IPSJ SIG Technical Report

Vol.2016-MPS-109 No.3
2016/7/25

Generating All Solutions of Minesweeper Problem
Using Degree Constrained Subgraph Model

Hirorumr Suzuki!-?

Sun Hao':

b) 1,¢)

SHIN-1cHI MINATO

Abstract: Minesweeper is one of the most popular puzzle game. Several kinds of decision or counting problems on
Minesweeper have been studied. In this paper, we consider the problem to generate all possible solutions for a given
Minesweeper board, and propose a new formulation of the problem using a graph structure, called degree constrained
subgraph model. We show experimental results of our efficient graph enumeration techniques for various sizes of

Minesweeper boards.

1. Introduction

Minesweeper is one of the most popular puzzle game, which is
frequently bundled with operating systems and GUISs, including
Windows, X11, KDE, GNOME, etc. The objective of this game
is to find all hidden mines in covered cells with the some helps of
hints.

There are several problems related to Minesweeper, the
Minesweeper consistency problem [6], the Minesweeper counting
problem [8], and the Minesweeper constrained counting problem
[3]. Minesweeper on graph structures are also studied in [3].
These problems ask us whether or not the input Minesweeper
board has any solutions, valid assignments of mines.

Those problems were studied as one of decision problems or
counting problems. However, the objective of Minesweeper is
considered as to really assign some mines to uncovered cells with
some constraints. From this viewpoint, we consider a new prob-
lem which contains the above problems. This problem requires
all solutions of the input Minesweeper board. Solving this prob-
lem is useful for finding the best solution with some costed mines,
revealing that there is no mine, and calculating the probability of
mine placement at each cell.

For finding one solution of the minesweeper, we may use some
simple backtracking.search algorithms, however, it is hard to gen-
erate all the solutions because of the combinatorial explosion in
terms of computation time and space. Recently, Zero-suppressed
Binary Decision Diagram (ZDD) [7] is known as a compact rep-
resentation for manipulating a set of combinations. ZDDs are
useful for generating all the solutions for a Minesweeper board.
In this method, it is a naive way to use a combinatorial model that
one logic variable (combinatorial item) is assigned to each cell,
to represent whether a mine exists at the cell or not.

' Graduate School of Information Science and Technology, Hokkaido Uni-

versity
¥ h-suzuki@ist.hokudai.ac.jp
Y sun@ist.hokudai.ac.jp
9 minato@ist.hokudai.ac.jp

2016 Information Processing Society of Japan

In this paper, we propose yet another formulation using a graph
structure, called degree constrained subgraph model, and show
an efficient method using ZDD-based graph enumeration tech-
nique [5]. We experimentally compared the performance of the
methods based on our graph model and the naive combinatorial
model. The result showed that our formulation is effective for the
problem.

In section 2, we explain the rules of Minesweeper in detail, and
introduce some problems related to Minesweeper. In section 3,
we explain the naive combinatorial model using ZDD for finding
all valid assignments of mines. In section 4, we show the pro-
posal formulation using the degree constrained subgraph model,
and explain the method based on graph enumeration technique.
In section 5, we show the experimental results.

2. Problems on Minesweeper

Minesweeper consists of a grid of cells. All cells at the ini-
tial board is covered (see Fig.1). At each move, the player may
uncover a cell. There are three types of uncovered cells, mine
cells, hint cells, and free cells. A mine cell contains a mine, a hint
cell has information about the number of mine cells surrounding
it (called count), and a free cell contains nothing. In this paper,
we consider the free cells as the hint cells whose counts are 0,
and draw mine as a black circle (o). The goal of the game is to
uncover all free cells (see Fig.2). If mine cell was uncovered, the
game becomes over and the player loses (see Fig.3).

Fig. 1: The initial board.

The Minesweeper consistency problem (or simply the
Minesweeper problem) is a decision problem, whether or not a
given Minesweeper grid has a valid assignment of mines (see

IPSJ SIG Technical Report

Fig. 3: A lost state.

Fig. 4: This setting has valid assign- Fig. 5: An example of assignment for

ment. Fig4.

Fig.4 and Fig.5). The consistency problem was proved to be
NP-complete [6], even if each cell in the grid has only one mine
surrounding it [2]. Counting number of valid assignments to
the given Minesweeper grid is also defined as a problem, the
Minesweeper counting problem (called #Minesweeper in [8]).
In setting of Fig.4, the solution for the counting problem is 66.
The counting problem was proved to be #P-complete [8]. In
[3], Minesweeper constrained counting problem is defined. The
input of the constrained counting problem also includes the total
number of mines.

Although the grid is used for the board in general
Minesweeper, we can use a graph structure instead of the
board. Each vertex of the graph corresponds to a hint cell or
a free cell, or a covered cell (see Fig.6). If the vertex is a hint
cell, it has a count of the number of mines in adjacent vertices,
otherwise may have a mine. Then, the Minesweeper on grid
boards is considered as the Minesweeper on grid graphs (see
Fig.7). Minesweeper on graph structure was studied in [3],
and the polynomial algorithm is provided for the consistency,
counting problem for Minesweeper on trees and on graphs of
bounded treewidth.

We consider a new problem for Minesweeper, the required
output is all valid assignments of mines for given Minesweeper
board. We refer to the problem as Minesweeper generation prob-
lem. The Minesweeper generation problem is including both the
consistency problem and the counting problem.

In the Minesweeper generation problem, the input is a
Minesweeper board MB(m,n,C,A). There is m covered cells
numbered from 1 to m, and »n hint cells numbered from 1 to n.
Note that the covered cell is ignored if hint cell of surrounding it
is nothing. C has n integers ¢y, ¢z, . .., c,, and ¢; is count written
in i-th hint cell (¢; > 0). A has n sets of integers A;,A,,...,A,,

Fig. 6: Minesweeper on graph. .
Fig.4.

2016 Information Processing Society of Japan

Fig. 7: Graph based on grid board of

Vol.2016-MPS-109 No.3
2016/7/25

and A; has all numbers of covered cells surrounding i-th hint
cell (A; € {1,2,...,m}).

3. Naive Combinatorial Model Using ZDD

Combination of covered cells corresponds to an assignment of
mines, namely, mines are assigned to all covered cells included
in the combination. Hence set of all valid combinations of cells
represents a solution to the Minesweeper generation problem.

Zero-suppressed Binary Decision Diagram (ZDD) [7] is a com-
pact data structure for manipulating sets of combinations, and has
many applications to combinatorial problems [7] [1]. We explain
a method for solving the Minesweeper generation problem based
on the naive combinatorial model using ZDD.

3.1 Zero-suppressed Binary Decision Diagram

ZDD is a compact representation of the binary decision tree
(see Fig.8 and Fig.9). The tree has a root node and two terminal
nodes, a O-terminal and a 1-terminal. A path which connects the
root to the 1-terminal node corresponds to a combination in the
set. Each internal node of the tree has a label of an item and two
edges, one is 0-edge, the other is 1-edge. The 0-edge represents
that the item is not included in the combination, the 1-edge is
opposite. In general, the order of appearances of items is fixed.

ZDDs are based on the following reduction rules.

o Deletion rule: delete all redundant nodes whose 1-edge point

to the O-terminal.

e Sharing rule: share all equivalent subgraphs.
To make ZDDs compact and canonical for representing sets of
combinations, we should apply these reduction rules as much as
possible without minding order.

RO
b

Fig. 8: An example of binary decision
tree that represents set of combinations
{{a, c},{b, ¢}, {b}, {c}}. 0-edge is dotted,
and 1-edge is solid.

Fig. 9: ZDD for Fig.8.

A conventional ZDD package supports various operations for
manipulating sets of combinations. The ZDD package maintains
a compact data structure in handling those operations. Here we
show some operations, which used for generating the solutions
of the Minesweeper generation problem. In the following, P and
Q indicate an instance of sets of combinations represented by a
ZDD, respectively.

PUQ={clce Porce Q}
PN Q={clcePandce Q}
PxQ={pUglpePandqg e Q}

3.2 Using ZDD Operation
For representing solutions of Minesweeper using ZDDs, we

IPSJ SIG Technical Report

consider each covered cell as an item. We define U as the set of
all items, x; € U denote the item of i-th covered cell. A subset
X C U, combination of covered cells, corresponds to an assign-
ment of mines. We also defile M,;; C 2Y as the set of combina-
tions that each of them represents a valid assignment for the given
Minesweeper board. Then, our objective is to generate M,z as
output.

We define M; C 2V as the set of all the assignments satisfy-
ing the i-th hint. Then, a valid assignment must be commonly
included in all M; (i = 1,2,...,n). Hence the set of all the valid
assignments M, is represented by:

AN
Myaiia = N M;.

Thus, our method constructs the n ZDDs each of which represent
M; for all i, and calculate the intersection of those ZDDs.

For calculating M;, we define the set S (X, k) as all combi-
nations of any k items in the item set X € U. For example,
X =A{a,b,c}and k = 2, then S (X, k) = {{a, b}, {a, c}, {b, c}}. Using
the notation of set S (X, k), M; is represented by following, where
Xi = {x;|j € A;} is the set of all covered cells surrounding i-th hint
cell.

M; = S (X, c;) # 2V

We can construct a ZDD which represents M, effectively, using
the recursive property of M;. If x € X;, we can divide the set of
combinations represented by S; into two disjoint subsets S 1.1, S ?
(S;=5us?.8'nSY =0), one has x; in each combination:

S! =)} =S\ {xh e - 1)),
and the other has no x in each combination:
§? =5\ {x} o).

This method is based on the naive combinatorial model. An
advantage of this model is the simple notation and compact pro-
cessing with ZDD. However, the algorithm repeats algebraic op-
erations as much as the number of hints, and thus the computation
time may become large. As an improvement, we propose yet an-
other formulation in the following section.

4. Graph Model for Minesweeper

We propose a formulation of the problem to find a valid assign-
ment of mines for the input Minesweeper board. In this formu-
laion, we use graph structure, called degree constrained subgraph
model. Then, we show that generating all solutions of the formu-
lated problem is equivalent to generating all valid assignments for
the Minesweeper board. For solving the formulated problem, we
can use ZDD-based graph enumeration technique.

4.1 Notations and Definitions for Degree Constrained Sub-
graph Model
In undirected graph G = (V, E), we define d, as the degree of
vertex v, the number of edges connected with v. We also define d;,
as the degree of v € V in subgraph G’ = (V,E’ C E).
We define the degree constraint for a vertex v as follows.

2016 Information Processing Society of Japan

Vol.2016-MPS-109 No.3
2016/7/25

dc, CN U {0}

dc, denotes the set of valid degrees of v in the subgraph. For
given graph G and degree constraints dc, for all v € V, the degree
constrained subgraph is a subgraph G’ satisfying the following
constraints.

d) € dc, for all v

4.2 Formulation

For a given Minesweeper board M B(m,n,C,A), we construct
a graph (named MG). We define B as a set of the vertices for
covered cells, and b; € B means the vertex for the i-th covered
cell. We also define H as a set of vertices for hint cells. h; € H
means the vertex of the j-th hint cell. In the following, we call the
vertex of covered cell covered vertex, and call the vertex of hint
cell hint vertex. The graph has the set of edges E which connect
vertices of adjacent cells, namely, e = {b;, h;} € Eifi € A;. Then,
MG = (BU H,E) is a bipartite graph consisting of the covered
vertices and the hint vertices.

To make the correspondence between a mine assignment and
a subgraph of MG, we set degree constraints on MG. If we as-
sign a mine to the i-th covered vertices, b; should connect with
all the adjacent hint vertices in the subgraph of MG, otherwise be
independent. Then, we get the following degree constraints.

dey, = 10,dy} Vi€ {1,2,....m) (1)

For converting from a subgraph G” of MG under the degree con-
straints (1) to an assignment of mines, we assign a mine to the
i-th covered cell if dj # 0.

In addition, since our objective is to find a valid assignment of
mines, hint vertex 4; should connect with ¢; adjacent covered ver-
tices in the subgraph of MG. Then, we get the following degree
constraints.

dep, ={c;} VYjell,2,....n} 2)

As a result, we also get the following theorem. But we omit the
proof.

Theorem 1 There is a one-to-one correspondence between the
subgraphs of MG under degree constraints (1) (2) and the valid
assignments for M B.

4.3 Using Graph Enumeration Technique

By the theorem 1, the Minesweeper generation problem is
solved by generating all solutions of the formulated problem.
Here we can use an efficient ZDD-based graph enumeration tech-
nique shown in [5], frontier-based search method. The frontier-
based search generates a ZDD which represents all the subgraphs
as the combinations of edges, satisfying various topological con-
straints, for example paths, cycles, trees, forests, and the degree
constraints (see Fig.10).

Frontier-based search begin construction of ZDD with only the
root node, and advance the search by top-down manner which
depends on the order of edges; after deciding the order of the
edges, in i-th step, all the bottom nodes branch off, and make two

IPSJ SIG Technical Report

Frontier-based
search

Fig. 10: An example of frontier-based search.

child nodes, one correspond to the case of using i-th edge, and the
other correspond to the case of not using i-th edge. In addition,
frontier-based search prune some unnecessary nodes, and merge
some equal nodes. These processes are realized by the support-
ing information of the search which is called mate (we leave the
details to reference [5]).

The frontier-based search method output a large number of so-
lutions as a compact ZDD to avoid the combinatorial explosion
in many cases, and the computation time and space depends on
the size of ZDD.

5. Computational Experiments

We experimentally compared the performance of the method
using the degree constrained subgraph model and the method us-
ing the naive combinatorial model (which based on ZDD oper-
ations). Especially, we use not only grid based Minesweeper
board, but also graph based Minesweeper board, to compare them
under various situations. The program was coded in C++, and
compiled using g++. The experiments were done on the PC with
Intel Core i7-3930K 3.2GHz CPU and 64GB memory.

The instance boards were randomly generated boards. Some
of them are based on 30 X 30 grid, and the others are based on a
randomly generated graph which has 300 vertices and 900 edges
(relatively sparse). We set three types of ratio of mine cells, 10%,
20%, and 30%, and set nine types of ratio of visible hints, 20%,
40%, 60%, 80%. Tables 1 and 2 summarize the computation
time. ‘zdd’ indicates the method based on the naive combinato-
rial model using ZDD, and ‘ dc’ indicates the method based on
graph enumeration technique using the degree constrained sub-
graph model. The computation time of the latter includes time of
constructing a graph and degree constraints.

The computation time results for grid based boards are shown
in table 1. ‘dc’ shows the best time in most instances, and it is 100
times faster than ‘ zdd’ in some instances. Thus, our formulation
is efficient for the Minesweeper generation problem with board
based on grid. But in instance consisting of 30% mine cells and
40% visible hits, ’dc’ is inefficient in comparison with ’zdd’. It
is thought that the reason depends on the complexity of the graph
generated by the board; it is supposed that the degree constraints
is easily complicated by the state of the connection of the ver-
texes.

The computation time results for graph based boards are shown
in table 2. ‘ dc’ shows the best time in all instances, and it is 100
times faster than ‘ zdd’ in some instances. The computation time
of ‘zdd’ is not stable compared with grid instances. It is thought

2016 Information Processing Society of Japan

Vol.2016-MPS-109 No.3
2016/7/25

Table 1: Computation time (in second) for grid based board

mine 10% 20% 30%

hint zdd dc zdd dc zdd dc
20% 15.306 | 0.023 || 16.124 | 0.095 | 16.921 0.024
40% 24.636 | 0.051 || 34478 | 1.226 | 36.521 | 79.872
60% 18.915 | 0.033 || 23.872 | 0.065 | 35.572 0.273
80% 6.013 | 0.019 || 12.659 | 0.024 | 18.790 0.030

that this result is caused by dispersion of the degree in the original
graph, which affect number of adjacent cells. On the other hand,
the computation time of ‘ dc’ is stable. Thus, our formulation is
also efficient for the Minesweeper generation problem with board
based on sparse graph.

Table 2: Computation time (in second) for graph (|V| = 300, |E| = 900) based
board

mine 10% 20% 30%

hint zdd dc zdd dc zdd dc
20% 0.816 | 0.004 | 89.602 | 0.024 82.493 | 0.141
40% 5.859 | 0.012 | 12410 | 0.071 60.105 | 2.592
60% 0917 | 0.006 2.065 | 0.007 || 147.352 | 0.234
80% 0.203 | 0.005 0.500 | 0.008 0.737 | 0.007

6. Conclusion

In this paper, we considered the Minesweeper generation prob-
lem to generate all possible solutions for a given Minesweeper
board, and proposed a formulation of the problem using degree
constrained subgraph model. For solving the problem, we used
ZDD-based graph enumeration techniques. Experimental results
showed that our formulation is effective for many instances of the
Minesweeper boards. In an application, we can easily calculate
the probability of mine placement on each cell. As a future work,
we can also consider an online problem for Minesweeper, where
the hints are given one by one.

Acknowledgment

For implementing frontier-based search, we coded

the program based on the software library 7TdZdd (in
https://github.com/kunisura/TdZdd, [4]). Our work is partly supported
by JSPS KAKENHI Scientific Research(S) - Number 15H05711.

References

[1] Coudert, O.: Solving graph optimization problems with ZBDDs, Euro-
pean Design and Test Conference, pp. 224-228 (1997).

[2] Fix, J. D. and McPhail, B.: Offline 1-Minesweeper is NP-complete,
http://www.minesweeper.info/articles (2004).

[31 Golan, S.: Minesweeper on graphs, Applied Mathematics and Compu-
tation, Vol. 217, pp. 6616-6623 (2011).

[4] Iwashita, H. and Minato, S.: Efficient Top-Down ZDD Construction
Techniques Using Recursive Specifications, Technical report, Hokkaido
University Graduate School of Infomation Science and Technology
(2013).

[S] Kawahara, J., Inoue, T., Iwashita, H. and Minato, S.: Frontier-
based Search for Enumerating All Constrained Subgraphs with Com-
pressed Representation, Technical report, Hokkaido University Gradu-
ate School of Infomation Science and Technology (2014).

[6] Kaye, R.: Minesweeper is NP-complete, The Mathematical Intelli-
gencer, Vol. 22, pp. 9-15, Springer-Verlag (2000).

[71 Minato, S.: Zero-suppressed BDDs for set manipulation in combinato-
rial problems, Proc. of 30th ACM/IEEE Design Automation Conf. (DAC
1993), pp. 272277 (1993).

[8] Nakov, P. and Wei, Z..: MINESWEEPER, #MINESWEEPER,
http://www.minesweeper.info/articles (2003).

