
A Programming Environment for the Separation Principle
Yasushi Kambayashi Shigeru Kawano

Nippon Institute of Technology

1 Introduction

The separation principle is a programming paradigm
that is first proposed by Cave [1], and refined and
validated by Kambayashi [2]. The separation
principle has two concepts: 1) separating architecture
from program code and 2) separating data from
instructions. Preliminary experiments on the
understandability of programs written using the
separation principle and programs written using
object-oriented style revealed that programs written
using the separation principle were easier to
understand than those written using object-oriented
style [2].

In order to take full advantages of the separation
principle, a programming environment is required. In
this paper, the authors report the design and
implementation of such environment.

2 The Separation Principle

The separation principle is a programming paradigm
that constraints programmers to construct their
programs in separated data modules and instruction
modules. In object-oriented programming paradigm,
programs consist of multiple objects. Each object
consists of data and instructions that manipulate the
data.

In programs that use the separation principle, all the
data are gathered in independent data modules. There
is no local data, and certain groups of instructions can
access related data directly, thus no parameter passing
is required. Related data are gathered in a data
module. A conceptual diagram of the structure of a
program using the separation principle is shown in
Figure 1. A notable point is that it shows only data
dependency.

3 The Programming Environment

The user of this programming environment is expected
first to construct the architecture of the software he or
she wishes to construct. This phrase is achieved
through the architecture editor of the environment. In
the design process, one can identify closely related
instruction modules, and then one can construct data
modules that are used by the instruction modules.
Such combined modules can be treated as components.
Several such components can further combined into a
larger component. This process is achieved by the
architects, and should be supported by the architecture
editor. The conceptual diagram of such editor is
shown in Figure 2.

Two separate methodologies that construct
software from components are established. One is for
the structured design and the other is for the object-
oriented design. They are almost identical and only
differ in minor ways. The architecture editor is
expected to support to construct software
hierarchically from components. A few closely related
data modules and instruction modules are grouped into
higher-level modules. Then these kinds of modules
are further combined, forming a larger, structured
component.

After architecture is set (then the target software is
decomposed into several set of components), the
programmer precedes the detailed design by using the
programming environment. The designer has to
identify the data modules and instruction modules and
their dependency. Data/instruction dependency is
represented as a set of connecting lines. Each
data/instruction module is edited in a separated
window. Each instruction module has explicit
connections to certain data modules. If a data module

Figure 2. Architecture Support Graphical Environment

 Data Module 1

Code Module
1

Data Module 2 Data Module 3

Code Module
3

Code Module
2

Figure 1. Conceptual Diagram of a Program Using the
Separation Principle

Component

Component Component

Component2 Component3

Component1

1－259

4Y-1 情報処理学会第65回全国大会

has three connections to three instruction modules,
that data module is public to three instruction modules,
and not public to any other instruction modules. The
programmer is expected to control this kind of
public/private relation, and the programming
environment supports such activity through graphical
representation and intuitive manipulations. In
summary, connected data modules and instruction
modules consists of a package that provides a
mechanism for grouping and data sharing like Ada
packages. Figure 3 shows the programming
environment that is editing such a package
(component). This component consists of one data
module and two instruction modules, and each module
is edited in a separate window. (At this moment, each
component is decomposed into several data modules
and instruction modules.)

Equipping two different editors: one for architects
with graphic representation and one for programmers
with text representation is, the authors believe,
provides a good example of balancing text and
graphics [3].

4 The Compiler

Although Programs produced by this programming
environment have C-like syntax, they have different
scope rules. The scope of each identifier is explicitly
shown by the connections between the data and
instruction modules. The effect of the declaration is
not controlled by the scope rules, because the
instruction modules contain no data declarations. The
visibility of variables is explicitly expressed by the
connections. This simplicity of the scope rules
contributes the simplicity of the compiler the
environment supplies. The compiler performs the

semantic analysis by using these connections.
The compiler is supposed to produce C source

programs for optimized C compiler available in the
market as well as intermediate code for the virtual
machine the programming environment furnishes.
The virtual machine is a simple stack machine that
reads the intermediate code and produces the
computation results. Since the purposes of the virtual
machine are evaluation and debugging, the authors
keep the machine simple and follow the design
formulated by Wirth [5].

5 Conclusions and Future Directions

A programming environment based upon the
separation principle is presented. Even though as
mentioned in section three, the architecture editor has
not been implemented, the programming environment
is completed and used to support the programming
paradigm, separating data from instructions. The
architecture editor should be a competent feature of
this environment and support the separation between
design phase and implementation phase. This feature
should contribute a clear separation between them. It
should be a future research direction to explore the
separation principle in the object-oriented analysis
methodology.

The environment is planned to be extended to
provide a run-time facility including debugger. This
run-time environment not only provide the virtual
machine on which the produced intermediate code run
but also bi-directional pointers between data and
instructions so that the debugger can identify which
instructions access which data and provide enough
information for run-time anomaly.

Because each instruction module should be short,
straight and simple, it may be possible to be produced
by a program generator. Exploring the instruction
generator is another possible future directions of this
project.

References

[1] W. C. Cave, The Software Survivors, Prediction
Systems, Inc., 1995.
[2] Y. Kambayashi, Separating Data from Instructions:
Investigating a New Programming Paradigm, PhD
Dissertation, University of Toledo, May 2002, published
by Dissertation.com, 2002.
[3] Y. Kambayashi, Balancing Text and Graphics in a
Programming Environment, Proc. of Winter Workshop
on Software Engineering in Kobe, IPSJ, January 2003, to
appear. In Japanese.
[4] J. B. Rosenberg, How Debuggers Work, John Wiley
& Sons, Inc., 1997.
[5] N. Wirth, Algorithms + Data Structures = Programs,
Prentice-Hall, 1976.

Figure 3. Programming Environment Based on the
Separation Principle

1－260

