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1 Introduction

This note considers a problem of minimum length
scheduling for a set of messages subject to precedence
constraints for switching and communication networks.
The problem was first studied by Barcaccia, Bonuccelli,
and Di Iannii [1].

We consider a network with n inputs and n outputs.
The messages to be sent are represented by an n × n
matrix D = [dij ], the traffic matrix, with nonnegative
integer entries. Entry dij represents the number of mes-
sages to be sent from input i to output j. In order to
specify precedence constraints among messages, we rep-
resent a traffic matrix D by a sequence of n×n matrices
D = (D(1), D(2), . . . , D(k)) such that D =

∑k
i=1 D(i).

We consider precedence constraints on the rows, which
means that the entries in each row of D(i+1) can be
scheduled only if the entries in the corresponding row of
D(i) have already been scheduled (1 ≤ i ≤ k − 1).

A switching matrix is a binary matrix with at most
one nonzero entry in each row and in each column. A
switching matrix represents messages that can be sent
simultaneously without conflicts.

A sequence of n × n switching matrices S =
(S(1), S(2), . . . , S(t)) is called a switching schedule for D
if the following conditions are satisfied:

(1)
t∑

i=1

S(i) =
k∑

i=1

D(i) = D;

(2) For any integers p, 1 ≤ p ≤ k, and i, 1 ≤ i ≤ n,
there exists an integer q, 1 ≤ q ≤ t, such that

q∑
r=1

s
(r)
ij =

p∑
r=1

d
(r)
ij

holds for every j, 1 ≤ j ≤ n.

Notice that condition (2) corresponds to the precedence
constraints on the rows. Integer t is called the length of
S and denoted by |S|.

We consider the following problems.

Problem 1 (PCRMS) Given D = (D(1), D(2), . . . ,
D(k)) and positive integer h, decide if there exists a
switching schedule S for D with |S| ≤ h.
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Problem 2 (MIN-PCRMS-k) Given D = (D(1),
D(2), . . . , D(k)), find a switching schedule S for D with
minimum length.

It is shown in [1] that PCRMS is NP-complete if k =
2, D(1) is a binary matrix and D(2) is a ternary matrix,
and h = 3. We improve this by showing the following .

Theorem 1 PCRMS is NP-complete if k = 2, D(1)

and D(2) are binary matrices, and h = 3.

It should be noted that PCRMS can be solved in poly-
nomial time if k = 1 or h ≤ 2.

It follows from Theorem 1 that even MIN-PCRMS-2
is NP-hard. It is proved in [1] that for any positive in-
teger k and positive number ε < 4/3, there exists no
polynomial time ε-approximation algorithm for MIN-
PCRMS-k unless P = NP. It is also mentioned in [1]
that the following naive algorithm is a polynomial time
k-approximation algorithm for MIN-PCRMS-k.

Algorithm 1

Step 1: Find an optimal switching schedule for D(i)

(1 ≤ i ≤ k).

Step 2: Schedule D(i+1) after the schedule for D(i)

(1 ≤ i ≤ k − 1).

Thus, the approximation ratio of a polynomial time ap-
proximation algorithm for MIN-PCRMS-k is between
4/3 and k if k ≥ 2.

We show an estimate of the approximation ratio of
Algorithm 1 by means of the structure of D. For an
n× n matrix M = [mij ], define that

L(M) = max

{
n∑

k=1

mik,

n∑

k=1

mkj

∣∣∣1 ≤ i, j ≤ n

}
,

l(M) = min

{
n∑

k=1

mik,

n∑

k=1

mkj

∣∣∣1 ≤ i, j ≤ n

}
.

For D = (D(1), D(2), . . . , D(k)), define that

α(D) = min
{

l(D(i))
L(D(i))

∣∣∣1 ≤ i ≤ k

}
,

β(D) = max
{

l(D(i))
L(D(i))

∣∣∣1 ≤ i ≤ k

}
.

Theorem 2 The approximation ratio of Algorithm 1
for MIN-PCRMS-k is at most 2 − β(D) if k = 2, and
at most k − (k − 1)α(D) if k ≥ 3.

Theorem 3 The approximation ratio of Algorithm 1
for MIN-PCRMS-k is at least k − (k − 1)β(D) for any
positive integer k.
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2 Proof of Theorem 1

We first need some preliminaries. Let B = (X, Y, E) be
a bipartite graph with maximum vertex degree 3, where
(X, Y ) is a bipartition of B, and E is the set of edges
of B. We denote by Xδ and Y δ the sets of vertices
in X and Y with degree δ, respectively. Let E1 be a
perfect matching of B, and E2 be a perfect matching
of (X ′, Y ′, E −E1), where X ′ and Y ′ denote the sets of
nonisolated vertices in X and Y , respectively, after the
removal of the edges in E1. (E1, E2) is called a double
perfect matching for B. It is mentioned in [1] that the
following problem is NP-complete:

Problem 3 (DPM-3) Given a bipartite graph B =
(X, Y,E) with maximum vertex degree 3, and |Xδ| =
|Y δ| (1 ≤ δ ≤ 3), decide if there exists a double perfect
matching for B.

Now we are ready to prove the theorem. It is obvious
that our problem is in NP. We prove the theorem by
showing a polynomial time reduction from DPM-3 to
PCRMS.

Let B = (X, Y,E) be a bipartite graph as an instance
of DPM-3. Let X = {x1, . . . , xn}, X1 = {x1, . . . , xn1},
X2 = {xn1+1, . . . , xn1+n2}, Y = {y1, . . . , yn}, Y 1 =
{y1, . . . , yn1}, and Y 2 = {yn1+1, . . . , yn1+n2}. We as-
sume without loss of generality that n1 6= 1.

For any F ⊆ X×Y , M(F ) = [mij ] is an n×n binary
matrix defined as:

mij =

{
1 if (xi, yj) ∈ F ,
0 otherwise.

M is considered as a bijection from 2X×Y to the set of
n× n binary matrices.

We define matrices D(1) and D(2) as follows: D(1) =
M(E); D(2) = D′(2) + D′′(2) where D′(2) = [d′(2)ij ] and

D′(2) = [d′(2)ij ] are binary matrices defined as

d
′(2)
ij =

{
1 if j = i + 1 ≤ n1 or (i, j) = (n1, 1),
0 otherwise;

d
′′(2)
ij =

{
1 if i = j ≤ n1 + n2,
0 otherwise.

Since |Xδ| = |Y δ| = nδ (δ = 1, 2), L(D(1) + D(2)) =
l(D(1) +D(2)) = 3. It is easy to see that binary matrices
D(1) and D(2) can be constructed in polynomial time.

We will prove that there exists a double perfect
matching (E1, E2) for B if and only if there exists a
switching schedule S for D = (D(1), D(2)) with |S| = 3.

If there exists a double perfect matching (E1, E2) for
B, then (M(E1), M(E2) + D′(2),M(E − (E1 ∪ E2)) +
D′′(2)) is a switching schedule for D with length 3.

Conversely, if there exists a switching schedule S =
(S(1), S(2), S(3)) for D, then (M−1(S(1)),M−1(QS(2)))
is a double perfect matching for B, where Q = [qij ] is
an n× n binary matrix defined as

qij =

{
1 if i = j ≥ n1 + 1,
0 otherwise.

3 Proof of Theorem 2

Let Li = L(D(i)) and li = l(D(i)), 1 ≤ i ≤ k, and ρ be
the approximation ration of Algorithm 1. It is easy to
see that

ρ ≤ L1 + L2 + · · ·+ Lk

maxi{Li +
∑

j 6=i li} .

We first consider the case when k = 2. Assume with-
out loss of generality that ρ(D) = l(D(1))/L(D(1)). We
distinguish two cases.

(i) If L1 + l2 ≤ l1 + L2 then we have

ρ ≤ L1 + L2

l1 + L2
= 1 +

L1 − l1
l1 + L2

≤ 1 +
L1 − l1
L1 + l2

≤ 1 +
L1 − l1

L1
= 2− β(D).

(ii) If L1 + l2 > l1 + L2 then we have

ρ ≤ L1 + L2

L1 + l2
= 1 +

L2 − l2
L1 + l2

< 1 +
L1 − l1
L1 + l2

≤ 1 +
L1 − l1

L1
= 2− β(D).

We next consider the case when k ≥ 3. Assume
without loss of generality that maxi{Li +

∑
j 6=i li} =

L1 + l2 + · · · + lk. Then, we have L1 + li ≥ l1 + Li for
any i ≥ 2, and

ρ ≤ 1 +
∑k

i=2(Li − li)
L1 + l2 + · · ·+ lk

≤ 1 +
(k − 1)(L1 − l1)
L1 + l2 + · · ·+ lk

≤ 1 +
(k − 1)(L1 − l1)

L1
= k − (k − 1)α(D).

4 Proof of Theorem 3

Considering D = (D(1), D(2), . . . , D(k)) defined as:

d
(1)
ij =

{
1 if i = j or i = 1,
0 otherwise;

d
(r)
ij =

{
1 if i = r and i 6= j,
0 otherwise,

(2 ≤ r ≤ k)

we can see that

ρ ≥
1

β(D) + (k − 1)( 1
β(D) − 1)

1
β(D)

= k − (k − 1)β(D).
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