object storage as an array of fixed-size regions. Using atomic batch write, the object storage
supports the ACID properties in each write. Our prototype implementation achieves 740,000 IOPS for object creations
using 16 threads, which is 12 times better than DirectFS. The write performance achieves 97.7% of the physical peak
performance on average.

Keywords: object storage, OpenNVM, distributed file system

1. Introduction

The current trend in high-performance distributed file systems
is object-based architecture. The file system metadata is managed
by metadata servers, and the file data is managed by object stor-
age servers. The file metadata and file data are stored in a local
file system or a local object storage. The IO performance of a dis-
tributed file system depends on the local file system or the local
object storage that manages the underlying low-level storage.

Flash devices and storage class memory can improve local file
system performance; however, the performance improvement is
limited because the design of the file system such as ext4 [1] and
ZFS [2] is based on the hard-disk drive (HDD) property. To im-
prove HDD performance, serial and sequential access is impor-
tant. However, flash device and storage class memory require
different access patterns in order to improve the IO performance.
Given that there is no mechanical mechanism for disk head seek,
this is not necessary to consider. In addition, parallel access
provides better performance than the serial and sequential ac-
cess. Moreover, further functionality compared with traditional
block devices, such as sparse address space, persistent trim and
atomic batch write, are proposed using Flash Translation Lay-
ers (FTLs) [3], [4], [5], [6], [7]. Therefore, it is quite crucial to
re-design object storage specifically for flash devices in order to
improve the IO performance of high-performance distributed file
systems.

1 Graduate School of System and Information Engineering, University of
Tsukuba, Tsukuba, Ibaraki 305–8573, Japan

2 Faculty of Engineering, Information and Systems, University of
Tsukuba, Tsukuba, Ibaraki 305–8573, Japan

a) takatsu@hpcs.cs.tsukuba.ac.jp
b) hiraga@hpcs.cs.tsukuba.ac.jp
c) tatebe@cs.tsukuba.ac.jp

In the big data analysis field, data is stored in storage devices
because the data is too large to store in memory. Therefore,
there is a growing performance requirement to storage. Flash de-
vices and storage class memory have high physical performance.
However, current storage system is not used effectively. Because
many-core systems will be used in such a field, the thread con-
currency will be more important. Hence, the big data analysis
would allow applications to be written to multi objects in paral-
lel. Furthermore, in HPC the file-per-process checkpointing is a
create-intensive workload, which creates hundreds of thousands
of files at the same time. PLFS [8] introduces the parallel log file
system to solve this problem. Besides the checkpointing, there
are several create-intensive applications including gene sequenc-
ing, image processing, and phone and video logs, that require the
metadata operation performance such as file creations. There are
several works, e.g., GIGA+ [9] and IndexFS [10], to attack this
problem. Current storage systems have a problem that the file
creation performance is not improved by parallel accesses. The
more the cores are increased, the more important this problem be-
comes. We solved this problem by taking advantage of the special
features of OpenNVM flash primitives [11] that is one of the pro-
posed standards of the new FTL functionality.

This paper describes the object storage design for flash de-
vices and storage class memory using OpenNVM flash primi-
tives, which is assumed to be used for high-performance dis-
tributed file systems. Namespace and access control in distributed
file systems are provided by metadata servers, and the underly-
ing object storage does not require it. Using the sparse address
space, it is possible to design object storage as an array of fixed-
size regions. The objects can be addressed directly by the region
number. Non-blocking design improves the IO performance by
parallel accesses. It shows 740,000 Input/Output Operations Per

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

Second (IOPS) for object creations that use 16 threads, which
is 12 times better than DirectFS. With regard to the write per-
formance, the prototype implementation achieves 97.7% of the
physical peak performance on average.

The contributions of this paper are as follows:
• a non-blocking object storage design that uses OpenNVM

flash primitives for high-performance distributed file sys-
tems

• two object layouts in a region for high-performance read and
write, and for snapshot

• optimization techniques to improve object creation perfor-
mance using atomic batch write operation

• the prototype implementation achieves 740,000 IOPS for ob-
ject creations, and 97.7% of the physical peak performance
on average.

The remainder of this paper is organized as follows. Section 2
provides a brief description on the Fusion IO ioDrive, and re-
lated work for object storage. Section 3 introduces our approach,
whose implementation is described in Section 4. The prototype
implementation is evaluated in Section 5, and we conclude our
work in Section 6.

2. Background

In this section, we provide a brief description on object storage
and Fusion IO ioDrive.

2.1 Object Storage
High-performance distributed file systems use a local low-level

storage device to store the file metadata and file data. The local
file system provides a hierarchical namespace for these devices
and the data managed as a file in the local file system. Such sys-
tem also provides the features to create and remove files. Ob-
ject storage servers use these local file systems; for example,
Ceph [12] uses Btrfs [13] and Lustre [14] uses ext4 [1]/ZFS [2].

On the other hand, local file systems have richer functionality
than required by high-performance distributed file systems, which
may cause unnecessary overhead. One such functionality is the
hierarchical namespace. Traditional UNIX file systems manage
it through directory entries that manage the file name and inode
number. When two or more files are created in the same directory,
lock contention occurs for the same directory entry. Figure 1
shows the performance of file creation in the same directory by

Fig. 1 File creation performance to same directory by multiple threads.

multiple threads. In Fig. 1, the horizontal axis shows the number
of threads, and the vertical axis shows the number of operations
per second. The file creation performance is not improved by
parallel accesses because of lock contention.

Object storage [15] does not have a hierarchical namespace. It
only has a flat namespace that can avoid this lock contention prob-
lem for the directory entry.

2.2 Fusion IO ioDrive
Fusion IO ioDrive is a NAND flash memory connected with

Peripheral Component Interconnect (PCI) express. IoDrive sup-
ports additional functionality provided by OpenNVM flash prim-
itives. These primitives include sparse address space and atomic
batch write. This paper mainly utilizes these two functionalities.

With OpenNVM version 0.7, we can use 144 PB sparse ad-
dress space regardless of the physical ioDrive capacity. Map-
ping between the sparse and physical block addresses is managed
by OpenNVM. All virtual blocks are available, but only written
blocks are physically assigned in a low-level storage device.

The functionality of atomic batch write is to write multiple
blocks atomically. Using atomic batch write, double write is
not required to maintain consistency. To ensure the updates of
several blocks, double write technique is often used to avoid
partial write, while it requires to write data twice. The atomic
batch write ensures the updates of multiple blocks, which means
all blocks are updated or unchanged. That is why we do not
need double write to maintain consistency when using the atomic
batch write operation. To use atomic batch write, an appli-
cation uses the function named nvm atomic batch operations.
nvm atomic batch operations writes data through an IO vector.
In the current version of SDK, this function can write 128 IOs at
most.

Figure 2 shows the results of the performance evaluation
for ioDrive nvm atomic batch operations. In this evaluation,
nvm atomic batch operations write 2 GiB data by changing the
number of IOs from 1 to 128. The block size is 512 bytes.
In Fig. 2, the horizontal axis shows the number of IOs in an
nvm atomic batch operations, and the vertical axis shows the
number of written IOs per second. In addition, we changed the
number of worker thread from 1 to 32. Each line corresponds to
a different number of threads.

Figure 2 shows two interesting facts. One is that better perfor-
mance is shown using many worker threads. Another is that bet-

Fig. 2 Performance evaluation results for ioDrive
nvm atomic batch operations.

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

ter performance is shown when writing many IOs. For example,
when using 32 worker threads, over 894 K IOs/sec is achieved
when writing 128 IOs in one nvm atomic batch operations. This
represents over three times better performance compared with
writing one IO in one operation.

The file system that takes advantage of the special features of
ioDrive already exists. It is Direct File System (DFS) [16]. How-
ever, DFS provides a hierarchical namespace to occur lock con-
tention because DFS is a POSIX-compliant file system. There-
fore, the object storage taking advantage of the special features
of ioDrive is quite crucial.

3. Our Approach

We designed high-performance object storage for a storage de-
vice by utilizing a new interface provided by OpenNVM flash
primitives. Our target device has the following features:
(1) high parallel access performance
(2) a sparse address space that goes beyond the physical capac-

ity of the device
(3) atomic-batch-write to multiple addresses.

Our proposed object storage is also able to apply our ap-
proach to other devices that satisfy these requirements, such as
ANViL [17].

We assume these features to design object storage for a dis-
tributed storage system.

In a high-performance distributed storage system, the file sys-
tem metadata, including namespace, time and access control in-
formation, are managed by metadata servers. The underlying ob-
ject storage is not necessary for managing them. It is sufficient to
address an object through a unique identifier.

The designed object storage provides the following features:
(1) creates an object and returns the object ID
(2) writes and reads data at the specified offset for the specified

object
In this section, we provide a brief description on our approach

that achieves these features.

3.1 Region
We assume that the sparse address space is 64 bits or larger.

Only written blocks are physically assigned in a low-level stor-
age device. Using the sparse address space, it is possible to de-
sign object storage simply. Our approach uses this space as an
array of fixed-size regions as depicted in Fig. 3. Region size is
specified as being sufficiently large to store the largest object in
a storage system. Because the sparse address space is 64 bit or
larger, even if the region size is large, the object storage can store
a sufficient number of objects. However, this is not necessary. In
fact, other object storage systems, such as OpenStack Swift, have
the limitation of object size. If the Region size is specified small,
many objects are supported. As shown in Fig. 3, the objects can
be addressed directly by the region number, as the object ID.

The first region, which we call ‘super region’, stores meta-
information of the object storage. Other regions manage one ob-
ject. Dividing the address space to fixed-size large regions is sim-
ilar to OBFS [18]. However, OBFS stores multiple small objects
in a region in order to use the limited address space efficiently,

Fig. 3 Dividing sparse address space into regions.

Fig. 4 Data structure of the region in Version Mode.

which requires a hash table to look up an object. This requires not
only additional memory space, but also expensive linear search
when the number of objects increases compared with the hash
table size. On the other hand, our approach stores only one ob-
ject in each region, which allows looking up an object by region
number, i.e., object ID.

An object ID is assigned when the object is created. To avoid
lock contention when assign the object ID, lock-free management
is preferred, which is described in Section 4.

3.2 Data Management Technique in a Region
Each region, with the exception of the super region, manages

object data. In this section, we provide a brief description on the
data management technique for the region.

Our object storage is assumed to be used by distributed storage
systems. Some such systems create replicas to multiple storage
nodes. In this case, collision detection for simultaneous writes to
different object storages is extremely important in order to keep
consistency among replicas. Vector Clock [19] is one of the meth-
ods used for detecting collisions. Using log-structured data lay-
out, all versions in Vector Clock can be stored, but it may cause
poor read performance. On the other hand, there is a case where
applications write data once and read mostly. In this case, we do
not need to maintain each version.

Thus, there are various requirements depending on the purpose.
In order to satisfy each request we propose two object layouts,
Version and Direct in each region. Version Layout stores all the
versions. The log to change data is appended with the commit
block that have the version as the log-structured data format. Di-
rect Layout stores only the latest version.
3.2.1 Version Mode

This layout stores all object versions that can help to be mi-
grated or snapshot.

The data structure is shown in Fig. 4. In this figure, the object
store maintains a circular log that includes the commit and data
blocks. The log meta-information is stored in the super block.
By managing the data as a circular log, writing data is efficient
because it only appends the data and the commit blocks. To ap-
pend the data and commit blocks at every write, the version can
be managed at every write. Because this data layout stores all

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

versions, it is possible to roll back to any version.
3.2.2 Direct Mode

This layout stores data directly without any version manage-
ment.

The data structure is shown in Fig. 5. In this figure, there are
two layouts, one with size and one without the size. Direct Mode
with size has the super block to manage the object metadata, such
as object size as shown in Fig. 5 (a). Direct Mode without size
doesn’t have the super block as shown in Fig. 5 (b).

If the application requires the object size, it should use the lay-
out shown in Fig. 5 (a). When the metadata server of a distributed
storage system manages the object size, the data layout shown in
Fig. 5 (b) is used. Writing or reading data is done directly at the
specified offset, and the highest performance of read and write is
assumed in this mode.

4. Implementation

We use the OpenNVM version 0.7 to implement a prototype
system. Note that our proposed design does not depend on the
OpenNVM. It can be implemented by a standard interface that
supports the features described in Section 3. The prototype pro-
vides API libraries to create, read, and write an object for a
programming interface. Therefore, the library is used to build
client applications. Using OpenNVM, we can use 144 PB sparse
address space. Our implementation divides this sparse address
space into regions and maps to the objects. Region size is a pa-
rameter in this implementation. When users specify 256 GB for
a region size, which may be larger than the physical capacity, the
object storage supports approximately 590 K objects.

In this section, we provide a brief description on our imple-
mentation and optimization to achieve high IO performance.

4.1 Version Mode
Data structure in a region is shown in Fig. 6. In this figure, the

super block manages the address of the last commit block and the

Fig. 5 Data structure for region in Direct Mode.

Fig. 6 Detailed data structure of Version Mode.

head and tail block address of the circular log in a region. The
commit block manages the address of the previous (parent in the
figure) commit block, write timestamp, and the address of data
block that stores the data. Commit block is generated by every
write. The version is managed by managing the commit block as
a linked list.

When creating an object, a new object ID is assigned within
the reserved range for each worker thread without acquiring any
lock. The information required to assign a new object ID is man-
aged in the super region and memory. The super block in a new
region is initialized to store data in a log structured format.

When writing data, a new set of parent commit block,
timestamp and data block is appended to the circular log list.

4.2 Direct Mode
When creating an object, a newly assigned region is initialized.

In our implementation, we initialize the first block by zero in or-
der to verify that it exists.

When reading or writing data, the data are accessed directly at
the specified offset.

4.3 Optimization for Updating Super Region
When creating an object, the object storage initializes the su-

per block and updates the super region. The super region content
is also stored in the memory. Therefore, a new object ID is gen-
erated from the data on memory. When creating an object, the
object storage updates the data on memory and the super region.
However, there is an overhead for updating the super region at
every creation process.

To reduce this overhead, the super region is updated with ev-
ery N creations rather than every creation. This parameter (N)
is called ‘Skip-number’. When one object is created, the super
block is updated as if N objects are created. After that, the su-
per block is not updated until N objects are created. That is why
the number of updates of the super region is reduced to one Nth.
When failure occurs, there may be some objects that are not to
be fully created. Even in this case, no physical space is wasted,
since only allocated physical space is used due to the sparse ad-
dress space.

4.4 Optimization for Initializing Super Block
When creating an object, the object storage also initializes

the super block in a new region. There is an overhead to up-
date the super block at every creation process. As indicated in

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

Section 2.2, OpenNVM shows better performance in the case
of multiple writes. To improve initialization performance at ob-
ject creation, we utilize the atomic batch write feature in Open-
NVM. In this optimization, the object storage initializes not
only the super block of the new object but also the super blocks
of the objects that will be created in the near future with one
nvm atomic batch operations. In other words, the object storage
initializes super blocks of multiple objects every N time. This
may waste the initialized block space when failures occur, but the
space is a few kilobytes at most.

5. Evaluation

We evaluate the prototype implementation of the object stor-
age designed in this paper. This section provides the methods and
results of these evaluations.

5.1 Evaluation environment
The environment for the node we evaluate in our approach is

indicated in Table 1.

5.2 Access Performance Evaluation
This evaluation measures the read and write performance in

each block size.
5.2.1 Read Performance Evaluation

This evaluation measures the read performance in each block
size. Before evaluating the read performance, we prepare the
write object to be the same block size as the read object. This
means that the object has many versions in Version Mode be-
cause such mode creates a version every write operations. For the
read performance evaluation, we read 1 GiB data from the object
randomly or sequentially. We evaluate ten times and calculate the
average in each block size. Furthermore, we evaluate the read
performance of directFS, which is the local file system for io-
Drive, for comparison. Before evaluating the read performance,
we prepare the write file to be the same block size as the read file.

Table 1 Node specification.

CPU Intel(R) Xeon(TM) E5620 CPU 2.40 GHz
(4 cores 8threads) x2

RAM 24 GB
OS CentOS 6
Storage Device Fusion-io ioDrive 160 GB
SDK OpenNVM (Version 0.7)

Fig. 7 Read performance evaluation results in each block size.

And, we use 1 thread for this evaluation.
The results of the read performance evaluation are shown in

Fig. 7. In each graph, the horizontal axis shows the block size,
and the vertical axis shows the number of read bytes per sec-
ond. In the read access performance evaluation, Direct Mode
shows proportional performance to the block size. It achieves
687 MB/sec on sequential read using Direct Mode without size.
In the read performance, Direct Mode with size shows almost the
same performance as Direct Mode without size. That is because
it does not require any extra access to the super block unlike the
write operation. In Figs. 7 (b) and 7 (a), there is no graph in Ver-
sion Mode. This is because we do not assume that the application
read the file with many versions. Comparing with the directFS,
Direct Mode without size achieves 94.0% of the sequential read
performance on average and 90.0% of the random read perfor-
mance on average. Furthermore, comparing the result of Direct
Mode without size and raw device, Direct Mode without size
achieves 91.2% of the sequential read performance of the physi-
cal peak performance on average and 86.2% of the random read
performance of the physical peak performance on average.
5.2.2 Write Performance Evaluation

In this evaluation, we assess the writing performance in each
block size by changing the number of worker threads. Before
evaluating the write performance, we prepare the same number
of objects as worker threads. For the write performance evalua-
tion, we write 1 GiB data to the objects randomly or sequentially.
We evaluate ten times and calculate the average in each block
size.

The results of the write performance evaluation are shown in
Fig. 8. In each graph, the horizontal axis shows the block size,
and the vertical axis shows the number of write bytes per second.
Each line in Fig. 8 shows a different number of worker threads.
It achieves 830 MB/sec on sequential and random write using Di-
rect Mode without size. Comparing with Direct Mode without
size, Direct Mode with size achieves 41.22% of the sequential
write performance, and 52.12% of the random write performance.
In write operation, Direct Mode with size reads a super block. If
the object size is changed, Direct Mode with size also updates the
super block. These two extra operations cause this performance
degradation.

We also evaluated the write performance of directFS and raw
device. The results of the write performance evaluation of di-

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

Fig. 8 Write performance evaluation results in each block size.

rectFS are shown in Fig. 9. Comparing with the directFS, Di-
rect Mode without size improves 0.8% of sequential write per-
formance, and 32.2% of the random write performance. The re-
sults of the write performance evaluation of raw device are shown
in Fig. 10. Comparing the evaluation results of the raw device
shown in Fig. 10 and the results of our approach shown in Fig. 8,
Direct Mode without size achieves 97.7% of the physical peak
performance on average.

5.3 Create Performance Evaluation
We evaluate the performance of creating objects. In the proto-

type implementation, there are two optimizations, and we evalu-
ate each.

5.3.1 Key-value Stores Performance Evaluation
Firstly, we evaluate the performance of key-value stores. There

is considerable difference between key-value store and our ob-
ject storage. However, today, high performance distributed stor-
age system supports key-value store as an alternative OSD back-
end. For example, Ceph [12] supports LevelDB [20] as an alter-
native OSD backend. Therefore, we evaluate the performance of
two key-value stores, RocksDB [21] and NVMKV [4]. RocksDB
is an embeddable persistent key-value store based on LevelDB.
NVMKV is an key-value store using OpenNVM flash primitives.
For this evaluation, we call PUT operations with 1 byte data be-
cause RocksDB and NVMKV do not support a create operation.
We evaluate ten times and calculate the average in each number

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

Fig. 9 Performance evaluation results for directFS with multiple threads.

Fig. 10 Performance evaluation results for ioDrive with multiple threads.

Fig. 11 Put performance of key-value stores by multiple threads.

of worker threads.
The results of the key-value store performance evaluation are

shown in Fig. 11. In this graph, the horizontal axis shows the
number of threads, and the vertical axis shows the number of op-
erations per second. When the number of threads increases, the
put performance increases up to the limit.
5.3.2 Optimization Evaluation of Updating Super Region

In this evaluation, we assess the create performance by chang-
ing the number of worker threads. We also evaluate the optimiza-
tion effect of updating the super region. In this optimization, there
is an update frequency parameter called skip-number. Therefore,
we evaluate performance by changing this parameter.

The results are shown in Fig. 12. In each graph, the horizon-
tal axis shows the number of threads, and the vertical axis shows

the number of operations per second. The lines in Fig. 12 are the
parameter called skip-number. When this parameter is 1, the op-
timization is not enabled. Therefore, the super region is updated
at every create request. On the other hand, when this parameter
is 1,024, this optimization is enabled, and the super region is up-
dated every 1,024 creates. Comparing the evaluation results of
the file system shown in Fig. 1 and the results of our approach
shown in Fig. 12, each mode shows proportional performance to
the number of worker threads regardless of optimization. This
is because there is no lock among threads to create objects. In
the case of 32 threads, the performance is improved up to 1.51
times by the optimization. This is because the written data size is
reduced when creating an object.
5.3.3 Optimization Evaluation of Initializing Super Block

Next, we evaluate the optimization effects of initializing the su-
per block. In addition, in this evaluation, we evaluate the create
performance by changing the number of worker threads. In this
evaluation, we changed the pre-creation count from 1 to 64, and
we set the skip-number to 128.

The results are shown in Fig. 13. In each graph, the horizontal
axis shows the number of threads, and the vertical axis shows the
number of operations per second. Each line in Fig. 13 shows a
different number of pre-creating objects. When this parameter is
1, the optimization is not enabled. Therefore, the super block is
always initialized at every object-creating request. On the other

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

Fig. 12 Evaluation results for optimization of updating super region.

Fig. 13 Evaluation results for optimization of initializing super block.

hand, when this parameter is 64, the optimization is enabled, and
the super block is initialized every 64 times.

In Fig. 13, the maximum performance is shown at 16 threads
for both modes. This is the limit of CPU because the number of
threads is 16 in the node. In the case of 16 threads, the perfor-
mance improves up to 2.84 and 2.80 times in Direct and Version
Mode, respectively. We used nvm atomic batch operations to
write to ioDrive. nvm atomic batch operations shows better per-
formance when writing many vectors as shown in Fig. 2. Com-
paring the evaluation results of the file system shown in Fig. 1
and the results of our approach shown in Fig. 13, our approach
achieved 740,000 IOPS using 16 threads, which is 12 times bet-
ter than the performance of DirectFS. Furthermore, comparing
the evaluation results of the key-value store shown in Fig. 11 and
the results of our approach shown in Fig. 13, our approach is 4.3
times better than NVMKV using 16 threads.

6. Related Work

6.1 File System
POSIX-compliant file systems, such as ext3 [22], ext4 [1],

XFS [23], ZFS [2], and Btrfs [13], are often used as object storage
for large-scale storage systems. For example, Ceph [12] has used
the OSD-based Btrfs, and Lustre [14] has used the OSD based
ext4 or ZFS. NILFS2 [24] is a POSIX-compliant log-structured
file system (LFS) [25], and provides a continuous snapshot fea-
ture. The NILFS2 generates a checkpoint in each synchronous
write, which can be saved as a snapshot using the LFS features.
Each snapshot can be accessed by mounting a read-only file sys-
tem without unmounting the NILFS2, which can be used for on-

line backup. There is no restriction on the number of snapshots.
The snapshot can be generated provided the capacity of the stor-
age permits. NILFS2 has a clean-up daemon that manages ex-
pired checkpoints. The clean up requires complicated processes
to re-use the blocks. Our implementation simplifies this pro-
cess using the trim function from OpenNVM. There are also
file systems for flash using LFS, such as F2FS [26], Yaffs [27],
and JFFS2 [28]. However, they do not utilize the sparse address
space. There are also storage studies that improve the perfor-
mance using non-volatile memories (NVMs) such as flash, for
example, SCMFS [29] and NVMFS [30]. SCMFS designs a file
system using a memory and TLB. NVMFS is a file system that
improves access performance through a combination NVM and
SSD. Direct File System (DFS) [16] is a POSIX-compliant file
system designed for Fusion IO ioDrive using the Virtual Stor-
age Layer (VSL) functionalities, such as sparse addressing space
and atomic writes. DFS provides a hierarchical namespace, but
our approach provides a flat namespace. We can eliminate di-
rectory locking and namespace related operations in order to im-
prove performance in multithreaded applications. Moreover, our
approach includes the log-structured object layout to manage ver-
sions in each object. The Fusion IO DirectFS is a file system
based on DFS. ANViL [17] is an advanced storage virtualization
for modern non-volatile memory device like Fusion IO ioDrive.
It proposes not only a new form of storage virtualization but also
the ioctl extension to ext4 to allow file snapshots and dedupli-
cation. Because ext4 is one of general file systems, it still has
over-head by a hierarchical namespace. Our work also uses new
form of storage virtualization, but our work does not support a

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

hierarchical namespace.

6.2 Object Storage
Object storage is better to use as the backend storage system

of distributed file systems because it can eliminate hierarchical
namespace overhead. There are several object storages, such as
BlobSeer [31] and OBFS [18]. BlobSeer is a distributed data stor-
age, and therefore, it does not write to low-level storage directly.
BlobSeer uses a local filesystem to store data. OBFS is local
object storage that divides the address space into regions, and
stores objects in a region. OBFS manages multiple objects in
a region in order to use limited address space efficiently, which
requires a hash table to look up an object. It requires not only ad-
ditional memory space but also expensive linear search when the
number of objects increases compared with the hash table size.
Object-based SCM [32] provides a file system that uses the OSD
interface [33]. Object-based SCM proposes three techniques to
manage data in each object. However, each technique does not
use the sparse address space, moreover, it requires many indirect
references.

7. Conclusion

This paper shows a design of object storage that uses Open-
NVM flash primitives for high-performance distributed file sys-
tems. Non-blocking design is a key feature for flash devices and
storage class memory to improve the IO performance by parallel
accesses. The sparse address space allow designs of an array of
fixed-size regions that contain a single object, where the object
can be addressed by region number, i.e., object ID. Atomic batch
write plays an important role in supporting the ACID properties
in each write, and several optimizations.

The prototype implementation showed a proportional perfor-
mance improvement in terms of the number of threads in ob-
ject creation. In this paper, we proposed two optimizations: one
for updating the super region, and another for initializing super
blocks. We also evaluated the effect of these optimizations. The
optimizations for updating the super region improved creation
performance up to 1.51 times using 32 threads. The optimiza-
tion for initializing super blocks improved the performance up to
2.84 and 2.80 times in Direct and Version Mode, respectively, us-
ing 16 threads. The second optimization achieved 740,000 IOPS
using 16 threads, which is 12 times better than DirectFS.

Regarding the read and write performance, the prototype im-
plementation achieved 687 MB/s and 830 MB/s for sequential
read and write, respectively. In addition, it achieved 97.7% of
the physical peak performance on average.

Future work includes designing the delete operation and incor-
porating this object storage into a high-performance distributed
file system.

Acknowledgments This work is supported by JST CREST,
“System Software for Post Petascale Data Intensive Science” and
“EBD: Extreme Big Data — Convergence of Big Data and HPC
for Yottabyte Processing”.

References

[1] Mathur, A., Cao, M., Bhattacharya, S., Dilger, A., Tomas, A. and
Vivier, L.: The New ext4 Filesystem: Current Status and Future Plans,
Proc. 2007 Linux Symposium, pp.21–33 (2007).

[2] Bonwick, J. and Moore, B.: ZFS: The last word in file systems (2007).
[3] Lee, E.K. and Thekkath, C.A.: Petal: Distributed Virtual Disks,

SIGOPS Operating Systems Review, Vol.30, No.5, pp.84–92 (1996).
[4] Marmol, L., Sundararaman, S., Talagala, N. and Rangaswami, R.:

NVMKV: A Scalable, Lightweight, FTL-aware Key-Value Store,
Proc. 2015 USENIX Conference on Annual Technical Conference,
pp.207–219 (2015).

[5] Nellans, D., Zappe, M., Axboe, J. and Flynn, D.: ptrim ()+ exists
(): Exposing new FTL primitives to applications, 2nd Annual Non-
Volatile Memory Workshop (2011).

[6] Ouyang, X., Nellans, D., Wipfel, R., Flynn, D. and Panda, D.K.: Be-
yond block I/O: Rethinking traditional storage primitives, Proc. 2011
IEEE 17th International Symposium on High Performance Computer
Architecture, pp.301–311 (2011).

[7] Saxena, M., Swift, M.M. and Zhang, Y.: Flashtier: a lightweight, con-
sistent and durable storage cache, Proc. 7th ACM european conference
on Computer Systems, pp.267–280 (2012).

[8] Bent, J., Gibson, G., Grider, G., McClelland, B., Nowoczynski, P.,
Nunez, J., Polte, M. and Wingate, M.: PLFS: A Checkpoint Filesys-
tem for Parallel Applications, Proc. Conference on High Performance
Computing Networking, Storage and Analysis, pp.21:1–21:12 (2009).

[9] Patil, S. and Gibson, G.: Scale and Concurrency of GIGA+: File Sys-
tem Directories with Millions of Files, Proc. 9th USENIX Conference
on File and Stroage Technologies, pp.177–190 (2011).

[10] Ren, K., Zheng, Q., Patil, S. and Gibson, G.: IndexFS: Scaling File
System Metadata Performance with Stateless Caching and Bulk Inser-
tion, Proc. International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC ’14, pp.237–248 (2014).

[11] Fusion-io: NVM Primitives Library (2014), available from
〈http://opennvm.github.io/nvm-primitives-documents/〉.

[12] Weil, S.A., Brandt, S.A., Miller, E.L., Long, D.D.E. and Maltzahn, C.:
Ceph: a scalable, high-performance distributed file system, Proc. 7th
symposium on Operating systems design and implementation, OSDI
’06, pp.307–320 (2006).

[13] Rodeh, O., Bacik, J. and Mason, C.: BTRFS: The Linux B-tree filesys-
tem, ACM Trans. Storage, Vol.9, No.3, p.9 (2013).

[14] Koutoupis, P.: The lustre distributed filesystem, Linux Journal,
Vol.2011, No.210 (2011).

[15] Mesnier, M., Ganger, G.R. and Riedel, E.: Object-based storage, Com-
munications Magazine, IEEE, Vol.41, No.8, pp.84–90 (2003).

[16] Josephson, W.K., Bongo, L.A., Li, K. and Flynn, D.: DFS: A File Sys-
tem for Virtualized Flash Storage, ACM Trans. Storage, Vol.6, No.3,
p.14 (2010).

[17] Weiss, Z., Subramanian, S., Sundararaman, S., Talagala, N., Arpaci-
Dusseau, A.C. and Arpaci-Dusseau, R.H.: ANViL: advanced virtual-
ization for modern non-volatile memory devices, Proc. 13th USENIX
Conference on File and Storage Technologies, pp.111–118 (2015).

[18] Wang, F., Brandt, S.A., Miller, E.L. and Long, D.D.E.: OBFS: A
File System for Object-based Storage Devices, Proc. 21st IEEE/12th
NASA Goddard Conference on Mass Storage systems and Technolo-
gies, pp.283–300 (2004).

[19] Lamport, L.: Time, Clocks, and the Ordering of Events in a Dis-
tributed System, Comm. ACM, Vol.21, No.7, pp.558–565 (1978).

[20] LevelDB, available from 〈https://github.com/google/leveldb〉.
[21] RocksDB, available from 〈http://rocksdb.org/〉.
[22] Ts’o, T.Y. and Tweedie, S.: Planned Extensions to the Linux

Ext2/Ext3 Filesystem, Proc. FREENIX Track: 2002 USENIX Annual
Technical Conference, pp.235–243 (2002).

[23] Sweeney, A., Doucette, D., Hu, W., Anderson, C., Nishimoto, M. and
Peck, G.: Scalability in the XFS File System, Proc. USENIX 1996
Annual Technical Conference, pp.1–14 (1996).

[24] Konishi, R., Amagai, Y., Sato, K., Hifumi, H., Kihara, S. and
Moriai, S.: The Linux Implementation of a Log-structured File Sys-
tem, SIGOPS Operating Systems Review, Vol.40, No.3, pp.102–107
(2006).

[25] Rosenblum, M. and Ousterhout, J.K.: The Design and Implementa-
tion of a Log-structured File System, ACM Trans. Computer Systems,
Vol.10, No.1, pp.26–52 (1992).

[26] Lee, C., Sim, D., Hwang, J. and Cho, S.: F2FS: A New File Sys-
tem for Flash Storage, 13th USENIX Conference on File and Storage
Technologies, pp.273–286 (2015).

[27] One, A.: YAFFS: Yet Another Flash File System (2002), available
from 〈http://www.yaffs.net/〉.

[28] Woodhouse, D.: JFFS: The journalling flash file system, Ottawa Linux
Symposium, Vol.2001 (2001).

[29] Wu, X. and Reddy, A.L.N.: SCMFS: A File System for Storage Class

c© 2016 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.24 No.5

Memory, Proc. 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis, pp.39:1–39:11 (2011).

[30] Qiu, S. and Reddy, A.: NVMFS: A hybrid file system for improving
random write in nand-flash SSD, Proc. 2013 IEEE 29th Symposium
on Mass Storage Systems and Technologies, pp.1–5 (2013).

[31] Nicolae, B., Antoniu, G., Bougé, L., Moise, D. and Carpen-Amarie,
A.: BlobSeer: Next Generation Data Management for Large Scale In-
frastructures, Journal of Parallel and Distributed Computing, Vol.71,
No.2, pp.168–184 (2011).

[32] Kang, Y., Yang, J. and Miller, E.L.: Object-based SCM: An Efficient
Interface for Storage Class Memories, Proc. 2011 IEEE 27th Sympo-
sium on Mass Storage Systems and Technologies, pp.1–12 (2011).

[33] Weber, R.: SCSI Object-Based Storage Device Commands (2004).

Fuyumasa Takatsu is a Ph.D. student at
University of Tsukuba. He received his
M.E. from University of Tsukuba in 2014.
His research interest is distributed file sys-
tem.

Kohei Hiraga is a Ph.D. candidate at
University of Tsukuba. He received his
M.E. from University of Tsukuba in 2011.
Main research interests are grid comput-
ing and distributed file system.

Osamu Tatebe received his Ph.D. in
computer science from the University of
Tokyo in 1997. He worked at Electrotech-
nical Laboratory (ETL), and National In-
stitute of Advanced Industrial Science and
Technology (AIST) until 2006. He is now
a professor in Department of Computer
Science at University of Tsukuba. He has

been a co-chair of Grid File System WG of Open Grid Forum
since 2004. His research area is high-performance computing,
data-intensive computing, parallel and distributed system soft-
ware. He is a member of ACM and Japan Society for Industrial
and Applied Mathematics (JSIAM).

c© 2016 Information Processing Society of Japan

