
Vol. 42 No. SIG 7(PRO 11) IPSJ Transactions on Programming July 2001

Regular Paper

On Proving Termination of Term Rewriting Systems

with Higher-Order Variables

Keiichirou Kusakari†

We define term rewriting systems with higher-order variables, which are defined without a
meta-language like the λ-calculus. On the other hand, our systems express actual functional
programming languages like ML and Haskell. In this paper, we extend the recursive path
order, the dependency pair and the argument filtering method to our systems. In a different
framework, Nipkow also introduced higher-order rewriting systems (HRSs). However, it is
more complicated and restricted to extend the recursive path order and the dependency pair
method to HRSs. Moreover the argument filtering method cannot be designed essentially in
HRSs. These fact proves a usefulness of our systems.

1. Introduction

Term rewriting systems (TRSs) are compu-
tation models. In TRSs, terms are reduced by
using a set of directed equations, called rewrite
rules. The most striking feature is that term
rewriting systems themselves can be regarded
as functional programming languages. For ex-
ample, the following TRS defines addition of
natural numbers represented by the constant 0
and the successor function S:{

Add(x, 0) → x
Add(x, S(y)) → S(Add(x, y))

Termination of TRSs is in general an undecid-
able property. Nevertheless, it is often neces-
sary to prove the termination for a particular
system. To prove termination, we commonly
design a reduction order by which all rules are
ordered. The most important concept for de-
signing reduction orders is the notion of simpli-
fication orders introduced by Dershowitz 5),6).
Based on the notion, the recursive path order
was introduced 6). On the other hand, prov-
ing termination by simplification orders has a
theoretical limitation. In fact, there exist ter-
minating TRSs that cannot be proved the ter-
mination by simplification orders. To prove the
termination of such TRSs, Arts and Giesl 2) in-
troduced the notion of dependency pairs. In
the dependency pair method, weak reduction
orders play an important role instead of reduc-
tion orders. To design weak reduction orders,
Arts and Giesl 3) introduced the argument fil-
tering method, which is designed by eliminating
unnecessary subterms.

† Research Institute of Electrical Communication, To-
hoku University

Unfortunately, TRSs cannot treat higher-
order functions. For example, the Map-
function, which is one of the most standard
higher-order function in functional programs, is
defined as follows:{

Map(f, []) → []
Map(f, x :: xs) → f(x) :: Map(f, xs)

This system is a legal functional program, but
an illegal TRS: the variable f occurs at a non-
leaf position in the right-hand side of the second
rule.
To introduce an application symbol may be

a most simple way to express such systems. In
the framework the Map-function is defined by
the following first-order TRS:


@(@(Map, f), []) → []

@(@(Map, f),@(@(::, x), xs))
→ @(@(::,@(f, x)),@(@(Map, f), xs))

However this formulation is quite useless in our
motivation. In fact, any recursive path order
fails to order the second rule, because all sym-
bols occurred in non-leaf positions are the appli-
cation symbol @. Hence path orderings cannot
work well in this formulation.
On the other hand, Nipkow introduced

higher-order rewriting systems (HRSs), which
are rewriting systems on algebraic λ-terms, us-
ing the λ-calculus as a meta-language 14),15).
Intuitively, algebraic λ-terms are simply-typed
λ-terms in which occurrences of function sym-
bols are permitted. For example, the Map-
function in HRSs is defined as follows:


map(λx.F (x), []) → []

map(λx.F (x), X :: Xs)
→ F (X) :: map(λx.F (x), Xs)

Jouannaud and Rubio 8) gave a simple defi-

35

36 IPSJ Transactions on Programming July 2001

nition of a recursive path order for HRSs by
using the type structure, and the order was
improved by Iwami and Toyama 11),12). How-
ever, to keep the consistency between the term
structure and the type structure, these order
cannot simultaneously treat the Map-function
over the type Nat and functions with the type
NatList → Nat like the Length-function de-
fined by{

Length([]) → 0
Length(x :: xs) → S(Length(xs)).

Moreover, Jouannaud and Rubio 9) designed a
recursive path order on polymorphic algebraic
λ-terms. Note that the well-foundedness of the
order was proved by using the termination proof
of the typed λ-calculus instead of simplification
orders.
The notion of dependency pairs extends to

HRSs by Watanabe, et al.17). However, the de-
pendency pair method in HRSs essentially re-
quires that weak reduction orders have the sub-
term property, which is very restricted in prac-
tice. In fact, we cannot design the argument fil-
tering method in HRSs, because the argument
filtering method eliminates several subterms.
In this paper, we define term rewriting

systems with higher-order variables (TRShv),
which can naturally denote higher-order func-
tions like the Map-function. Hence TRShvs
turn out to be more powerful than TRSs in
expressing actual functional programming lan-
guages like ML 13),16) and Haskell 10). Since we
define TRShvs without a meta-language like the
λ-calculus, we can easily extend results in TRSs
to TRShvs . Moreover, since TRShvs are de-
signed on untyped terms, TRShvs are applica-
ble to arbitrary typed systems. To prove termi-
nation of TRShvs , we first extend the recursive
path order to TRShvs in Section 4. Next, we ex-
tend the dependency pair method to TRShvs in
Section 5, and the argument filtering method to
TRShvs in Section 6. Finally, in Section 7, we
restrict TRShvs by simply-typed systems, and
discuss with the previous methods.

2. Preliminaries

We assume that the reader is familiar with
notions of term rewriting systems 4).
A signature F is a finite set of function sym-

bols denoted by F, G, A set V is an enu-
merable set of variables with F ∩ V = ∅ de-
noted by x, y, f, g, The set T (F ,V) of
terms constructed from F and V is the small-
est set such that a(t1, . . . , tn) ∈ T (F ,V) when-

ever a ∈ F ∪ V and t1, . . . , tn ∈ T (F ,V). If
n = 0, we write a instead of a(). We define
root(a(t1, . . . , tn)) = a. V ar(t) is the set of
variables in t. A term is said to be a ground
term if no variable occurs in the term. Identity
of terms is denoted by ≡. The size |t| of a term t
is the number of function symbols and variables
in t. A term position is a sequence of positive
integers. We denote the empty sequence by ε.
We recursively define t|p the subterm of t at
position p as t|ε = t and a(t1, . . . , tn)|i·p = ti|p.
A substitution is a mapping from variables to

terms. A substitution over terms is defined as
• a ∈ F

θ(t) = a(θ(t1), . . . , θ(tn)),
• a ∈ V with θ(a) = a′(t′1, . . . , t′k)

θ(t) = a′(t′1, . . . , t′k, θ(t1), . . . , θ(tn)),
where t ≡ a(t1, . . . , tn). We write tθ instead
of θ(t). A context is a term which has a spe-
cial symbol �, called hole, at a leaf position.
A term C[t] denotes the result of placing t in
the hole of a context C[]. A suffix context is a
term which has the symbol � at the root posi-
tion. A term S[t] denotes the result of placing
t in the hole of a suffix context S[], where this
replacement is defined as similar to substitu-
tions. For example, S[Add(0)] ≡ Add(0, S(0))
for S[] ≡ �(S(0)). A term s is called a subterm
of t if t ≡ C[S[s]] for some context C[] and suf-
fix context S[]. A subterm s is called an imme-
diate subterm of t if t has a form a(· · · , s, · · ·).
A rewrite rule is a pair of terms, written by

l → r, such that root(l)
∈ V and V ar(l) ⊇
V ar(r). A term rewriting system with higher-
order variables (TRShv) is a finite set of rules.
A reduction relation →

R
is defined as s→

R
t iff

s ≡ C[S[lθ]] and t ≡ C[S[rθ]] for some rule
l → r ∈ R, context C[], suffix context S[] and
substitution θ. For example, the Map-function
is defined by the following TRShv RMap:{

Map(f, []) → []
Map(f, x :: xs) → f(x) :: Map(f, xs)

Here [] and x :: xs are syntax sugars for terms
Nil and Cons(x, xs). We hereafter use these
syntax sugars through the paper. In RMap, we
have the following reduction relation sequence.
Map(S, S(0) :: 0 :: [])

→
R

S(S(0)) :: Map(S, 0 :: [])

→
R

S(S(0)) :: S(0) :: Map(S, [])

→
R

S(S(0)) :: S(0) :: []

We often omit the subscript R whenever no con-

Vol. 42 No. SIG 7(PRO 11) On Proving Termination of TRS with Higher-Order Variables 37

fusion arises. The set of defined symbols in
a TRShv R is denoted by DF (R) = {root(l) |
l → r ∈ R}. A TRShv R is terminating if
there is no infinite reduction sequence such that
t0→

R
t1→

R
t2→

R
· · ·. Note that if we don’t use

suffix contexts in the definition of the reduction
relation, TRShvs are too restrictive to model
of functional programming languages. For in-
stance, the following TRShv is not confluent
without suffix contexts.{

I(x) → x
App(f, x) → f(x)

In the system, we have
I(f, x)← App(I(f), x)→ App(f, x)→ f(x).

However, to reduce I(f, x) to f(x) we need to
apply the first rule in the suffix context �(x)
which has the hole at a non-leaf position.
A binary relation > is said to be a strict or-

der if > is transitive and irreflexive. A binary
relation ≥ is said to be a partial order if ≥ is
reflexive, transitive and antisymmetric. A bi-
nary relation � is said to be a quasi-order if
� is transitive and reflexive. The strict part
of a quasi-order �, written by �, is defined as
� \ �. The partial extension of a strict-order
>, written by ≥, is defined by its reflexive clo-
sure. Note that if � is a quasi-order then its
strict part � is a strict order, and if > is a strict
order then its partial extension ≥ is a partial or-
der. A binary relation Υ on terms is said to be
stable if sΥt ⇒ sθΥtθ for all substitutions θ.
A binary relation Υ on terms has the replace-
ment property if sΥt⇒ a(· · · s · · ·)Υa(· · · t · · ·),
has the supplement property if a(%si)Υa′(%tj)
⇒ a(%si, u)Υa′(%tj , u). By an easy induction, we
can prove that any transitive binary relation
with the replacement property is closed con-
texts, and any transitive binary relation with
the supplement property is closed suffix con-
texts. A strict order > has the subterm prop-
erty if a(· · · t · · ·) > t for all t and a ∈ F ∪ V .
A strict order > has the deletion property if
a(. . . , ti, . . .) > a(. . . , . . .) for all a(t1, . . . , tn)
and i. A well-founded strict order > is said to
be a reduction order if > has the replacement,
the supplement and the stability property.

Theorem 2.1 Let R be a TRShv . Then R
is terminating iff there exists a reduction order
> satisfying l > r for all l→ r ∈ R.

Proof. From the definition, it is trivial that
R is terminating iff the transitive closure of its
reduction relation +→

R
is well-founded. More-

over, +→
R

is well-founded iff +→
R

is a reduction

order, which obviously satisfies l
+→
R

r for all
l → r ∈ R. On the other hand, letting l > r
for all l → r ∈ R, if s→

R
t then s > t by the

definition of reduction relation. Hence the well-
foundedness of > ensures that R is terminating.

�
A multiset on a set A is a set of elements

of A in which elements may have multiple oc-
currences. We use standard set notation like
{a, a, b}. It will be obvious from the context
if we refer to a set or a multiset. For given
strict order >, multisets M and N , we define
M >mul N as follows:
∀n ∈ N −M. ∃m ∈M −N. m > n

3. Simplification Orders

In TRSs, one of the most important concept
for designing reduction orders is the notion of
simplification orders by Dershowitz 6).

Definition 3.1 A simplification order is a
strict order with the replacement, the deletion
and the subterm property.
Any ground terms in our definition are also

ground terms in the definition of Ref. 6), be-
cause no variable occurs in ground terms and
the definition of terms in Ref. 6) does not fix
the arity for each symbol, too. Hence the fol-
lowing theorem is derived from First Termina-
tion Theorem in Ref. 6).

Theorem 3.2 Any simplification order is
well-founded over ground terms.

4. Recursive Path Orders

Based on the notion of simplification orders,
the recursive path order was introduced by
Dershowitz 6). In this section, we extend the
order over terms with higher-order variables.

Definition 4.1 (Recursive Path Order) A
precedence � is a quasi-order on F , and ∼ is
the equivalence part of �. In this definition, we
identify symbols F and G if F ∼ G, that is,
a(t1, . . . , tn) ≡ a′(t′1, . . . , t′n) if ∀i. ti ≡ t′i and
either a = a′ ∈ V or a ∼ a′ ∈ F .
For terms s ≡ a(s1, . . . , sn) and t ≡
a′(t1, . . . , tm), we define s >rpo t as follows:
(1) a ✄ a′ and s >rpo tj for all j,
(2) a ∼ a′ and
{s1, . . . , sn} >mul

rpo {t1, . . . , tm},
(3) si ≥rpo t for some i,
(4) a = a′ ∈ V and
{s1, . . . , sn} >mul

rpo {t1, . . . , tm}, or

38 IPSJ Transactions on Programming July 2001

(5) a′ ∈ V , a is the greatest w.r.t. � and
{s1, . . . , sn} ≥mul

rpo {a′, t1, . . . , tm}.
Rules (1), (2) and (3) correspond to the orig-

inal recursive path order in TRSs. Since Rules
(4) and (5) are applied only the case when we
treat variables, it is trivial that >rpo is a sim-
plification order over ground terms. Moreover,
the following theorem holds.

Theorem 4.2 The recursive path order is
a simplification order.

Proof. Let � be a precedence. It is obvi-
ous that >rpo has the irrefflexivity, the dele-
tion and the subterm property. First we prove
the replacement property. Let s >rpo t. For
any F ∈ F , it is obvious that F (· · · s · · ·) >rpo

F (· · · t · · ·) by Rule (2). For any f ∈ V , it is ob-
vious that f(· · · s · · ·) >rpo f(· · · t · · ·) by Rule
(4). Finally, letting t1 >rpo t2 >rpo t3, we prove
the transitivity, that is t1 >rpo t3, by induction
on |t1|+|t2|+|t3|. Let t1 >rpo t2 by rule (α) and
t2 >rpo t3 by rule (β). It suffices to show the
cases (α, β) = (2, 5), (5, 4). We suppose that
ti ≡ ai(tij , . . . , tiki

) for i = 1, 2, 3.
(2, 5): Since a2 is the greatest, so is a1.
From the assumption, { %t1j} >mul

rpo { %t2j}
≥mul

rpo {a3, %t3j}. Hence { %t1j} >mul
rpo {a3, %t3j}.

It follows that t1 >rpo t3 by Rule (5).
(5, 4): From the assumption, { %t2j} ≥mul

rpo

{ %t3j}. Hence {a3, %t2j} ≥mul
rpo {a3, %t3j}.

From a2 = a3, { %t1j} ≥mul
rpo {a3, %t3j}. It fol-

lows that t1 >rpo t3 by Rule (5). �
Next we prove the stability of recursive path

order.
Theorem 4.3 The recursive path order is

stable.
Proof. Let s ≡ a(s1, . . . , sn) >rpo

a′(t1, . . . , tm) ≡ t and θ be a substitution. By
induction on |s|+ |t|, we prove sθ >rpo tθ. Ac-
cording to the definition of s >rpo t, we have
the following five cases:
• Rule (1): From the induction hypothesis,
sθ >rpo tjθ for all j. Hence it follows that
sθ >rpo tθ by Rule (1).
• Rule (2): From the induction hypothe-
sis, it is obvious that {s1θ, . . . , snθ} >mul

rpo

{t1θ, . . . , tmθ}. Hence it follows that sθ >rpo tθ
by Rule (2).
• Rule (3): From the induction hypothesis,
siθ ≥rpo tθ. Hence it follows that sθ >rpo tθ
by Rule (3).
•Rule (4): Let θ(a) ≡ a′′(%ui). From the in-
duction hypothesis, it is obvious that {s1θ, . . . ,
snθ} >mul

rpo {t1θ, . . . , tmθ}. Hence {%ui, s1θ, . . . ,

snθ} >mul
rpo {%ui, t1θ, . . . , tmθ}. Therefore it fol-

lows that sθ >rpo tθ by Rule (2) or Rule (4).
•Rule (5): Let θ(a′) ≡ a′′(u1, . . . , uk). We have
the following four cases.
– a ✄ a′′: From the induction hypothe-
sis, it is obvious that {s1θ, . . . , snθ} ≥mul

rpo

{a′′(u1, . . . , uk), t1θ, . . . , tmθ}. From the
subterm property, for all j there exists a si

such that sθ >rpo siθ ≥rpo a′′(u1, . . . , uk)
>rpo uj , and for all j there exists a si such
that sθ >rpo siθ ≥rpo tjθ. Hence it follows
that sθ >rpo tθ by Rule (1).

– a ∼ a′′ and ∃p.sp ≡ a′: From the assump-
tion, {s1, . . . , sn}−{sp} ≥mul

rpo {t1, . . . , tm}.
From the induction hypothesis, it is ob-
vious that {s1θ, . . . , snθ} −{spθ} ≥mul

rpo

{t1θ, . . . , tmθ}. Since spθ >rpo ui for all
i by the subterm property, {s1θ, . . . , snθ}
>mul

rpo {u1, . . . , uk, t1θ, . . . , tmθ}. Hence it
follows that sθ >rpo tθ by Rule (2).

– a ∼ a′′ and ∀i.si
≡ a′: From the as-
sumption, there exists sp ∈ {s1, . . . , sn}
−{t1, . . . , tm} such that sp >rpo a′. With-
out loss of generality, we assume that there
is a number q such that sp >rpo ti for
all i ≤ q and {s1, . . . , sn} − {sp} ≥mul

rpo

{tq+1, . . . , tm}. From the induction hy-
pothesis, it is obvious that {s1θ, . . . , snθ}−
{spθ} ≥mul

rpo {tq+1θ, . . . , tmθ}. From the in-
duction hypothesis and the subterm prop-
erty, spθ >rpo tjθ for all j ≤ q, and
spθ >rpo a′′(u1, . . . , uk) >rpo ui for all i.
Thus it follows that {s1θ, . . . , snθ} >mul

rpo

{u1, . . . , uk, t1θ, . . . , tmθ}. Hence it follows
that sθ >rpo tθ by Rule (2).

– a′′ ∈ V : From the induction hypothesis,
{s1θ, . . . , snθ} ≥mul

rpo {a′′(%ui), t1θ, . . . , tmθ}.
Suppose that k = 0. Since { %siθ} ≥mul

rpo

{a′′, %tjθ}, sθ >rpo tθ by Rule (5). Sup-
pose that k > 0. It follows that
a′′(%ui) >rpo ui for any i by the sub-
term property and a′′(%ui) >rpo a′′ by
Rule (4). Thus {a′′(%ui), t1θ, . . . , tmθ} >mul

rpo

{a′′, %ui, t1θ, . . . , tmθ}. Hence {s1θ, . . . ,
snθ} >mul

rpo {a′′, %ui, t1θ, . . . , tmθ}. There-
fore it follows that sθ >rpo tθ by Rule (5).

�
Unfortunately, the recursive path order does

not have the supplement property. For exam-
ple, letting G✄F , then F (G(0)) >rpo G(0), but
F (G(0), x) <rpo G(0, x). In order to solve the
difficulty, we need the dependency pair and the
argument filtering method. Here we introduce

Vol. 42 No. SIG 7(PRO 11) On Proving Termination of TRS with Higher-Order Variables 39

the notion of semi-reduction orders, which is
defined as reduction orders without supplement
property.

Theorem 4.4 The recursive path order is
a semi-reduction order.

Proof. Thanks to Theorems 4.2 and 4.3,
it suffices to show that the well-foundedness.
Assume that there exists an infinite decreas-
ing sequence t0 >rpo t1 >rpo t2 >rpo · · ·.
From the definition of >rpo, it is trivial that
V ar(ti) ⊇ V ar(ti+1) for all i. We define the
substitution θ by θ(x) = F for all x ∈ V ar(t0),
where F is a function symbol. From Theo-
rem 4.3, t0θ >rpo t1θ >rpo t2θ >rpo · · ·. Be-
cause all tiθ is a ground term, >rpo is not well-
founded over ground terms. It is a contradiction
to Theorem 3.2. �

5. Dependency Pairs

The notion of dependency pairs was intro-
duced for proving termination of first-order
TRSs by Arts and Giesl 1),2). This notion was
extended to Nipkow’s system, which is a dif-
ferent framework than ours, by Watanabe, et
al.17). In this section, we define the dependency
pair of TRShvs .

Definition 5.1 F# = {F # | F ∈ F} is
a set of marked symbols disjoint from F ∪
V . We define the root-marked terms by
(F (t1, . . . , tn))# = F #(t1, . . . , tn). If root(t) ∈
V then we identify t# with t.
Let R be a TRS. A pair 〈u#, v#〉 of terms is

an outer dependency pair of R if there exists a
rule u→ v ∈ R such that root(v) ∈ DF (R)∪V .
A pair 〈u#, v#〉 of terms is an inner dependency
pair of R if there exist a rule u→ C[v] ∈ R with
C[]
≡ � such that root(v) ∈ DF (R) ∪ V and
v itself is not a variable. The sets DP #

out(R)
and DP #

in(R) are defined by all outer and in-
ner dependency pairs, respectively. The set
DP #(R) of dependency pairs of R is defined
by DP #(R) = DP #

out(R) ∪DP #
in(R).

Definition 5.2 A term t is said to be al-
most terminating if any immediate subterm of
t is terminating but t is not terminating. A se-
quence of dependency pairs 〈u#

0 , v#
0 〉〈u#

1 , v#
1 〉 · · ·

is said to be a dependency chain of R if for
each i there exist a substitution θi and a suffix
context Si[] such that Si[uiθi] is almost termi-
nating and satisfying the following conditions:
• if 〈u#

i , v#
i 〉 is an outer dependency pair:

then Si[viθi]#
∗→Si+1[ui+1θi+1]#,

• if 〈u#
i , v#

i 〉 is an inner dependency pair:

then (viθi)#
∗→Si+1[ui+1θi+1]#.

For example, in the following TRShv R{
F → G(A)

G(A, f) → f(F)
we have two outer dependency pairs 〈F #,
G#(A)〉 and 〈G#(A, f), f(F)〉, and one inner
dependency pair 〈G#(A, F), F #〉. This system
is not terminating, because of

F (F)→ G(A, F)→ F (F)→ G(A, F)→ · · · .
The following infinite dependency chain simu-
lates this infinite reduction sequence:
〈F #, G#(A)〉〈G#(A, f), f(F)〉〈F #, G#(A)〉 · · · .
We notice that the suffix context S[] ≡ �(f) is
necessary for the infinite dependency chain.

Lemma 5.3
(i) If t is terminating then any subterm of t
is terminating.

(ii) If t is almost terminating then root(t) is
a defined symbol.

Proof. It is trivial. �
Lemma 5.4 Let t be an almost terminat-

ing term. Then there exists a dependency pair
〈u#, v#〉, a substitution θ and a suffix context
S[] such that t#

∗→S[uθ]#, S[uθ] is almost ter-
minating, and satisfying the following proper-
ties:
• S[vθ] is almost terminating

if 〈u#, v#〉 is an outer dependency pair.
• vθ is almost terminating

if 〈u#, v#〉 is an inner dependency pair.
Proof. Since all immediate subterm of t

is terminating, any infinite reduction sequence
from t include some root position reductions.
Hence there exist a rule l→ r, a substitution θ
and a suffix context S[] such that t#

∗→S[lθ]#

and S[rθ] is not terminating. It is obvious that
S[lθ] is almost terminating. We have three fol-
lowing cases:
(a) rθ is terminating:

Then S[rθ] is almost terminating. From
Lemma 5.3, root(S[rθ]) is a defined sym-
bol. Hence root(rθ) is a defined symbol. It
follows that root(r) is a defined symbol or
a variable. In both cases, it is obvious that
〈l#, r#〉 is an outer dependency pair.

(b) rθ is almost terminating:
From Lemma 5.3, root(rθ) is a defined sym-
bol. It follows that root(r) is a defined sym-
bol or a variable. In both cases, it is ob-
vious that 〈l#, r#〉 is an outer dependency
pair. Moreover it is obvious that S[rθ] is
almost terminating.

(c) Otherwise: Let t′ be a minimal size term

40 IPSJ Transactions on Programming July 2001

in {rθ|p | rθ|p is not terminating }. From
the minimality, t′ is almost terminating.
For any x ∈ V ar(r) ⊆ V ar(l), xθ is
a subterm of some immediate subterm of
lθ. Since S[lθ] is almost terminating, any
immediate subterm of lθ is terminating.
From Lemma 5.3 (i), xθ is terminating
for any x ∈ V ar(r) ⊆ V ar(l). Hence
t′ ≡ rθ|p ≡ r|pθ. Since t′ is almost ter-
minating, root(r|pθ) is a defined symbol.
Hence root(r|p) is a defined symbol or a
variable. In the former case, 〈l#, (r|p)#〉
is an inner dependency pair. In the latter
case, if p is a leaf position in r then r|pθ is
terminating, because r|pθ is a subterm of
(lθ)#. It is a contradiction. If p is not a
leaf position in r then 〈l#, r|p〉 is an inner
dependency pair. �

Theorem 5.5 R is not terminating iff there
exists an infinite dependency chain of R.

Proof. (⇐) Let 〈u#
0 , v#

0 〉〈u#
1 , v#

1 〉〈u#
2 , v#

2 〉 · · ·
be an infinite dependency chain with sub-
stitutions θi and suffix contexts Si[] such
that Si[viθi]#

∗→Si+1[ui+1θi+1]# for 〈u#
i , v#

i 〉 ∈
DP #

out(R), and (viθi)#
∗→Si+1[ui+1θi+1]# for

〈u#
i , v#

i 〉 ∈ DP #
in(R). From the definition of

dependency pairs, there exist C ′
i[] such that

ui → C ′
i[vi] ∈ R. We define contexts Ci[] as

Ci[] ≡ � for 〈u#
i , v#

i 〉 ∈ DP #
out(R), and Ci[] ≡

Si[C ′
i[]] for 〈u#

i , v#
i 〉 ∈ DP #

in(R). Then Si[uiθi]
+→Ci[Si+1[ui+1θi+1]] for all i. Hence there
exists an infinite reduction sequence S0[u0θ0]
+→C0[S1[u1θ1]]

+→C0[C1[S2[u2θ2]]]
+→· · ·.

(⇒) Let t0 be a minimal size counterexam-
ple, i.e., the size of t0 is minimal in all non-
terminating terms. Since t0 is almost terminat-
ing, from Lemma 5.4, there exist a dependency
pair 〈u#

0 , v#
0 〉, a substitution θ0 and a suffix con-

text S0[] such that t#0
∗→S0[u0θ0]#, S0[u0θ0] is

almost terminating, and either v0θ0 or S0[v0θ0]
is almost terminating.
Let t1 be either v0θ0 or S0[v0θ0], which is al-

most terminating. Applying Lemma 5.4 to t1,
we obtain a dependency pair 〈u#

1 , v#
1 〉, a sub-

stitution θ1 and a suffix context S1[] such that
t#1

∗→S1[u1θ1]#, S1[u1θ1] is almost terminating,
and either v1θ1 or S1[v1θ1] is almost terminat-
ing. Then it is easily seen that 〈u#

0 , v#
0 〉〈u#

1 , v#
1 〉

is a dependency chain. Let t2 be either v1θ1 or
S1[v1θ1], which is almost terminating.
Repeating this procedure to t0, t1, t2, . . .,

we obtain an infinite dependency chain
〈u#

0 , v#
0 〉〈u#

1 , v#
1 〉〈u#

2 , v#
2 〉 · · ·. �

Definition 5.6 A pair (�, >) of binary re-
lations on terms is said to be a reduction pair
for R if it satisfies the following conditions:
• � has the replacement property, and the

stability for R, that is, l � r ⇒ lθ � rθ for
all l→ r ∈ R.

• > is well-founded, and stable for DP #(R),
that is, u# > v# ⇒ u#θ � v#θ for all
〈u#, v#〉 ∈ DP #(R).

• � · > ⊆ > or > · �⊆ >.
• � satisfies the marked condition, that is,

t � t# for all t.
• � and > have the supplement property for

R ∪DP #
out(R), that is, for any (s, t) ∈ R ∪

DP #
out(R), S[] and θ, sθ � tθ ⇒ S[sθ] �

S[tθ] and sθ > tθ ⇒ S[sθ] > S[tθ].
• S[t] � t for any suffix context S[].

Specially, a quasi-order � is said to be a weak
reduction order if (�, �) is a reduction pair.

Theorem 5.7 Let R be a TRShv and (�, >)
a reduction pair. If l � r for all l → r ∈ R and
u# > v# for all 〈u#, v#〉 ∈ DP #(R) then R is
terminating.

Proof. Without loss of generality, we sup-
pose that � is a quasi-order and > is a strict
order, because it is obvious that (�∗, >+) is also
a reduction pair such that it satisfies assump-
tions, �∗ is a quasi-order, and >+ is a strict
order.
We assume that R is not terminating. From

Theorem 5.5, there exists an infinite depen-
dency chain 〈u#

0 , v#
0 〉〈u#

1 , v#
1 〉〈u#

2 , v#
2 〉 · · · with

substitutions θi and suffix contexts Si[] such
that Si[viθi]#

∗→Si+1[ui+1θi+1]# for 〈u#
i , v#

i 〉 ∈
DP #

out(R), and (viθi)#
∗→Si+1[ui+1θi+1]# for

〈u#
i , v#

i 〉 ∈ DP #
in(R).

From the assumption and the stability of >,
we have u#

i θi > v#
i θi for all i. Since root(ui)

is a function symbol, u#
i θi ≡ (uiθi)#. From

the marked condition, v#
i θi � (viθi)#. Hence

(uiθi)# > · � (viθi)#. From the supplement
property, Si[(uiθi)#] > · � Si[(viθi)#]. From
the assumption, Si[viθi]# � (viθi)#. It follows
that Si[uiθi]# > · � Si[viθi]# for 〈u#

i , v#
i 〉 ∈

DP #
out(R), and Si[uiθi]# > · � (viθi)# for

〈u#
i , v#

i 〉 ∈ DP #
in(R).

Since � has the replacement, the supplement,
and the stable property, it follows that ∗→ ⊆�.
Therefore, we obtain an infinite decreasing

sequence S0[u0θ0]# > · � S1[u1θ1]# > · �
S2[u2θ2]# > · � · · ·. It is a contradiction to
the well-foundedness of >. �
Note that the theorem correspond to Theo-

Vol. 42 No. SIG 7(PRO 11) On Proving Termination of TRS with Higher-Order Variables 41

rem5.5 for HRSs essentially requires the sub-
term relation, i.e., the definition of dependency
chains in HRSs uses the condition viθi

∗→
in

�sub

ui+1θi+1 instead of (viθi)#
∗→(ui+1θi+1)# (See

Ref. 17)). Hence weak reduction orders in HRSs
must have the subterm property. The fact is
very restrictive, because the argument filtering
method, introduced in the next section, can-
not work well in HRSs. On the other hand, in
TRShvs the argument filtering method is still
effective.

6. Argument Filtering Method

The argument filtering method, which de-
signs weak reduction orders from arbitrary re-
duction orders, was first proposed by Arts and
Giesl in TRSs 3). In this section, we extend the
method to TRShvs .

Definition 6.1 An argument filtering func-
tion is a function π such that for any F ∈ F ,
π(F) is a list of positive integers [i1, . . . , ik] with
i1 < · · · < ik. π(F)≤n denotes the maximal
sub-list [i1, . . . , im] of π(F) such that im ≤ n.
We can naturally extend π over terms as fol-
lows: letting t ≡ a(t1, . . . , tn)


π(t) = a(π(t1), . . . , π(tn))

if a ∈ V
π(t) = a(π(ti1), . . . , π(tim

))
if a ∈ F and π(a)≤n = [i1, . . . , im]

For a given argument filtering function π and
binary relation >, we define s �π t by π(s) ≥
π(t).

Lemma 6.2 If > is a semi-reduction order
then �π has the replacement property.

Proof. Let C[] ≡ a(. . . , �, . . .). If π(C[])
does not include � then π(C[s]) ≡ π(C[]) ≡
π(C[t]), otherwise s �π t ⇒ π(s) ≥ π(t) ⇒
π(C)[π(s)] ≥ π(C)[π(t)] ⇒ π(C[s]) ≥ π(C[t])
⇒ C[s] �π C[t]. �

Lemma 6.3 If > is a semi-reduction order
then �π is well-founded.

Proof. If t0 �π t1 �π t2 �π · · ·, then
π(t0) > π(t1) > π(t2) > · · ·. Therefore, the
well-foundedness of > ensures that of �π. �

Lemma 6.4 If a strict order > has the dele-
tion property, then S[t] �π t.

Proof. From the definition of the argu-
ment filtering, if π(S[t]) ≡ a(t1, . . . , tn), then
π(t) ≡ a(t1, . . . , tm) for some m ≤ n. From the
deletion property, a(t1, . . . , tn) ≥ a(t1, . . . , tm).
Hence S[t] �π t. �
Unfortunately, �π does not have the stabil-

ity property. For example, let � be the prece-

dence with 2✄ 1✄ 0, θ(f) = F and π(F) = [2],
then π(f(2, 0)) ≡ f(2, 0), π(f(1, 1)) ≡ f(1, 1),
π(f(2, 0)θ) ≡ F (0), and π(f(1, 1)θ) ≡ F (1).
Thus we obtain the following counterexample:

f(2, 0) >rpo f(1, 1), but F (0) <rpo F (1).
Hence we need a suitable restriction.

Lemma 6.5 Let > be a strict order with
the replacement and the deletion property, and
θπ be the substitution defined as θπ(x) = π(xθ)
for all x ∈ V . Then π(t)θπ ≥ π(tθ). Moreover,
if no variable occurs at non-leaf positions in t
then π(t)θπ ≡ π(tθ).

Proof. Let t ≡ a(t1, . . . , tn). We prove
π(t)θπ ≥ π(tθ) by induction on |t|. In the case
a ∈ F with π(a)≤n = [i1, . . . , im], the claim
holds as follows:
π(a(t1, t2, . . . , tn))θπ

≡ a(π(ti1), π(ti2), . . . , π(tim
))θπ

≡ a(π(ti1)θπ, π(ti2)θπ, . . . , π(tim
)θπ)

≥ a(π(ti1θ), π(ti2)θπ, . . . , π(tim
)θπ)

...
≥ a(π(ti1θ), π(ti2θ), . . . , π(tim

θ))
≡ π(a(t1θ, t2θ, . . . , tnθ))
≡ π(a(t1, t2, . . . , tn)θ)

In the case a ∈ V and root(θ(a)) ∈ F , we sup-
pose that θ(a) = a′(t′1, . . . , t′k), [i1, . . . , ip] =
π(a′)≤k+n and [i1, . . . , iq] = π(a′)≤k, then the
claim holds as follows:
π(a(t1, . . . , tn))θπ

≡ a(π(t1), . . . , π(tn))θπ

≡ a′(π(t′i1), . . . , π(t
′
iq
), π(t1)θπ, . . . , π(tn)θπ)

≥ a′(π(t′i1), . . . , π(t
′
iq
),

π(tiq+1−k)θπ, . . . , π(tip−k)θπ)
≥ a′(π(t′i1), . . . , π(t

′
iq
),

π(tiq+1−kθ), . . . , π(tip−kθ))
≡ π(a′(t′1, . . . , t′k, t1θ, . . . , tnθ))
≡ π(a(t1, . . . , tn)θ)

In the case a ∈ V and root(θ(a)) ∈ V , we sup-
pose that θ(a) = a′(t′1, . . . , t′k), then the claim
holds as follows:
π(a(t1, . . . , tn))θπ

≡ a(π(t1), . . . , π(tn))θπ

≡ a′(π(t′1), . . . , π(t
′
k), π(t1)θπ, . . . , π(tn)θπ)

≥ a′(π(t′1), . . . , π(t
′
k), π(t1θ), . . . , π(tnθ))

≡ π(a′(t′1, . . . , t′k, t1θ, . . . , tnθ))
≡ π(a(t1, . . . , tn)θ)
Moreover, if no variable occurs at non-leaf

position in t then π(t)θπ ≡ π(tθ) can be proved
similar to the above proof. �

Lemma 6.6 Suppose that > be a semi-
reduction order with the deletion property. Let

42 IPSJ Transactions on Programming July 2001

s and t be terms such that no variable occurs at
non-leaf positions in s. If s �π t (resp. s �π t)
then sθ �π tθ (resp. sθ �π tθ).

Proof. From Lemma 6.5 and the stability of
>. �
In order to satisfy the supplement prop-

erty, we introduced the arity condition for
pair (π, R) of an argument filtering function
π and a TRShv R, which is defined as a ∈ F ,
π(a) = [i1, . . . , in] and in ≤ m for all l →
a(r1, . . . , rm) ∈ R.

Lemma 6.7 Let R be a TRShv , π an ar-
gument filtering function, θ a substitution, S[]
a suffix context and > a semi-reduction order
with the deletion property. Supposing that
(π, R) has the arity condition. For all l →
r ∈ R, if lθ �π rθ (resp. lθ �π rθ) then
S[lθ] �π S[rθ] (resp. S[lθ] �π S[rθ]).

Proof. From the arity condition, π(S[rθ]) ≡
π(rθ). From Lemma 6.4, S[lθ] �π lθ. Hence if
lθ �π rθ then S[lθ] �π lθ �π rθ ∼π S[rθ], and
if lθ �π rθ then S[lθ] �π lθ �π rθ ∼π S[rθ]. �
Now we present a method for proving termi-

nation of TRShvs .
Theorem 6.8 Let R be a TRShv , π an

argument filtering function and > be a semi-
reduction order with the deletion property.
Suppose that
• l �π r for all l→ r ∈ R,
• u# �π v# for all 〈u#, v#〉 ∈ DP #(R),
• no variable occurs at non-leaf position in l

for all l→ r ∈ R,
• �π satisfies the marked condition, and
• (π, R) satisfies the arity condition,

then R is terminating.
Proof. From Lemma 6.2, � has the replace-

ment property. From Lemma 6.3, � is well-
founded. From Lemma 6.6 and the assumption,
� and � are stable for R∪DP #(R). From the
arity condition and Lemma 6.7, � and � have
the supplement property. From Lemma 6.4,
S[t] � t for any suffix context S[]. Therefore R
is terminating by Theorem 5.7. �
In general, �π does not satisfy the marked

condition. Hence we need a suitable restriction.
Theorem 6.9 Let R be a TRShv , � be a

precedence and π an argument filtering func-
tion. Suppose that
• π(l) ≥rpo π(r) for all l→ r ∈ R,
• π(u#) >rpo π(v#)

for all 〈u#, v#〉 ∈ DP #(R),
• no variable occurs at non-leaf position in l

for all l→ r ∈ R,
• F � F # and π(F) ⊇ π(F #) for all F ∈

DF (R), and
• (π, R) satisfies the arity condition,

then R is terminating.
Proof. We define � by the argument filtering

based on >rpo, that is, s � t ⇐⇒ π(s) ≥rpo

π(t). Since F � F # and π(F) ⊇ π(F #), �
satisfies the marked condition. Therefore R is
terminating by Theorem 6.8. �

Example 6.10 Here we prove the termina-
tion of RMap defined as follows:{

Map(f, []) → []
Map(f, x :: xs) → f(x) :: Map(f, xs)

Let Map ∼ Map# ✄ :: ✄ [], π(Map) =
π(Map#) = π(::) = [1, 2] and π([]) = []. Then
for all rules

π(Map(f, [])) ≥rpo π([])
π(Map(f, x :: xs))

≥rpo π(f(x) :: Map(f, xs)),
and for all dependency pairs

π(Map#(f, x :: xs)) ≥rpo π(Map#(f, xs))
π(Map#(f, x :: xs)) ≥rpo π(f(x)).

Therefore RMap is terminating by Theorem 6.9.
We also show the termination of the following

non-simply terminating TRShv R.
Example 6.11 Let R be the TRShv defined

as follows:
R = {F (F (f, x), x)→ F (G(F (f, x)), f(x))

Then there exist three dependency pairs
〈F #(F (f, x), x), F #(G(F (f, x)), f(x))〉,
〈F #(F (f, x), x), F #(f, x)〉, and
〈F #(F (f, x), x), f(x)〉.

Suppose that F ∼ F # ✄ G, π(F #) = π(F) =
[1, 2] and π(G) = []. Then for the rule
π(F (F (f, x), x))

≡ F (F (f, x), x)
>rpo F (G, f(x))
≡ π(F (G(F (f, x)), f(x))),

and for all dependency pairs
π(F #(F (f, x), x))

≡ F #(F (f, x), x)
>rpo F #(G, f(x))
≡ π(F #(G(F (f, x)), f(x))),

π(F #(F (f, x), x)) >rpo F #(f, x),
π(F #(F (f, x), x)) >rpo f(x).

Therefore R is terminating by Theorem 6.9.
When we try to prove the termination of non-

simply terminating TRShvs , the argument fil-
tering method is very effective. On the other
hand, in the framework of HRSs introduced by
Nipkow, the argument filtering method cannot
be designed essentially. This fact proves the
usefulness of our TRShvs .

Vol. 42 No. SIG 7(PRO 11) On Proving Termination of TRS with Higher-Order Variables 43

7. Simply-typed TRSs

We have discussed with methods for proving
termination of TRShvs . A lot of unwilling re-
striction are caused by the supplement prop-
erty. In this section, we solve such restrictions
by introducing simply typed systems.

Definition 7.1 A set of basic-types is de-
noted by B. The set T of simply-types is gen-
erated from B by the constructor → as follows:
T ::= B | (T → T)

A type attachment τ is a function from F ∪ V
to T . A term a(t1, . . . , tn) has type β if τ (a) =
(α1 → (· · · → (αn → β) · · ·)) and each ti has
type αi. A term is said to be a simply-typed
term if it has a simply-typed type.

Definition 7.2 A TRShv is said to be a
simply-typed TRS if l and r have the same ba-
sic type for all l→ r ∈ R. A reduction relation
→
R

in simply-typed TRS is defined over simply-
typed terms.
The restriction by simply-typed system is

very useful. We can eliminate suffix contexts
in the definition of the reduction relation, be-
cause we can naturally restrict that each rule
has a basic type. Hence semi-reduction orders
can directly prove termination.

Theorem 7.3 Let R be a simply-typed
TRS. Then R is terminating iff there exists a
semi-reduction order > satisfying l > r for all
l→ r ∈ R.

Proof. Let s→
R

t. Then there exist a context
C[], a substitution θ and a rule l→ r ∈ R such
that s ≡ C[S[lθ]] and t ≡ C[S[rθ]]. Thanks to
the restriction by simply-typed, S[] ≡ �. It fol-
lows that if l > r for all l→ r ∈ R then →

R
⊆>.

Hence the well-foundedness of > ensures that
R is terminating. On the other hand, R is ter-
minating iff +→

R
is a semi-reduction order, which

obviously satisfies l
+→
R

r for all l→ r ∈ R. �
In simply-typed TRSs, for any simply-typed

terms s and t, if s→ t then both terms have the
same types. For any simply-typed term s and
θ, if sθ has a simply-typed then s and sθ has the
same type. Moreover we suppose that the left-
hand side of any rules has a basic type. Hence
we can define dependency pairs in simply-typed
TRSs as 〈u#, v#〉 ∈ DP #(R) such that v# has
a basic type and itself is not a variable. We
denote by DP #

s (R) the set of dependency pairs
of simply-typed TRS R. We can also define
dependency chains in simply-typed systems as

〈u#
0 , v#

0 〉〈u#
1 , v#

1 〉 · · · such that there exist θi and
(viθi)#

∗→(ui+1θi+1)#. From Theorem 5.5, we
obtain the following corollary:

Corollary 7.4 A simply-typed TRS R is
not terminating iff there exists an infinite de-
pendency chains in simply-typed systems.
Next we should define reduction pairs in

simply-typed systems.
Definition 7.5 A pair (�, >) of binary re-

lations on terms is said to be a reduction pair
for R in simply-typed systems if it satisfies the
following conditions:
• � has the replacement property and the

stability for R.
• > is well-founded and stable for DP #(R),
• � · > ⊆ > or > · �⊆ >.
• � satisfies the marked condition,

Specially, a quasi-order � is said to be a
weak reduction order in simply-typed systems
if (�, �) is a reduction pair in simply-typed sys-
tems.
The above definition is only to remove last

two conditions for the supplement property in
Definition 5.6. Hence we obtain the following
corollary from Theorem 5.7.

Corollary 7.6 Let R be a simply-typed
TRS and (�, >) a reduction pair for R in sim-
ply typed systems. If l � r for all l → r ∈ R
and u# > v# for all 〈u#, v#〉 ∈ DP #

s (R) then R
is terminating.
Finally, since reduction pairs in simply typed

systems does not require the supplement prop-
erty, from Theorems 6.8 and 6.9, we obtain two
following corollaries.

Corollary 7.7 Let R be a simply typed
TRS, π an argument filtering function and >
be a semi-reduction order. Suppose that
• l �π r for all l→ r ∈ R,
• u# �π v# for all 〈u#, v#〉 ∈ DP #(R),
• no variable occurs at non-leaf position in l

for all l→ r ∈ R, and
• �π satisfies the marked condition,

then R is terminating.
Corollary 7.8 Let R be a simply-typed

TRS, � be a precedence and π an argument
filtering function. Suppose that
• π(l) ≥rpo π(r) for all l→ r ∈ R,
• π(u#) >rpo π(v#)

for all 〈u#, v#〉 ∈ DP #(R),
• no variable occurs at non-leaf position in l

for all l→ r ∈ R, and
• F � F # and π(F) ⊇ π(F #) for all F ∈

DF (R),

44 IPSJ Transactions on Programming July 2001

then R is terminating.
At the end, in order to show the usefulness

of our methods, we show the termination of the
following non-simply terminating simply-typed
TRS R by Corollary 7.8.

Example 7.9 Let R be a simply-typed
TRS defined as follows:

If(T, x, y)→ x

If(F, x, y)→ y

Sub(x, 0)→ x

Sub(S(x), S(y))→ Sub(x, y)
Gtr(S(x), 0)→ T

Gtr(0, y)→ F

Gtr(S(x), S(y))→ Gtr(x, y)
D(x, 0)→ T

D(S(x), S(y))
→ If(Gtr(x, y), F, D(S(x), Sub(y, x)))

Len([])→ 0
Len(x :: xs)→ S(Len(xs))

Flt(p, [])→ []
Flt(p, x :: xs)
→ If(p(x), x :: Flt(p, xs), F lt(p, xs))

We suppose that B = {Nat, NatList, Bool},
Flt has the type ((Nat → Bool) →
(NatList → NatList)), and other symbols
have usual types. In this simply-typed TRS,
Sub defines usual subtraction on natural num-
bers, Gtr defines usual order > on natural
numbers, Len(Xs) calculates the length of list
Xs, and D(n, m) defines the predicate such
that n is a divisor of m. Moreover, the
Flt-function (Filter-function) is one of the
most standard higher-order function in func-
tional programs. For example, the output of
Len(F lt(D(X), Xs)) by R is the number of
multiples of X in list Xs. Here, the dependency
pairs DP #

s (R) are defined as follows:
〈Sub#(S(x), S(y)), Sub#(x, y)〉
〈Gtr#(S(x), S(y)), Gtr#(x, y)〉
〈D#(S(x), S(y)),

If#(Gtr(x, y), F, D(S(x), Sub(y, x)))〉
〈D#(S(x), S(y)), Gtr#(x, y)〉
〈D#(S(x), S(y)), D#(S(x), Sub(y, x))〉
〈D#(S(x), S(y)), Sub#(y, x)〉
〈Len#(x :: xs), Len#(xs)〉
〈F lt#(p, x :: xs),

If#(p(x), x :: Flt(p, xs), F lt(p, xs))〉
〈F lt#(p, x :: xs), p(x)〉
〈F lt#(p, x :: xs), F lt#(p, xs)〉

We suppose that G# is identified to G for
all G ∈ F . We define the argument filter-
ing function π by π(T) = π(F) = π(0) =

π([]) = [], π(Sub) = π(S) = π(Len) = [1],
π(Gtr) = π(D) = π(::) = π(F lt) = [1, 2] and
π(If) = [1, 2, 3]. We define the precedence � by
D ✄ Len ✄ S ✄ Sub ✄ 0, D ✄ If ✄ Gtr ✄ T ✄ F ,
and Flt ✄ G for all G ∈ F\{Flt}. Then it
is routine to check that π(l) ≥rpo π(r) for all
l → r ∈ R and π(u#) >rpo π(v#) for all
〈u#, v#〉 ∈ DP #(R). Therefore R is terminat-
ing by Corollary 7.8.
Note that the above simply-typed TRS R

is not simply terminating, that is, any simpli-
fication orders cannot prove the termination.
When we try to prove the termination of non-
simply terminating simply-typed TRS, the ar-
gument filtering method is very effective. On
the other hand, in the framework of HRSs in-
troduced by Nipkow, the argument filtering
method cannot be designed essentially. This
fact proves the usefulness of our systems.

Acknowledgments We would like to thank
Masahiko Sakai for their useful comments
and discussion, Yoshihito Toyama, Toshiyuki
Yamada, and Munehiro Iwami for their useful
discussion.

References

1) Arts, T.: Automatically Proving Termination
and Innermost Normalization of Term Rewrit-
ing Systems, Ph.D. Thesis, Univ. of Utrecht
(1997).

2) Arts, T. and Giesl, J.: Automatically Proving
Termination Where Simplification Orderings
Fail, LNCS, Vol.1214 (TAPSOFT’97), pp.261–
272 (1997).

3) Arts, T. and Giesl, J.: Termination of Term
Rewriting Using Dependency Pairs, Theor.
Comput. Sci., Vol.236, pp.133–178 (2000).

4) Baader, F. and Nipkow, T.: Term Rewrit-
ing and All That, Cambridge University Press
(1998).

5) Dershowitz, N.: A Note on Simplification Or-
derings, Inf.Process. Lett., Vol.9, No.5, pp.212–
215 (1979).

6) Dershowitz, N.: Orderings for Term-rewriting
Systems, Theor. Comput. Sci., Vol.17, pp.279–
301 (1982).

7) Giesl, J. and Ohlebusch, E.: Pushing the Fron-
tiers of Combining Rewrite Systems Farther
Outwards, Proc.2nd Int.Workshop on Frontiers
of Combining Systems (FroCoS ’98), Amster-
dam, Studies in Logic and Computation, Vol.7,
pp.141–160, Research Studies Press, John Wi-
ley & Sons (2000).

8) Jouannaud, J.-P. and Rubio, A.: Rewrite Or-
derings for Higher-Order Terms in η-Long β-

Vol. 42 No. SIG 7(PRO 11) On Proving Termination of TRS with Higher-Order Variables 45

Normal Form and the Recursive Path Order-
ing, Theor. Comput. Sci., Vol.208, Nos.1–2,
pp.33–58 (1998).

9) Jouannaud, J.-P. and Rubio, A.: The Higher-
Order Recursive Path Ordering, IEEE Sym-
posium on Logic in Computer Science, Trento
(1999).

10) Hudak, P., Jones, S.P. and Walder, P.: Re-
port on the Programming Language Haskell: A
Non-Strict, Purely Functional Language, ACM
SIGPLAN Notices, Vol.27, No.5 (1997).

11) Iwami, M. and Toyama, Y.: Simplification Or-
dering for Higher-Order Rewrite Systems, IPSJ
Trans.Programming, Vol.40, No.SIG4 (PRO3),
pp.1–10 (1999).

12) Iwami, M.: Termination of Higher-Order
Rewrite Systems, Ph.D. Thesis, Japan Ad-
vanced Institute of Science and Technology
(1999).

13) Milner, R., Tofte, M. and Harper, R.: The Def-
inition of Standard ML, MIT Press (1990).

14) Nipkow, T.: Higher-Order Critical Pairs, Proc.
6th IEEE Symp. Logic in Computer Science,
pp.342–349, IEEE Computer Society Press
(1991).

15) Nipkow, T.: Orthogonal Higher-Order Rewrite
Systems are Confluent, Proc. Int. Conf.

on Typed Lambda Calculi and Applications,
LNCS, Vol.664, pp.306–317 (1993).

16) Paulson, L.C.: ML for the Working Program-
mer, Cambridge University Press (1991).

17) Watanabe, Y., Kawaguti, N., Sakai, M.,
Sakabe, T. and Inagaki, Y.: Proving Termina-
tion of Higher Order Rewriting Systems Based
on Dependency Pairs (in Japanese), Technical
Report, IEICE, SS97–85 (1998-03), pp.63–70
(1998).

(Received October 25, 2000)
(Accepted January 22, 2001)

Keiichirou Kusakari was
born in 1969. He received B.E.
degree from Tokyo Institute of
Technology in 1994, M.E. and
D.E. degrees from Japan Ad-
vanced Institute of Science and
Technology (JAIST) in 1996 and

2000, respectively. Since 2000, he is a re-
search associate of Research Institute of Electri-
cal Communication, Tohoku University. His re-
search interests include term rewriting systems,
program theory, and automated theorem prov-
ing. He is a member of JSSST and IEICE.

