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Recursion Removal and Introduction Using Assignments

Kazuhiko Kakehi,†,☆ Robert Glück††,☆☆

and Yoshihiko Futamura†††,☆☆

Recursive programs are often easy to write and reason about, while iterative ones are usu-
ally more efficient to execute. Transformation between recursive and iterative variants of a
function is therefore important in order to enjoy the benefits of both programming styles.
Recursion removal has been energetically researched for many years. In case of functions
which consume a list and produce a list, however, recursion removal is not so straightforward
without introduction of auxiliary stacks. We first define abstraction from constructors and
some kinds of constructing functions, and propose a recursion removal method from construct-
ing functions. This method produces tail-recursive programs from linear recursive functions
with accumulation of abstracted expressions. With specialization using partial evaluation
techniques, the interpretive overhead of constructor abstraction can be eliminated and fast
execution is realized. This technique works not only for linear recursion but also for tree
recursive functions or certain forms of nested functions. The idea of interpretation of ab-
stracted construction enables not only recursion removal but also elimination of accumulating
parameters. Transformed functions without accumulating parameters are executed in recur-
sive manner, and recursion is introduced to such functions. This paper intends to present
the way of these kinds of recursion removal and introduction as well as the representation of
abstracted constructions which enables these program transformations.

1. Introduction

Recursive programs are often easy to write
and reason about16),48), while iterative ones
are usually more efficient to execute. Trans-
formation between recursive and iterative vari-
ants of a function is therefore important in or-
der to enjoy the benefits of both programming
styles. Recursion removal has been energeti-
cally researched for many years. In case of func-
tions which translate lists, however, recursion
removal is not straightforward without intro-
duction of auxiliary stacks, or help of associa-
tivity of append, and the knowledge of asso-
ciativity cannot always be discovered automat-
ically. This is because constructors of lists lack
associativity.
Structures consist of constructors as contain-

ers and their contents including pointers. Since
their evaluation order does not matter with the
assumption that there are no side-effects, we
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focus on destructive operations, like rplacd in
Lisp or set-cdr! in Scheme. With the help of
such operations, we first introduce abstraction
from constructors and some kinds of construct-
ing functions which we call functional construc-
tors. Using this abstraction we then propose a
recursion removal method from functions which
produce a structure. This translation basically
intends for linear recursive functions with con-
struction. Tree recursive functions using con-
structors and some kinds of nested functions
can also be dealt with by our method.
Abstracted expressions is handled and eval-

uated by interpretive manners. Using partial
evaluation techniques, such interpretive over-
head is eliminated by specialization and fast
execution of the iterative variants is realized.
The idea of interpretation of abstracted ex-

pressions enables not only recursion removal
but also other areas. This abstraction elimi-
nates an accumulating parameter and the new
functions are executed in a recursive man-
ner. This transformation introduces recursion
to certain forms of iterative programs.
The rest of this paper is organized as follows.

Section 2 explains basic ideas of recursion re-
moval, and Section 3 gives an overview of our
idea to remove recursion. Section 4 investi-
gates abstraction from constructing expressions
including certain kinds of functions. This ab-
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define linear(x)
case p(x) of

True → b(x)
False → a(c(x), linear(d(x)))

a: auxiliary function b: base function
c: control function d: descent function
p: termination condition

Fig. 1 Definition skeleton of right linear recursion.

straction enables us to have associativity in con-
structing expressions with cheap expense. Sec-
tion 5 is the core part on recursion removal.
Using the idea of abstraction, transformation
is done in two steps of accumulation and spe-
cialization. Section 6 demonstrates transfor-
mation steps in detail and Section 7 measures
how much effect can be obtained by our idea.
Section 8 explains other aspects of our abstrac-
tion method, including recursion introduction.
Section 9 compares with other related works,
and Section 10 concludes with mentioning fu-
ture works.

2. Basic Ideas of Recursion Removal

In functional programming, functions are
usually expressed in recursive forms. Execu-
tion of recursive functions requires new stack
frames, except for tail recursion which is equiv-
alent to iteration, and manipulation of stacks
makes programs slower. Recursion removal is
a program transformation to obtain function-
ally equivalent programs with reduced number
of stacks. It is generally analyzed by human
and used in order to gain speedup.
Due to its importance, recursion removal has

been researched for a long time12). For exam-
ple, the oldest literature we found which men-
tions the relation between recursion and itera-
tion appears in 19639), and some kind of gen-
eral transformation appeared in 196617). De-
spite the importance and history it has, how-
ever, implementing recursion removal, even for
linear recursive functions, into real compilers is
rare. As one of evidence, compiler books do
not include topics of recursion removal except
for tail recursion2),5),49). This is because the
transformation is not yet ripe for full automa-
tion.
Now we observe basic approaches of recursion

removal. Linear recursive functions are defined
as functions having at most one recursive call
to itself in each branch. Right linear recursion,
one style of linear recursion, is illustrated in
Fig. 1.
If we remove recursion, one simple method

exists using an auxiliary accumulator and

counter35). That is, first we find the mini-
mum n which fulfills p(dn(x)), and store n−1 in
the counter m. We then calculate b(dn(x)) and
store it into the accumulator acc, and repeat-
edly compute a(c(dm(x)), acc) for decrementing
m until m = 0. This method only requires two
additional parameters, but needs O(n2) com-
putation for d. As far as recursion removal tar-
gets for faster execution, this solution is not
sufficient. We need restriction that the compu-
tational complexity should not be worsened by
this program transformation.
Recursion removal methods toward linear re-

cursion, without worsening complexity, are cat-
egorized into two.
(1) The first method is similar to what we

have seen: tracing how the input is decre-
mented without calculating the result at this
moment, and start calculation from a value
which suffices a termination condition p to the
given input. The trouble we face is that we need
to trace back the descent of input. To avoid
this inefficiency, existence of an inverse of de-
scent functions d−1, or auxiliary stacks to store
the history of input is sufficient. Since the com-
putation starts from a terminating branch and
goes back to outer calculation toward original
input, we call this technique “inside-out man-
ner”.
(2) The other method is to obtain itera-

tive variants of recursive programs by calcu-
lating output gradually, following the original
descent of recursion parameters. Computation
starts from the given input and finishes when
it reaches some terminating condition. We here
call this “outside-in manner”. In outside-in re-
cursion removal, we do not need the inverse or
auxiliary stacks, because input is traced only
once. Auxiliary stack is just a substitute for
stack frames which are needed for executing re-
cursive procedures, so this is one big benefit of
outside-in recursion removal.
In this paper, we pursue a recursion removal

method based on the outside-in idea. This type
of techniques, however, requires other analyses
to fulfill the transformation. The following two
subsections demonstrate typical techniques of
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outside-in transformations.
2.1 Associativity
One technique is to investigate associativity

of auxiliary functions a. Factorial function, for
example, is defined for nonnegative integer x:

define fact(x) case (x = 0) of
True → 1
False → x× fact(x− 1)

By defining a new function fact′ as
fact′(y, x) = y× fact(x),

we obtain the body of fact′ by following trans-
formations:

fact′(y, x) = y× fact(x)
(unfolding fact)
⇒ y× (case (x = 0) of

True → 1
False → x× fact(x− 1))

(distribution)
⇒ case (x = 0) of

True → y× 1
False → y× (x× fact(x− 1))

(partial evaluation of ×1; associativity)
⇒ case (x = 0) of

True → y
False → (y× x)× fact(x− 1)

(folding to fact′)
⇒ case (x = 0) of

True → y
False → fact′(y× x, x− 1)

Giving multiplication unit 1 to y, we obtain
a tail recursive variant of fact. This anal-
ysis appears very often and commonly used
for recursion removal. As we see, associativ-
ity of the auxiliary function, multiplication in
this case, enables transformation. Transforma-
tions based on associativity, in turn, suffer from
the fact that its investigation is not an easy
task. Moreover, there are many functions which
lack associativity. Constructors like Cons are
good examples. This technique fails for append
in Fig. 4, because: Cons[Cons[x1,x2], x3] �=
Cons[x1, Cons[x2, x3]].

2.2 Lambda Abstraction
Another way to realize removal of recursion

in the same manner is lambda abstraction.
Church-Rosser property enables transformation
of any linear functions. Similar to the case of
recursion removal using associativity, we define
new function linear′(z, x) = z ( linear(x) ),
where z is a λ-term and application of an ex-
pression exp to z is denoted by z (exp). The

body of linear′ is translated as:
linear′(z, x) = z ( linear(x) )
(unfolding linear)
⇒ z ( case p(x)of

True → b(x)
False → a(c(x), linear(d(x))) )

(λ-abstraction)
⇒ z ( case p(x)of

True → b(x)
False → (λi .a(c(x), i))

( linear(d(x)) ) )
(distribution)
⇒ case p(x)of

True → z ( b(x) )
False → z ( (λi .a(c(x), i))

( linear(d(x)) ) )
(Church-Rosser)
⇒ case p(x) of

True → z( b(x) )
False → (z (λi .a(c(x), i)))

( linear(d(x)) )
(folding to linear′)
⇒ case p(x) of

True → z( b(x) )
False
→ linear′(z (λi .a(c(x), i)), d(x))

Since identity λi .i functions as an unit term,
we have a tail recursive definition of linear by
giving λi .i to z as an initial value. As far as
Church-Rosser property holds, this transforma-
tion is possible to any linear functions. Despite
its usefulness, however, the expression and cal-
culation of lambda terms, namely closures are
expensive operations, and this transformation
may not achieve the desired optimization.

3. Overview of Our Approach

In the previous section we have seen tech-
niques to realize recursion removal from linear
recursion. Constructors are common for rep-
resenting structures of statically unbound size,
and it is important to remove recursion from
constructing functions. The techniques shown
in the previous section are not sufficient for such
constructing functions.
We now describe how to remove recursion

from constructing functions. For simplicity, we
use a simple functional language with pattern
matching. Syntax and semantics are defined
in Figs. 2 and 3, respectively. The three run-
ning examples in this paper are given in Fig. 4.
Before investigating methods for ‘outside-in’ re-
cursion removal toward constructing functions,
we turn our eyes on delayed initialization of con-
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p ::= d+ — program
d ::= define f(vr+, vc∗) b — definition
b ::= case t of {pat→ b}+ — body
| e

e ::= v | a | c[e∗] | f(e+) — expression
t ::= vr | a | ope(t+) — term

pat ::= c[pat∗] | v | a — pattern

a ∈ constants like Int, . . . v ∈ variable names where
c ∈ constructor names vr : recursion parameters
f ∈ function names vc: context parameters

ope : built-in operations
Constructors take contents enclosed with square brackets with the constructor name; if a constructor

takes no arguments, as is the case in Nil or boolean values, we omit square brackets. Functions, on the

other hand, uses ordinary round brackets, like f(x, y).

Fig. 2 Source language p.

Standard semantics:

σ, prog �sem a⇒ [[a]] σ, prog �sem v ⇒ σ[v]

σ, prog �sem ei ⇒ e′i
e′i is not a aterm for ∀i
σ, prog �sem c[e1...em]⇒ [[c]][e′1...e′m]

σ, prog �sem ti ⇒ t′i for ∀i
σ, prog �sem ope(t1...tm)⇒ [[ope]](t′1...t

′
m)

σ, prog �sem ei ⇒ e′i for ∀i
prog[f ] = define f (v1...vm) b
σ′ = σ[v1 → e′1...vm → e′m]
σ′, prog �sem b ⇒ out
σ, prog �sem f (e1...em)⇒ out

σ, prog �sem t⇒ t′
pat-match(σ, t′, pat1...patm) = [i, σ′]
σ′, prog �sem bi ⇒ out
σ, prog �sem case t of
{pat1→b1 ... patm→bm} ⇒ out

• The operation pat-match does pattern matching between t and patterns pat1...patm, returns branch
number i and updated environment σ′.

Fig. 3 Semantics for the source language defined in Fig. 2.

define append(x, y) case x of define flip(x) case x of
Nil → y Leaf[n] → Leaf[n]
Cons[x1, xs] → Cons[x1, append(xs, y)] Node[l, r] → Node[flip(r), flip(l)]

define lflat(x) case x of
Nil → Nil
Cons[x1, xs] → append(x1, lflat(xs))

Fig. 4 Three examples.

structing expressions, and give the overview of
our approach.

3.1 Delayed Initialization
Taking Cons as an example, its evaluation☆

☆ We use eval to evaluate the expression, and the se-
mantic values are denoted by [[ ]], like [[Cons]].

in call-by-value semantics is like:
( 1 ) evaluate the expression in the car part,
( 2 ) evaluate the expression in the cdr part,
( 3 ) make a Cons cell using evaluated values.
Assume there are no side-effects, then the

evaluation order does not matter. Construc-
tors are just boxes, or containers, to hold values
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eval(Cons[l, r]) :

[[Cons]]

eval(l) eval(r)

= [[Cons]]

eval(l)

DUMMY←↩2 eval(r)

= [[Cons]]DUMMY

eval(r)

←↩1 eval(l)

Fig. 5 Constructors as container boxes.

or pointers inside, and once constructors them-
selves are allocated, the values inside can be
later assigned into constructors. For example,
the evaluation of cdr part can be delayed, and
later the delayed value be initialized by destruc-
tive assignments.
We use an infix operator ←↩i , which does an

assignment into a constructor cell allocated in
the heap. The semantics of left ←↩i right is, for
an allocated cell pointed by the pointer left and
an evaluated value right ,
( 1 ) assign the right value right into the posi-

tion i of left constructor pointed by left ,
( 2 ) return the pointer left .
Using such assignments, evaluation of an ex-

pression which appears at a position i in the
construction can be delayed, while the construc-
tion itself takes its shape. We here use a con-
structor DUMMY for a place holder which fills the
hole left unevaluated and is later initialized us-
ing these assignments (Fig. 5).

3.2 Transformation Strategy
Indeed we can delay initialization in construc-

tors using assignment operations, they are ba-
sically operations with side-effects. In order to
achieve ease of analysis and safety on semantics,
the analysis proceeds in two steps.
(1) We first extend our language with ab-

straction from expressions which construct a
structure. Section 4 explains the ideas and
properties of the extension. Its syntax and eval-
uation semantics are given in Figs. 6 and 7, re-
spectively.
Using this extended language, recursive pro-

grams are translated into iteration using accu-
mulators. The transformation is explained in
Section 5.1, and the rules are given by Figs. 8
and 9. This transformation reduces stack us-
ages, but interpretation on the extended lan-
guage is yet required.
(2) Translated programs in the extended lan-

guage are specialized directly to use assignment
operations. Section 5.2 explains its ideas.

4. Abstraction from Constructors and
Functional Constructors

This section extends our source language in
Fig. 2 to include abstraction from construct-
ing expressions. This extension includes 〈〈 〉〉-
expressions to denote abstracted expressions
which construct a structure, and their evalu-
ation results in 〈 〉-terms.
Syntax and semantics of the language ex-

tended with 〈〈 〉〉-expressions are given in
Figs. 6 and 7. We will only consider well-
formed expressions 〈〈 〉〉-expressions as described
in the following subsections.

4.1 Abstraction from Constructors
The analysis in Section 3.1 showed that as-

signment operations enable abstraction from
constructors. In order to make assignments im-
plicit, We use (〈〈 〉〉) for denoting abstraction
from constructors. Inside of 〈〈 〉〉 there appear
two kinds of information: (1) an expression to
create a structure, and (2) the position describ-
ing where an uninitialized hole exists. The hole
is filled with DUMMY. This position number is
given in Dewey notation28).
As an example, we take an expression

Cons[Cons1[x111, f(x2)12], Cons2[f(x3)21, x422]]
where we added the position number as a su-
perscript. If we abstract f(x3)21 from it, the
abstracted expression becomes
〈〈Cons[Cons[x1, f(x2)], Cons[DUMMY,x4]], 21〉〉.
We call this a 〈〈 〉〉-expression. This is a lambda
abstraction adapted toward construction. Fol-
lowing lambda abstraction, an application to
a 〈〈 〉〉-expression, namely delayed initializa-
tions, is expressed using neighboring sequence.
Therefore
〈〈Cons[Cons[x1, f(x2)], Cons[DUMMY,x4]], 21〉〉f(x
3)
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pe ::= d+ ∪ de∗
de ::= define f(vr+, vc∗, va∗) be
be ::= case t of {pat→ be}+

| exps

exps ::= e | exp | exp exps
exp ::= va | 〈〈ei, pos〉〉

| c[exps∗] | f(exps+)
ei ::= v | a | c[ei∗] | f[ei+] | DUMMY

exp : expressions and abstracted expressions exps : sequence of expressions
ei : expressions in abstracted expressions pos : position number
va : parameters for abstracted values

Fig. 6 Extended language pe.

Semantics extension:

σ, prog �abst ei ⇒ out
�chk out ⇒ out ′

σ, prog �sem 〈〈ei , pos〉〉 ⇒ out ′
str = DUMMY
�chk [str, 1, [] ]⇒ 〈〈DUMMY, 0〉〉

str �= DUMMY
�chk [str ,flg , loc]⇒ 〈str , loc〉

Abstraction rules:

σ, prog �abst DUMMY⇒ [DUMMY, 1, [] ]

σ, prog �abst a⇒ [[[a]], 0, [] ]

σ, prog �abst v ⇒ [σ[v], 0, [] ]

σ, prog �abst ei i ⇒ [ei ′i,flgi, loci] for ∀i
tmp = [[c]][ei ′1...ei

′
m]

loc′ = loc1 ++... ++locm

loc′′ = take1 ([[1,flg1]...[m,flgm]], tmp)
σ, prog �abst c[ei1...eim]

⇒ [tmp, 0, loc′ ++loc′′]

σ, prog �abst ei i ⇒ [ei ′i,flgi, loci] for ∀i
prog[f ] = define f (v1...vm) b
σ′ = σ[v1 → ei ′1...vm → ei ′m]
σ′, prog �abst b ⇒ [str ,flg , loc]
loc′ = loc1 ++... ++locm ++loc
σ, prog �abst f (ei1...eim)⇒ [str ,flg , loc′]

σ, prog �sem t⇒ t′
pat-match(σ, t′, pat1...patm) = [i, σ′]
σ′, prog �abst bi ⇒ out
σ, prog,�abst case t of
{pat1→b1 ... patm→bm} ⇒ out

Application rules:
σ, prog �sem exps ⇒ exps ′
σ, prog �sem aexp ⇒ aexp′
�appl [aexp′, exps ′]⇒ out
σ, prog �sem aexp exps ⇒ out

�appl [〈str , []〉, term]⇒ str

�appl [〈str , []〉, aterm]⇒ 〈str , []〉

�appl [〈〈DUMMY, 0〉〉, exp′]⇒ exp′ �appl [aexp′, 〈〈DUMMY, 0〉〉]⇒ aexp′

ptr i ←↩posi
exp for each [ptr i, posi] in loc

�appl [〈str , loc〉, exp]⇒ str
ptr i ←↩posi

exp for each [ptr i, posi] in locl
�appl [〈strl , locl〉, 〈strr , locr〉]⇒ 〈strl , locr〉

• take1 takes two parameters lst and ptr . For each element [i,flg i] in lst , it returns a list of [ptr , i]
where flg i = 1, e.g., take1 ([[1, 1], [2, 0], [3, 1]], tmp) = [[tmp, 1], [tmp, 3]].

• aterm ranges over 〈 〉-terms including 〈〈DUMMY, 0〉〉.
• term ranges over evaluated terms except for 〈 〉-terms.
• aexp ranges over any expressions which returns an aterm.

Fig. 7 Semantics for the extended language.
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= Cons[Cons[x1,f(x2)], Cons[f(x3), x4]].
These 〈〈 〉〉-expressions are evaluated and con-

structor cells are allocated in the heap memory.
In addition we need to know where abstracted
values, currently represented by DUMMY, exist
in the construction. We will use single angle
brackets (〈 〉) to denote a concrete structure
containing DUMMY which is already allocated in
heap memory. Similar to 〈〈 〉〉-expressions, 〈 〉
holds two informations: (1) pointer to the top
of construction allocated in the heap memory,
and (2) location information where DUMMY in
the construction appears. This location infor-
mation is a list of tuples, the pointer to the
concrete parent constructor of the hole and the
position in the constructor in Dewey notation.
In the above example,
〈〈Cons[Cons[x1, f(x2)], Cons[DUMMY,x4]], 21〉〉 is
evaluated to 〈str , loc〉, where str is the
pointer to the structure made by evaluating
Cons[Cons1[x111, f(x2)12], Cons2[DUMMY21, x422]],
and loc holds a tuple of information: the pointer
to the cell allocated by the inner right Cons2

and the position number 1. When applications
take place, the location information loc is used
for assignments.
A special case is 〈〈DUMMY, 0〉〉. In Dewey no-

tation 0 is not used, but we use 0 for point-
ing to the root position in a tree structure.
This 〈〈 〉〉-expression means that the abstracted
value appears on the location it is abstracted
from, namely the position itself. Therefore this
matches to identity λi .i in lambda terms. Since
this cannot be ‘allocated’ in heap memory, this
is kept as it is and an interpreter or compiler
takes care of it.
Our notations show that we can implement

closure-like structure for constructors with the
help of delaying initialization using assignment
operators.

4.2 Abstraction from Functional Con-
structors

We have seen that constructors can enjoy ad-
vantage of taking shape without initializing val-
ues inside. Functions, in general, cannot have
that advantage since the evaluation of functions
needs all parameters. But interesting excep-
tions exist. In case they are functions that build
data structures, some of them can take the same
advantage as constructors.
In our language settings in Fig. 2, we separate

context parameters from recursion parameters.
Recursion parameters are regarded as ones de-
composed by case expressions, and their val-

ues have to be known at that point to pro-
ceed execution further. Context parameters, on
the other hand, need not to be known when
branching takes place. This property of con-
text parameter holds the same characteristics
as constructors: Constructors are just boxes
with holes which hold values or pointers, and
these values are reflected in the output but not
necessarily known when the constructions are
made, thanks to delayed initialization. Func-
tions with context parameters can be regarded
as structures depending on the status of their
recursion parameters. We name such functions
as ‘functional constructors’ with respect to the
context parameters. The restriction imposed
for this functional constructors is explained in
the next subsection.
Now that abstraction of context param-

eters from functional constructors are safe,
we can make 〈〈 〉〉-expressions from functional
constructors. As a simple example, append
has one recursion parameter x and one con-
text parameter y, as shown in Fig. 4. Us-
ing double angle brackets, the second param-
eter y is abstracted out from append and
it leaves 〈〈append(x, DUMMY), 2〉〉. Similar to
the case in list constructors, delayed initial-
ization is expressed by application, namely
〈〈append(x, DUMMY), 2〉〉 y = append(x, y). Ex-
pressions of double angle brackets are executed
and reduced to single angle brackets 〈str , loc〉,
and application of y to this 〈 〉-term will return
the same result as append(x, y).
These 〈〈 〉〉-expressions work almost in the

same way as constructors or constructing func-
tions, except their result is a 〈 〉-term. Note
that 〈〈 〉〉-expressions are set always to return
〈 〉-terms, even if abstracted context parameters
disappear and are not reflected in the final re-
sults. In such cases loc of the resulting 〈 〉-term
is empty, and terms or expressions appearing
on its right are just thrown away from the re-
sult. In order to denote this, we use −1 as the
position number of 〈〈 〉〉-expressions.

4.3 Execution of the Extended Lan-
guage

We first explain the basic concept of evalua-
tion semantics which evaluates 〈〈 〉〉-expressions
into 〈 〉-terms. After that application rules to
〈 〉-terms are introduced.

4.3.1 Evaluation Semantics
The basic idea of evaluating 〈〈 〉〉-expressions

is that during execution, namely construction,
we collect the information of the parent con-
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structors which have DUMMY as a direct child
and its position in Dewey notation. This in-
formation is returned as the location informa-
tion which appears as the second element in the
resulting 〈 〉-term.
(1) Allocating a constructor over DUMMY

makes a 〈 〉-term, e.g.,
eval(Cons[x1, DUMMY])⇒
〈[[Cons]][eval(x1), [[DUMMY]]], loc〉,

where loc holds a tuple of the pointer to the
allocated Cons cell and the position number 2.
(2) Allocating a constructor over 〈 〉-terms

again makes a 〈 〉-term, e.g.,
eval(Cons[x1, 〈str , loc〉])⇒
〈[[Cons]][eval(x1), str ], loc〉.

In case there are plural 〈 〉-terms in one con-
structor, these location informations point to
the same abstracted value. Therefore both lo-
cation informations are concatenated (++) and
returned as the new location information, e.g.,

eval(Cons[〈strl , locl〉, 〈strr , locr〉])⇒
〈[[Cons]][strl , strr ], locl ++locr〉.

When returning a 〈 〉-term as the final result,
two special cares are needed:
• When only [[DUMMY]] is returned, the result

of a 〈〈 〉〉-expression is 〈〈DUMMY, 0〉〉.
• When the returned result is not a 〈 〉-term

but ordinary construction str , or when we
evaluate 〈〈 〉〉-expression with its position
number −1, it means that the abstracted
parameter does not appear in that con-
struction. Hence the final result is 〈str , loc〉
where loc is empty.

4.3.2 Application
With these allocated 〈 〉-terms, we need an-

other semantics of application. Now we use the
assignment operation ←↩ shown in Section 4.1.
Application of an expression expr to a 〈 〉-term
aterm l = 〈strl , locl〉, expressed by aterm l expr,
follows the execution of ←↩:
• evaluate the right expr into termr,
• assign the pointer to or the value of termr

into the left structure strl , using ←↩ with
the location information locl ,

• return the pointer to the left structure strl .
In case the right expression is a 〈〈 〉〉-

expression aexpr, application returns again a
〈 〉-term. In general they are evaluated as:
• evaluate the right 〈〈 〉〉-expression aexpr into

a 〈 〉-term 〈strr , locr〉;
• assign the pointer strr into the left struc-

ture strl , using ←↩ with the location infor-
mation locl ;

• return a new 〈 〉-term 〈strl , locr〉.

In the previous subsection we used an ex-
ample eval(Cons[x1, 〈str , loc〉]) which results in
〈[[Cons]][eval(x1), str ], loc〉. This transforma-
tion is also the result of application. If we re-
gard the second parameter from this Cons is
abstracted out,

eval(Cons[x1, 〈str , loc〉])
= eval(〈〈Cons[x1, DUMMY], 2〉〉) 〈str , loc〉
= 〈[[Cons]][eval(x1), [[DUMMY]]], locl〉〈str , loc〉
= 〈[[Cons]][eval(x1), str ], loc〉,

where locl holds the pointer to the cell allocated
by Cons and the position number 2.
We have to take care when the left 〈〈 〉〉-

expressions or their evaluated 〈 〉-terms has an
empty location information in loc. When the
right expressions are 〈〈 〉〉-expressions, the ap-
plication returns again a 〈〈 〉〉-expressions, and
the new location information holds not locr in
the right expression but again an empty loca-
tion information. This is because any expres-
sions appearing on their right are thrown away
but we have to keep a style of 〈 〉-terms.

4.4 Obtaining Definitions for 〈〈 〉〉-
functions

Evaluation of 〈〈 〉〉-expressions follows almost
the same as standard semantics, except it col-
lects the location information. This section in-
vestigates function definitions which has 〈〈 〉〉-
expressions as their components. We call such
expressions 〈〈 〉〉-functions.
We take an example of 〈〈append(x, DUMMY), 2〉〉.

When x = Nil, it returns 〈〈DUMMY, 0〉〉. If x can
be decomposed into Cons[x1, xs], the result will
be 〈〈Cons[x1, app(xs, DUMMY)], 22〉〉. With the
help of constructor abstraction this is the same
as 〈〈Cons[x1, DUMMY], 2〉〉 〈〈app(xs, DUMMY), 2〉〉.
Since the left 〈〈 〉〉-expression only contains con-
structors and we just have the definition of the
right 〈〈 〉〉-function, transformation terminates.
Replacing 〈〈 〉〉-function calls to app2(x)☆, we
have the following definition:

define app2(x) case x of
Nil → 〈〈DUMMY, 0〉〉
Cons[x1, xs]
→ 〈〈Cons[x1, DUMMY]2〉〉 app2(xs).

As another example, we take tflat(x, y)
which flattens a tree x into a list when y is Nil.

☆ New definition names takes the position number of
the abstracted parameter as their suffix. We use
app2 instead of append2 in this paper.
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define tflat(x, y) case x of
Leaf[n] → Cons[n, y]
Node[l, r]

→ tflat(l, tflat(r, y))
This tflat is a functional constructor with re-
spect to the second parameter y, and we have

tflat(x, y) = 〈〈tflat(x, DUMMY), 2〉〉 y.
The result of the abstracted functional con-
structor is 〈〈Cons[n, DUMMY], 2〉〉 in its Leaf
branch; when x = Node[l, r], it will return
tflat(l, tflat(r, DUMMY)). Since tflat is a
functional constructor with respect to the sec-
ond parameter, the inner tflat(r, DUMMY) goes
out of the outer tflat call, and we have
〈〈tflat(l, DUMMY), 2〉〉 〈〈tflat(r, DUMMY), 2〉〉.Re-
placing 〈〈tflat(x, DUMMY), 2〉〉 to tflat2(x) re-
turns

define tflat2(x) case x of
Leaf[n] → 〈〈Cons[n, DUMMY], 2〉〉
Node[l, r]

→ tflat2(l) tflat2(r).
The restriction for obtaining definition of 〈〈 〉〉-

functions is that the context parameter to be
abstracted appears at most one time in the fol-
lowing function call. For example, in the fol-
lowing definitions foo and bar

define foo(x, y)
bar(x, y, y)

define bar(x, y, z) case x of
Nil → Cons[y, z]
Cons[x1, xs] → bar(xs, Cons[x1, z], y),

〈〈bar(x, DUMMY, z), 2〉〉 and 〈〈bar(x, y, DUMMY), 3〉〉
can be defined as 〈〈 〉〉-functions. However,
〈〈foo(x, DUMMY), 2〉〉 cannot have its definition as
a 〈〈 〉〉-function because the pointer to the ab-
stracted value cannot be kept when we have to
evaluate bar(xs, Cons[x1, DUMMY], DUMMY).
The transformation rules for obtaining the

definition of 〈〈 〉〉-functions are described in
Fig. 8. As we can see, if each 〈〈 〉〉-expression
is not evaluated into a 〈 〉-term, 〈〈 〉〉-functions
returns a sequence of 〈〈 〉〉-expressions.

4.5 Properties of Abstracted Con-
structors

Now we investigate the properties of 〈〈 〉〉-
expressions or 〈〈 〉〉-functions, and their evalu-
ated results 〈 〉-terms. We have already men-
tioned that 〈〈 〉〉-expressions are adapted rep-
resentations of lambda abstraction toward con-
structors. When considering application to 〈〈 〉〉-
expressions, they are first evaluated to 〈 〉-terms
and structures in the 〈 〉-term are allocated in
the heap; we then need assignments into the

structures in the 〈 〉-terms using the location in-
formation loc. While this evaluation is done in
an interpretive manner, application itself does
not cost much, since the needed operations are
assignments into some known constructor cells
and an assignment operation is a cheap opera-
tion in most of programming languages.
So far location information loc in 〈 〉-terms

is represented in the form of a list. In this
naive representation, concatenation of two lo-
cation informations locl ++locr needs computa-
tion proportional to the length of locl . Thus, for
an efficient implementation, we propose to use
cyclic lists28). Cyclic lists has a pointer point-
ing to the tail of the list, and the head and tail
of the list is easily detected. This is similar to
〈 〉-terms, and concatenation of two cyclic lists
is done in constant time.
Indeed we utilize assignment operations, note

that they are not really assignment operations,
in the meaning to overwrite environments and
cause side-effects. We use assignments for de-
laying their initialization, and no more update
will take place, which is similar to static single
assignment (SSA)3),39).
If we only care about DUMMY appearing

in expressions, there is no need to show
the position number in 〈〈 〉〉-expressions like
〈〈Cons[x1, DUMMY], 2〉〉. It is possible to use this
position number for verifying whether DUMMY
appears in the correct position. In case the
subexpression pointed by the position number
is not DUMMY, evaluation of this 〈〈 〉〉-expression
should mean overwriting of the pointed subex-
pression. The system can detect this before
evaluating the expression, and an error will
be returned. When isolated DUMMY appears in
〈〈 〉〉-expressions without pointed by the posi-
tion number, such 〈〈 〉〉-expressions creates holes
which are never filled in the successive compu-
tation. The system again is possible to detect
such errors beforehand. This gives us safety for
programmers to use 〈〈 〉〉-expressions.
Finally, the important property by the ex-

tension is associativity in applications. This
is supported by the Church-Rosser property of
lambda terms. For example, we assume an se-
quence of expressions aexp1 aexp2 exp3 is given,
where aexp1 and aexp2 are evaluated into 〈 〉-
terms aterm1 and aterm2, respectively, and
exp3 is evaluated into term3. First, the evalua-
tion order of each expressions does not matter
to the final result, for our extended language as-
sumes no side-effects. Second, the application
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The transformation of a 〈〈 〉〉-function f starts from Esn to eliminate the n-th parameter, and
new 〈〈 〉〉-functions are given their name as fn.

Esn[[define f(v1...vm) b]]⇒ define fn(v1...vn−1, vn+1...vm) E[[b]]σ[vname �→ vn]
E[[case t of {pat→ b}+]]σ ⇒ case t of {pat→ E[[b]]σ}+
In case σ[vname] does not appear in the defined body b, the following one rule apply:

E[[b]]σ ⇒ 〈〈b,−1〉〉
In case σ[vname] appears in the defined body, the following rules apply.
In each transformation, we assume ei or v are σ[vname] itself or contains σ[vname]:

E[[c[e1...em]]]σ ⇒ Ec[[ei]] σ


 left �→ c[e1..ei−1,

right �→ ei+1...em],
pos �→ i, out �→ ε




E[[f(e1...em)]]σ ⇒ Ef [[ei]] σ

[
out �→ fi(e1...ei−1, ei+1...em) ,
left �→ ε, right �→ ε, pos �→ ε

]

E[[v]]σ ⇒ 〈〈DUMMY, 0〉〉

Ec[[c[e1...em]]]σ ⇒ Ec[[ei]] σ


 left �→ σ[left ] c[e1...ei−1,

right �→ ei+1...em] σ[right ],
pos �→ σ[pos] i




Ec[[f(e1...em)]]σ ⇒ Ef [[ei]] σ


 out �→ σ[out ] 〈〈 σ[left ] DUMMY σ[right ], σ[pos] 〉〉

fi(e1...ei−1, ei+1...em)
left �→ ε, right �→ ε, pos �→ ε




Ec[[v]]σ ⇒ σ[out ] 〈〈 σ[left ] DUMMY σ[right ], σ[pos] 〉〉

Ef [[c[e1...em]]]σ ⇒ Ec[[ei]]σ


 left �→ c[e1..ei−1,

right �→ ei+1...em],
pos �→ i




Ef [[f(e1...em)]]σ ⇒ Ef [[ei]]σ
[

out �→ σ[out ] fi(e1...ei−1, ei+1...em) ,
left �→ ε, right �→ ε, pos �→ ε

]

Ef [[v]]σ ⇒ σ[out ]

• ε denotes an empty string.

Fig. 8 Translation rules for obtaining definition of 〈〈 〉〉-functions.

of the resulting terms can also start anywhere,
and again, the order of application does not af-
fect other parts of expressions or terms. This is
because side-effecting assignments are enclosed
in 〈 〉-terms. To sum up,

aterm1,2 term3 = aterm1 term2,3

holds, where aterm1,2 denotes the result of the
application of aterm1 to aterm2, and term2,3

denotes the result of the application of aterm2

to term3.
These properties enable fast execution by re-

cursion removal with partial evaluation.

5. Recursion Removal

Now that we find associativity in construc-
tors and functional constructors, we proceed
to eliminate recursion from constructing func-
tions. The idea follows what we have seen

as transformation using lambda abstraction in
Section 2.2.
The transformation rules are defined in

Fig. 9. The detailed steps of transformation
are described below.
Note that the transformed program can use

the assignment operations ←↩. For readability
we also use let expressions to bind local vari-
ables.

5.1 First Step: Recursion Removal in
the Extended Language

The first step of transformation is the in-
troduction of abstraction using 〈〈 〉〉-expressions
and accumulation of these expressions into ac-
cumulating parameters.

5.1.1 Preprocessing
Before transformation, we need to check

whether defined functions are functional con-
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The transformation of recursion removal toward an ordinary function f starts from R, and new
functions are given their name as f ′.

R[[define f(v1...vm) b]]
⇒ define f ′(v1...vm, acc) R[[b]]σ[out �→ acc, nlist �→ [f ]]

R[[case t of {pat→ b}+]]σ
⇒ case t of {pat→ R[[b]]σ} +

R[[v]]σ ⇒ σ[out ] v

R[[a]]σ ⇒ σ[out ] a

R[[f(e1...em)]]σ ⇒ f ′(T [[e1]]...T [[em]], σ[out ])
— there is no function call at all in ej for ∀j with flag abst yes,
or there are no parameters in f with flag abst yes, or f ∈ σ[nlist ]

⇒ R[[ej ]] σ

[
out �→ σ[out ]

f ′
j( T [[e1]]...T [[ej−1]], T [[ej+1]]...T [[em]], 〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉)

]

— a function call whose flag def is yes exists in ej

⇒ A[[ej ]] σ


 left �→ f( e1...ej−1,

pos �→ j,
right �→ ej+1...em )




— a function call whose flag abst is yes and def is no exists in ej

R[[c[e1...em]]]σ ⇒ σ[out ] c[ T [[e1]]...T [[em]] ]
— there is no function call at all in ej for ∀j

⇒ A[[ej ]] σ


 left �→ c[ e1...ej−1,

pos �→ j,
right �→ ej+1...em ]




— a function call exists in ej

A[[f(e1...em)]]σ ⇒ f ′(T [[e1]]...T [[em]], σ[out ] 〈〈σ[left ] DUMMY σ[right ], σ[pos]〉〉)
— there is no function call at all in ej for ∀j with flag abst yes,
or there are no parameters in f with flag abst yes, or f ∈ σ[nlist ]

⇒ R[[ej ]] σ


out �→ σ[out ] 〈〈σ[left ] DUMMY σ[right ], σ[pos]〉〉

f ′
j(T [[e1]]...T [[ej−1]], T [[ej+1]]...T [[em]], 〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉),

left �→ ε, pos �→ ε, right �→ ε




— a function call whose flag def is yes exists in ej

⇒ A[[ej ]] σ


 left �→ σ[left ] f( e1...ej−1,

pos �→ σ[pos] j,
right �→ ej+1...em ) σ[right ]




— a function call whose flag abst is yes and def is no exists in ej

A[[c[e1...em]]]σ ⇒ σ[out ] c[ T [[e1]]...T [[em]] ]
— there is no function call at all in ei for ∀i; this case will not happen

⇒ A[[ej ]] σ


 left �→ σ[left ] c[ e1...ej−1,

pos �→ σ[pos] j,
right �→ ej+1...em ] σ[right ]




— a function call exists in ej

The operation e : s adds an element e to a set s.

Fig. 9 Transformation rules of recursion removal from functions (Part 1).
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The transformation of recursion removal toward a 〈〈 〉〉-function fn starts from R′, and new func-
tions are given their name as f ′

n.
The definition of fn is assumed to have been obtained already by Esn, and R′ applies over the
definition.

R′[[define fn(v1...vn−1, vn+1...vm) b]]⇒ define f ′
n(v1...vn−1, vn+1...vm, accl, accr) R′[[b]]

σ [nlist �→ [fn]]
R′[[case t of {pat→ b}+]]σ ⇒ case t of {pat→ R′[[b]]σ}+

• In case the body b has only one 〈〈 〉〉-expression or 〈〈 〉〉-function call, the following rules apply:
R′[[〈〈b,−1〉〉]]σ ⇒ accl 〈〈b,−1〉〉 accr

R′[[〈〈c[e1...em], j〉〉]]σ ⇒ accl 〈〈c[e1...em], j〉〉 accr
R′[[fn(e1...em)]]σ ⇒ f ′

n(T [[e1]]...T [[em]], accl, accr)

• In case the body b has plural 〈〈 〉〉-expressions, there appears at least one 〈〈 〉〉-function call.
If there is only one fn, fn is selected. When there are plural function calls, the leftmost one
of original function calls fn = σ[nlist] is selected if it exists; one call out of them is selected
if there is no fn = σ[nlist]. For the selected fn, the following rule applies, where expsl and
expsr range over sequences of 〈〈 〉〉-expressions of length equal to or more than 0:

R′[[expsl fn(e1...em) expsr ]]σ ⇒ f ′
n(T [[e1]]...T [[em]], accl expsl , expsr accr)

Following rules T apply to change function f into recursion removed function call f ′, which has
the initial value 〈〈DUMMY, 0〉〉 in the accumulator acc.

T [[v]]⇒ v

T [[a]]⇒ a

T [[c[e1...em]]]⇒ c[T [[e1]]...T [[em]]]
T [[f(e1...em)]]⇒ f ′(T [[e1]]...T [[em]], 〈〈DUMMY, 0〉〉)

Fig. 9 Transformation rules of recursion removal from functions (Part 2).

structors with respect to which parameters. In
order to be a functional constructor, the pa-
rameter may not be tested by a case expres-
sion. The translation first needs to determine
which functions can be functional constructors
with respect to which parameters and whether
the abstracted functional constructor can be de-
fined as a 〈〈 〉〉-function. These are indicated by
flags abst and def, respectively.
In the resulting table, usage shows whether

the parameter is a recursion parameter (RP) or
a context parameter (CP). abst shows whether
the parameter can be abstracted out, and def
shows whether the functional constructor can
be defined as a 〈〈 〉〉-function with respect to
the parameter. Note that abst is not always
yes when the parameter is CP, because a con-
text parameter in one function definition may
be used as a recursion parameter in the follow-
ing function calls. Additionally, when def is set
to yes, its abst is also set to yes.
In the first pass, programs are simply manip-

ulated textually. If a parameter is decomposed
by case expressions, abst and def are set to
no. Other parameters are context parameters
in the function definition, and how they appear
in the defined body are shown in appearance in

the table. If the parameter is either directly
output, which is denoted by 0, or disappears in
any branch, denoted by −1, then abst and def
are set to yes ; otherwise, they are left unflagged
‘-’. This pass gives a table shown in Table 1,
except for leaving a hole ‘-’ in abst and def of
append’s second parameter y. This is because
it is not yet clear whether the parameter ap-
pearing as a parameter in some other function
is also possible to be abstracted, etc.
The flags left ‘-’ in the table are filled by ma-

nipulating the table again in the second pass.
This pass starts from any parameter with un-
flagged abst and checks whether there appear
some parameters with abst set to no. When
found, this means that the parameter has a pos-
sibility later to be used as a recursion param-
eter, and it immediately returns no for abst.
When it reaches back to the same parameter
in the same function or reaches yes in every
possible branching, then the original variable is
safely set to be yes and table is completed. In
this process def is also investigated in the same
manner.
As the result of table making, we obtain the

full contents in Table 1. This table shows that
append is categorized as a functional construc-



24 IPSJ Transactions on Programming July 2001

Table 1 Result of table making. Numbers appearing before colon show the
branching by conditions, following Dewey notation. RP means a
recursion parameter, CP a context parameter. Flag abst shows
whether the function can be functional constructor with respect to
the parameter. Flag def shows whether the functional constructor
can be defined as 〈〈 〉〉-function.
funct var usage abst def appearance

x RP no no
append y CP yes yes 1: 0

2: 2Cons2append
lflat x RP no no
flip x RP no no

tor with respect to the second parameter y, and
it can be defined as a 〈〈 〉〉-function.

5.1.2 Transformation
The translation proceeds with referring to the

table. It translates programs written in the
source language in Fig. 2 into their recursion re-
moved form written in the extended language.
The transformation rules R apply to function

definitions, which gives a new function name
and a new parameter acc for accumulation. In
each branch one function, if it exists, is selected
and changed to its recursion removed call. The
remaining part is expressed as 〈〈 〉〉-expressions
and such 〈〈 〉〉-expressions are accumulated by
applying it on the right of acc in the selected
function call. If there is no function calls, the
inherited result in acc is returned with the
branch body.
〈〈DUMMY, 0〉〉 works as the unit term. New

function calls therefore takes 〈〈DUMMY, 0〉〉 in its
accumulator.
One important decision is how deep we go

into. There are cases where naive transforma-
tion can worsen stack usage.
Contrasting Examples: reverse and rflat.

reverse takes a list and returns a reversed
list; rflat takes a list of lists and returns
a reversed flattened list.

define reverse(x, y) case x of
Nil → y
Cons[x1, xs] → reverse(xs,

Cons[x1, y])

define rflat(x, y) case x of
Nil → y
Cons[x1, xs] → rflat(xs,

reverse(x1, y))
Stack usage of both functions are bounded

(max is two). Since rflat as well as reverse
is a functional constructor with respect to
the second parameter y, the system may sep-
arate the Cons[x1, xs] branch of rflat into

〈〈rflat(xs, DUMMY), 2〉〉 reverse(x1, y) and try
to accumulate 〈〈rflat(xs, DUMMY), 2〉〉 inside of
the renamed call reverse’(x1, y, acc). Evalu-
ation of 〈〈rflat(xs, DUMMY), 2〉〉 makes an inde-
pendent stack frame for reverse’ recursively
and worsens stack usage.
In order to prevent such commission errors,

the separation stops by the direct call to itself.
Recursion removal is also possible from
〈〈 〉〉-functions. Transformation rule R′ ap-
plies to definitions of 〈〈 〉〉-functions, and
accumulates 〈〈 〉〉-expressions into a recur-
sive 〈〈 〉〉-function call if it exists. For ex-
ample, app2(x) which is the function def-
inition of 〈〈append(x, DUMMY), 2〉〉 will return
〈〈Cons[x1, DUMMY], 2〉〉 app2(xs) in the Cons
branch. The abstracted 〈〈Cons[x1, DUMMY], 2〉〉 is
accumulated into the recursive call. We put the
restriction that the separation will not go into
its direct call. For 〈〈 〉〉-functions, outer function
calls or constructors appear on the left, and in-
ner ones appear on its right. We here put the
same restriction that selection will stop before
its direct call on its leftmost position, and the
remaining 〈〈 〉〉-expressions are accumulated in-
side of the recursive call.
There is one difference on accumulation from

ordinary functions. That is, 〈〈 〉〉-functions ac-
cumulate not only the 〈〈 〉〉-expressions on the
left of a recursive call, but also 〈〈 〉〉-expressions
on the right.
Contrasting Example: mir. mir takes a

list and returns its mirrored list:
define mir(x, y) case x of
Nil → y
Cons[x1, xs] → Cons[x1, mir(xs,

Cons[x1, y]).
mir is a 〈〈 〉〉-function with respect to the second
parameter, and its definition mir2(x) is given as
follows:
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define mir2(x) case x of
Nil → 〈〈DUMMY, 0〉〉
Cons[x1, xs] → 〈〈Cons[x1, DUMMY], 2〉〉

mir2(xs) 〈〈Cons[x1, DUMMY], 2〉〉.
Cons branch has 〈〈Cons[x1, DUMMY], 2〉〉 on each
side of the recursive call mir2(xs). When we
apply recursion removal on mir2(x), both out-
puts are accumulated inside of the recursive
call. We therefore prepare two accumulators
accl and accr, and they accumulate outputs
on the left and right of the recursive call, re-
spectively. While accl accumulates the output
on its right, accr on the contrary accumulates
the output on its left. Therefore the recursion
removed function mir2’ is defined as:

define mir2’(x, accl, accr) case x of
Nil → accl 〈〈DUMMY, 0〉〉 accr
Cons[x1, xs] →
mir2’(xs, accl 〈〈Cons[x1, DUMMY], 2〉〉,

〈〈Cons[x1, DUMMY], 2〉〉 accr).
The transformations R or R′ create a new

function definition f ′ from f or f ′
j from fj .

Inside of the newly obtained definitions, the
selected recursive call as well as other func-
tion calls which are not in 〈〈 〉〉-expressions are
renamed from g to g′ with the initial value
〈〈DUMMY, 0〉〉. When such calls are not yet de-
fined, the translation continues until all func-
tion calls are defined.

5.2 Second Step: Optimization by
Specialization

The resulting definitions may not run fast
since interpretive overhead for execution and
application of 〈〈 〉〉-expressions exist. In order
to eliminate this overhead, we can apply the
partial evaluation techniques.

5.2.1 Specialization on Parameters
Partial evaluation is a program transforma-

tion which partially evaluate programs using
information of known inputs or program struc-
tures26),27),37). We view the operational seman-
tics in Fig. 7 as an interpreter and specialize
it with respect to programs written in the ex-
tended language.
The question about the minimum specializa-

tion power required to specialize the semantics
is left for future works. Here we have in mind is
an online specialization technique. Regardless
of the specialization techniques, the assignment
operation ←↩ in Fig. 7 is always dynamic and
will remain in the residual program. We will
see this in our examples in Figs. 10 and 11.
For specialization by partial evaluation, the

important point is whether the resulting loca-

tion information of evaluated 〈〈 〉〉-expressions
is known at compile-time. Though the pointer
to the parent constructors of abstracted value
depends on the execution, the position of ab-
stracted value in such constructors can be
obtained beforehand. We take an example
of 〈〈Cons[x1, DUMMY], 2〉〉. It is evaluated to a
〈str , loc〉 whose number of hole is always one
and its position number in loc is always 2. This
means that the assignment operation we need
is always ←↩2.
This information is easily obtained when the
〈〈 〉〉-expressions in question have no function
calls in the path toward DUMMY. When such
〈〈 〉〉-expressions are applied to the accumulator,
the next function call can be specialized for an
assignment operation suitable for the new 〈〈 〉〉-
expression.
〈〈DUMMY, 0〉〉 in the accumulator is also opti-

mized. This occurs when a new function is
called without previous output. In the special-
ized function definitions interpretive overhead
on the application to 〈〈DUMMY, 0〉〉 is eliminated
beforehand.
Generally 〈〈 〉〉-expressions including ab-

stracted functional constructors are hard to
predict the resulting location information. This
is because even the number of holes in the con-
crete structure varies depending on the recur-
sion parameters in the functional constructors.
For some functions, however, the information
is possible to analyze. What helps this is 〈〈 〉〉-
functions in Section 4. The point for defining
〈〈 〉〉-functions is whether abstracted values ap-
pear at most once in its recursive calls. This
property makes the analysis simpler.
What we need to know is, (1) when we

evaluate the 〈〈 〉〉-functions into a sequence
of 〈〈 〉〉-expressions, what is the rightmost
〈〈 〉〉-expression and what assignment opera-
tion is needed, and (2) whether there appears
〈〈exp,−1〉〉 in the sequence. 〈〈exp,−1〉〉 appears
when its abstracted parameter disappears from
evaluation. Any other expressions on its right
are not reflected in the result. This means that,
when there is at least one 〈〈exp,−1〉〉 in the se-
quence, we do not need to know what is the
rightmost 〈〈 〉〉-expression, and the other expres-
sions on its right are evaluated but not reflected.
app2(x), for example, is a 〈〈 〉〉-function of
〈〈append(x, DUMMY), 2〉〉. It returns 〈〈DUMMY, 0〉〉
when the recursive parameter is Nil, and in its
Cons branch it returns in its recursive definition
〈〈Cons[x1, DUMMY], 2〉〉 app2(x). As we see, there
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Source program:

define flip(x) case x of

Leaf[n] → Leaf[n]
Node[l, r] → Node[flip(r), flip(l)]

Transformation steps:

R[[define flip(x) case x of

Leaf[n] → Leaf[n]
Node[l, r] → Node[flip(r), flip(l)]]]

⇒
define flip’(x, acc) case x of

Leaf[n] → R[[Leaf[n]]]σ
Node[l, r] → R[[Node[flip(r), flip(l)]]]σ

where σ = [out �→ acc, nlist �→ [flip]]

• for Leaf[n] branch:

R[[Leaf[n]]]σ ⇒ acc Leaf[T [[n]]]

⇒ acc Leaf[n]

• for Node[l, r] branch:

R[[Node[flip(r), flip(l)]]]σ

⇒ A[[flip(l)]]σ

[
left �→ Node[flip(r), ,
pos �→ 2, right �→]

]

⇒ flip’(T [[l]], acc 〈〈Node[flip(r), DUMMY], 2〉〉)
⇒ flip’(l, acc 〈〈Node[flip(r), DUMMY], 2〉〉)

Transformation result:

define flip’(x, acc) case x of

Leaf[n] → acc Leaf[n]
Node[l, r] → flip’(l, acc 〈〈Node[flip(r), DUMMY], 2〉〉)

Specialization result (with proper renaming of function calls):
define flip’-init(x) case x of

Leaf[n] → Leaf[n]
Node[l, r] →

let head = Node[flip’-init(r), DUMMY]
tail = head

in flip’-2(l, head , tail)

define flip’-2(x, head , tail) case x of

Leaf[n] →
let tmp = Leaf[n]

tail = tail ←↩2 tmp
in head

Node[l, r] →
let tmp = Node[flip’-init(r), DUMMY]

tmpt = tmp
tail = tail ←↩2 tmp

in flip’-2(l, head , tmpt)

Fig. 10 Complete transformation of flip.

appears no 〈〈exp,−1〉〉 in the resulting sequence.
Once x matches to Cons, the position number is
always 2 because the result in the terminating
condition is the identity 〈〈DUMMY, 0〉〉, which is
eliminated, and 〈〈Cons[x1, DUMMY], 2〉〉 on its left
matters for later assignment. In case initially
x equals to Nil, the result is 〈〈DUMMY, 0〉〉 and it
can be specialized out.

5.2.2 Replacement of Function Calls in
〈〈 〉〉-expressions

In the transformation R and R′, function calls
in 〈〈 〉〉-expressions are left as it is. This is
because of the semantics of the extended lan-
guage. However, when a function call does not
have DUMMY as an subexpression, the function
always returns a concrete structure without
holes. The specializer takes care of this when
specializing a program in the extended lan-

guage, and it applies recursion removed func-
tion calls for such occurrences.

6. Two Complete Transformations

In this section we show the recursion removal
from flip and lflat. Their transformation is
summarized in Figs. 10 and 11. We now de-
scribe the transformation, especially specializa-
tion in the second step, in more detail.

6.1 Example 1: flip
flip(t) flips every node in the given tree.

This is a tree recursion and flip(l) out of two
recursive calls is selected. Figure 10 shows the
process and result of transformation.
By the first step, the program is transformed

into
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Source programs:
define append(x, y) case x of define lflat(x) case x of

Nil → y Nil → Nil

Cons[x1, xs] → Cons[x1, append(xs, y)] Cons[x1, xs] → append(x1, lflat(xs))

Transformation steps:
R[[define lflat(x) case x of

Nil → Nil

Cons[x1, xs] → append(x1, lflat(xs))]]

⇒ define lflat’(x, acc) case x of

Nil → R[[Nil]]σ
Cons[x1, xs] →

R[[append(x1, lflat(xs))]]σ
where σ = [out �→ acc, nlist �→ [lflat]]

• for Nil branch: R[[Nil]]σ ⇒ acc Nil

• for Cons[x1, xs] branch:

R[[append(x1, lflat(xs))]]σ ⇒ R[[lflat(xs)]]σ

[
out �→ σ[out ] app2’(T [[x1]],

〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉)
]

⇒ lflat’(T [[xs]], acc app2’(x1, 〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉))
⇒ lflat’(xs, acc app2’(x1, 〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉))

Es2[[define append(x, y) case x of

Nil → y

Cons[x1, xs] → Cons[x1, append(xs, y)]]]

⇒ define app2(x) case x of

Nil → 〈〈DUMMY, 0〉〉
Cons[x1, xs] → 〈〈Cons[x1, DUMMY], 2〉〉 app2(xs)

R′[[define app2(x, y) case x of

Nil → 〈〈DUMMY, 0〉〉
Cons[x1, xs] → 〈〈Cons[x1, DUMMY], 0〉〉

app2(xs)]]

⇒ define app2’(x, accl, accr) case x of

Nil → accl 〈〈DUMMY, 0〉〉 accr
Cons[x1, xs] → app2’(xs, accl

〈〈Cons[x1, DUMMY], 2〉〉, accr)

Transformation results:

define lflat’(x, acc) case x of

Nil → acc Nil

Cons[x1, xs] → lflat’(xs, acc
app2’(x1, 〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉))

define app2’(x, accl, accr) case x of

Nil → accl 〈〈DUMMY, 0〉〉 accr
Cons[x1, xs] → app2’(xs, accl

〈〈Cons[x1, DUMMY], 2〉〉, accr)

Specialization result (with proper renaming of function calls):
define app2’-init(x) case x of

Nil → 〈〈DUMMY, 0〉〉
Cons[x1, xs] →

let head = Cons[x1, DUMMY]
tail = head

in app2’-2(xs, head , tail)

define lflat’-init(x) case x of

Nil → Nil

Cons[x1, xs] →
case x1 of

Nil→ lflat’-init(xs)
Cons[x11, x1s] →

let 〈head , [tail , 2]〉
= app2’-init(x1)

in lflat’-2(xs, head , tail)

define app2’-2(x, head , tail) case x of

Nil → 〈head , [tail , 2]〉
Cons[x1, xs] →

let tmp = Cons[x1, DUMMY]
tmpt = tmp
tail = tail ←↩2 tmp

in app2’-2(xs, head , tmpt)

define lflat’-2(x, head , tail) case x of

Nil → let tmp = Nil

tail = tail ←↩2 tmp
in head

Cons[x1, xs] →
case x1 of

Nil→ lflat’-2(xs, head , tail)
Cons[x11, x1s] →

let 〈tmp, [tmpt , 2]〉
= app2’-init(x1)

tail = tail ←↩2 tmp
in lflat’-2(xs, head , tmpt)

Fig. 11 Complete transformation of lflat with app2.
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define flip’(x, acc) case t of
Leaf[n] → acc Leaf[n]
Node[l, r] → flip’(l, acc

〈〈Node[flip(r), DUMMY], 2〉〉).
As we have already mentioned, this definition
includes interpretive overhead. First, the initial
call for flip’ is called with 〈〈DUMMY, 0〉〉 in its
accumulator acc. This is soon eliminated by
partial evaluation, and we have

define flip’(x, 〈〈DUMMY, 0〉〉) case t of
Leaf[n] → Leaf[n]
Node[l, r] → flip’(l,

〈〈Node[flip(r), DUMMY], 2〉〉).
The next function call to specialize is
flip’(l, 〈〈Node[flip(r), DUMMY], 2〉〉) which ap-
pears in the Node branch. flip(r) does not
have DUMMY as its subexpression, then it is safely
replaced to flip’(r, 〈〈DUMMY, 0〉〉). The Node
branch can now be regarded as:

let head = Node[flip’(r, 〈〈DUMMY, 0〉〉),
DUMMY]

tail = head
in flip’(l, 〈head , [tail , 2]〉).

We then proceed to see the result of
flip’(l, 〈head , [tail , 2]〉):

define flip’(x, 〈head , [tail , 2]〉) case t of
Leaf[n] → 〈head , [tail , 2]〉 Leaf[n]
Node[l, r] → 〈head , [tail , 2]〉 flip’(l,
〈〈Node[flip’(l, 〈〈DUMMY, 0〉〉), DUMMY], 2〉〉).

The Leaf branch is equivalent to:
let tmp = Leaf[n]

tail = tail ←↩2 tmp
in head ,

and the Node branch is equivalent to:
let tmp = Node[flip’(r, 〈〈DUMMY, 0〉〉),

DUMMY]
tmpt = tmp
tail = tail ←↩2 tmp

in flip’(l, 〈head , [tmpt , 2]〉).
The Node branch of flip’(x, 〈head , [tail , 2]〉)
again calls flip’(l, 〈head , [tmpt , 2]〉), and spe-
cialization is no more needed. We give proper
names flip’-init and flip’-2 for each func-
tion calls, and we have the final result as in
Fig. 10.

6.2 Example 2: lflat
lflat(x, y) flattens a list of lists and accumu-

late the result in a parameter. Figure 11 shows
the transformation and the result.
The first step separates 〈〈append(x1, DUMMY),

2〉〉 whose function name is app2 and accumu-
late it in a recursive call of lflat. app2 is possi-
ble to recursion remove, and the new definition
is

define lflat’(x, acc) case x of
Nil → acc Nil
Cons[x1, xs] → lflat’(xs, acc

app2’(x1, 〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉).
By giving 〈〈DUMMY, 0〉〉 to acc and specialization,
we have the initial call of lflat:

define lflat’(x, 〈〈DUMMY, 0〉〉) case x of
Nil → Nil
Cons[x1, xs] → lflat’(xs,

app2’(x1, 〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉).
We need to know about app2’ for lflat’ to be
specialized. The definition of app2’ is given as:

define app2’(x, accl, accr)
case x of
Nil → accl 〈〈DUMMY, 0〉〉 accr
Cons[x1, xs] → app2’(xs,

accl 〈〈Cons[x1, DUMMY], 2〉〉, accr).
Giving 〈〈DUMMY, 0〉〉 to both accl and accr, we
have the definition for initial calls:

define app2’(x, 〈〈DUMMY, 0〉〉, 〈〈DUMMY, 0〉〉)
case x of
Nil → 〈〈DUMMY, 0〉〉
Cons[x1, xs] → app2’(xs,

〈〈Cons[x1, DUMMY], 2〉〉, 〈〈DUMMY, 0〉〉).
Similar to the case of flip in Section 6.1, its
Cons branch is written using let and ←↩:

let head = Cons[x1, DUMMY]
tail = head

in app2’(xs, 〈head , [tail , 2]〉, 〈〈DUMMY, 0〉〉).
app2’(x, 〈head , [tail , 2]〉, 〈〈DUMMY, 0〉〉) is special-
ized and written with let and ←↩:

define app2’(x, 〈head , [tail , 2]〉,
〈〈DUMMY, 0〉〉)

case x of
Nil → 〈head , [tail , 2]〉
Cons[x1, xs] →

let tmp = Cons[x1, DUMMY]
tmpt = tmp
tail = tail ←↩2 tmp

in app2’(xs, 〈head , [tmpt , 2]〉,
〈〈DUMMY, 0〉〉).

We give names app2’-init and app2’-2 to
these calls, and specialization finishes.
As we see, app2’ returns 〈〈DUMMY, 0〉〉 when

x = Nil, and 〈head , [tail , 2]〉 otherwise. This
information is utilized for specialization of
lflat’. There, one test for x1 is sufficient and
we have a specialized definition:
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Table 2 Execution examples.

total execution (gc)
recur.(sec) iter.(sec) iter./recur. notes

append 31.46 3.53 0.112 append(append(u, v), w) for three lists u, v and w
(18.81) (0.54) of length 30,000 for each, 100 times

lflat 4.96 2.10 0.42 lflat(x) for a list of length 1000 of lists of length 50,
(1.29) (0.45) 100 times

mergesort 142.87 62.90 0.440 bottom-up mergesort for an uniform random sequence
(58.96) (21.33) of length 60,000, 100 times

flip 3.67 3.87 1.05 flip(t) for an even binary tree of 216 leaves,
(1.20) (0.32) 100 times

define lflat’(x, 〈〈DUMMY, 0〉〉)
case x of
Nil → Nil
Cons[x1, xs] →
case x1 of
Nil→ lflat’(xs, 〈〈DUMMY, 0〉〉)
Cons[x11, x1s] →

let aterm = app2’-init(x1)
in lflat’(xs, aterm).

The next to investigate is lflat’(xs, aterm)
in which aterm equals to 〈head , [tail , 2]〉:

define lflat’(x, 〈head , [tail , 2]〉)
case x of
Nil→ let tmp = Nil

tail = tail ←↩2 tmp
in head

Cons[x1, xs] →
case x1 of
Nil→ lflat’(xs, 〈head , [tmpt , 2]〉)
Cons[x11, x1s] →
let 〈tmp, [tmpt , 2]〉

= app2’-init(x1)
tail = tail ←↩2 tmp

in lflat’(xs, 〈head , [tmpt , 2]〉).
Now that all function calls are specialized, the
transformation finishes. We can again give
names lflat’-init and lflat’-2 for each def-
inition.

7. Experiments

We now examine the optimization achieved
by our transformation using our three examples
(append, flip and lflat) and mergesort. The
experiments were performed on a Sun Ultra En-
terprise 2 with 200MHz dual UltraSparcI and
SunOS 5.5.1, and Allegro Common Lisp 4.3.1.
We compiled the programs with optimization
settings of safety 1, space 1, speed 1 and debug
2. In this settings tail call optimization is done.
In our experiments, mergesort computes the

result in a bottom-up manner, continuously
merging neighboring two lists into one. This
mergesort consists of three linear subroutines,

and all three functions are recursion removed.
In order to run the assignment operations we

need to choose an implementation of←↩. In our
example only ←↩2 appears, and we implement
it by rplacd. We also used Nil for the occur-
rences of DUMMY.
As Table 2 shows, huge improvements are

achieved in three cases (append, lflat and
mergesort). These linear recursion improves
by recursion removal about 2 to 10 times faster.
One surprising and disappointing result for us

is the example of tree recursion flip. Execu-
tion time becomes a little worsened about 5%.
Since there is no difference in transformation
between linear and tree recursion, some opti-
mization is originally done by the compiler for
them.
Note that reduction of stacks has good effects

on garbage collection. Since the garbage collec-
tor has to manipulate call stacks, the number of
stack frames greatly matters for garbage collec-
tion15). Even though the number of allocated
cells does not differ, time for garbage collection
is reduced by recursion removal.

8. Other Applications

The main objective of this paper is to real-
ize recursion removal for constructing functions.
The idea of abstraction from constructors and
functional constructors is not limited to recur-
sion removal. This section gives a brief overview
of its usability for other purposes.

8.1 Recursion Introduction
We have introduced 〈〈 〉〉-functions and their

definition is obtained by the rules in Fig. 8. This
transformation eliminates a context parameter
and gives us a definition which consist of a se-
quence of 〈〈 〉〉-expressions. Its evaluation is
done in an interpretive manner.
If we apply the rule Es2 to reverse which

appeared in Section 5.1, the resulting definition
is
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define reverse2(x) case x of
Nil → 〈〈DUMMY, 0〉〉
Cons[x1, xs] → reverse2(xs)

〈〈Cons[x1, DUMMY], 2〉〉.
Onc call of reverse2 puts 〈〈Cons[x1, DUMMY], 2〉〉
on the right of the recursive call when the given
recursion parameter is not Nil. This transfor-
mation makes expressions appearing over a con-
text parameter explicit.
Such transformations have a large impor-

tance, though currently it is not stressed.
There are several partial evaluation meth-
ods21),22),41),44),45), and there are cases that
they works easily and terminates successfully in
recursive definitions. Definitions using accumu-
lating parameters actually suffer from nonter-
mination or failure of partial evaluation, while
recursive variants succeed. GPC, generalized
partial computation, is one system of partial
evaluation which utilizes theorem proving, and
it is now in the stage of experimental implemen-
tation20). GPC successfully composes reverse
and tflat to produce a new definition which
eliminates intermediate data, provided they are
defined using append. In case they are de-
fined in the accumulation style, transformation
fails29).

8.2 Tupling
As one of the costs of recursive program-

ming, there occurs repetition of the same,
therefore redundant computation. Component-
based programming also incur inefficiency to
traverse the same input repeatedly. Such in-
efficiency is sometimes reduced or avoided by
tupling method37).
For enabling tupling method, lambda ab-

straction works quite successfully36). One ex-
ample which is often used is repmin(t) =
rep(t, min(t)), which finds the minimum in
the tree and makes a new tree with the same
structure, except every leaf has the minimum
value. In call-by-value semantics, first min tra-
verses the input tree t to find the minimum,
and again rep traverses t to make a new tree.
Since rep is a functional constructor with re-
spect to the second input, we have repmin(t) =
〈〈rep(t, DUMMY), 2〉〉 min(t).
By this separation tupling becomes quite sim-

ple because 〈〈rep(t, DUMMY), 2〉〉 and min(t) both
traverses over the same structure. We here just
leave the detail here.

8.3 Parallel Execution
〈〈 〉〉-expressions and 〈〈 〉〉-functions are sepa-

rately executed and do not affect each other.

This guarantees parallel execution of each sep-
arated 〈〈 〉〉-expressions and 〈〈 〉〉-functions. Each
〈〈 〉〉-expressions and 〈〈 〉〉-functions are evaluated
into 〈 〉-terms and later composed by applica-
tion of 〈 〉-terms.

9. Related Works

In this section we give a brief overview and
comparison of the related works.

9.1 Data Structures
First, we compare with the previous works on

delaying initialization of contents from struc-
tures. Historically the idea of these half-way
construction or delaying initialization used in
this paper has been of ordinary use in logic
programming42). In functional styles, however,
such ideas are latecomers. append is interpreted
as representation function25), and utilized to
produce structures like difference lists. There,
the help of pregiven associativity of append
enables transformations to reduce complexity.
Later I-structures is invented for efficient exe-
cution in parallel programming7). I-structure is
‘a special kind of array, each of whose compo-
nents may be written no more than once.’ Since
I-structure is intended for parallel execution, es-
pecially for vector computation, this idea has a
basis on arrays, not constructors. While array-
based I-structure has its advantage over in-
dexing, constructor-based 〈〈 〉〉-expressions may
take advantage of representing unbound size of
construction, as is the case in lists.

9.2 Use of Lambda Abstraction
Based on lambda abstraction, the idea of

hole abstraction has been proposed recently
for recursion removal32). Our idea can be
seen as an extension to the hole abstraction.
The first point is how to obtain definitions of
〈〈 〉〉-functions. Though abstraction from func-
tions also appears in that paper, transformation
methods to obtain the definition are not de-
scribed obviously. Our idea of abstraction from
functional constructors enables us to achieve re-
cursion removal from lflat without knowing
associativity in append. Second, hole abstrac-
tion limits the number of holes in a concrete
structure to one. It is true single holes are easy
to analyze, but our natural idea gives more gen-
erality, and it is suitable not only for recursion
removal, but also parallel execution same as I-
structures. Third and the last point is, though
our idea connects to more low-level execution
like destructive assignments by rplacd for ex-
ample, our representation enables faster execu-
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tion as is demonstrated in Section 7.
The idea of lambda abstraction is often used

in program transformation. Due to Church-
Rosser property, results can be accumulated
without explicitly investigating associativity of
auxiliary functions12). Higher-order expres-
sions are used to derive efficient programs by
partial evaluation36),38),47). In our research,
closure-like expressions of constructors are re-
duced into assignments by specialization.

9.3 Other Works on Recursion and It-
eration

As is briefly mentioned in Section 2, the topic
of recursion removal has been energetically re-
searched for many years by several approaches.
These techniques are described in two mono-
graphs10),34). One method, outside-in transfor-
mation, does not require explicit use of stacks,
but information of associativity has to be given
from outside. Recursion removal has been de-
scribed as translation into flowcharts8),43),46)
using schematology35), translation schemes us-
ing pattern matchings of program structures
and function properties18). Fold-unfold6),14)

steps are later used to derive iterative solutions.
In the inside-out transformation, increment

of programs are investigated24),31),33). Schema-
tology also applies to this style of recursion re-
moval13).
To tackle with recursion removal for con-

structing functions, recently two ideas have
appeared. One approach30) is a inside-out
manner, and since there is no inverse of cdr
they manipulate input lists following Deutsch,
Schorr, Waite algorithm40) using destructive
operations. This eliminates stacks of input
chains. Our idea does not destroy input lists,
and new constructions are kept in its half-
way. The other23) tackles with construction
problems using pseudo-associativity, namely in
a outside-in manner. Our idea in this pa-
per extends this, and investigation of pseudo-
associativity is eliminated by fixing the scope
only to constructors.
Recursion removal is sometimes compared

with continuation passing style (CPS)4),19).
While CPS only collects the history of calcu-
lation, our method selects one function call and
accumulation is passed only to the call, with
leaving other calls almost intact, and execution
are done at each steps of function calls.
Finally we make a short note that, compared

with recursion removal, a term ‘recursion in-
troduction’11) appears quite fewer as far as we

have searched.

10. Conclusion

We presented a method for recursion removal
which works in two steps. We first extended
the language to have abstraction mechanism in
the form of 〈〈 〉〉-expressions. The abstraction
enabled us to have associativity in constructors
which originally they do not have. The first
step of transformation accumulates these ab-
stracted expressions inside of a recursive call,
and gives us new definitions of recursion re-
moved functions in the extended language. The
second step specializes the new definition to em-
bed the language extension, and fast execution
using assignment operations is realized. This
transformation is applicable not only to linear
recursion but also to tree recursion, or even to
certain forms of nested functions.
Currently the detailed analysis on the partial

evaluator which is required for the second step
remains for future works. As Section 6 demon-
strated, its specialization is not so hard when
DUMMY does not appear in functions inside of
the accumulated 〈〈 〉〉-expression. In case DUMMY
appears in such functions, or 〈〈 〉〉-functions are
accumulated, the analysis becomes hard. We
showed some ideas, but further research is re-
quired for automation.
In this paper we presented a theoretical study

of a novel method for recursion removal based
on abstraction from constructors and partial
evaluation. Our next task is to test these ideas
in an implementation. We expect this will be
straightforward using transformation and se-
mantics rules which are presented in this paper.
Another task is to investigate more detailed

application of our idea of abstraction, espe-
cially for other area of partial evaluation. When
a function is definable as a 〈〈 〉〉-function, its
program structures are decomposed into 〈〈 〉〉-
expressions. This makes program analysis on
context parameters easier and will pave the way
to more partial evaluation like functional com-
position.
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