A Note on the Complexity of Scheduling for Precedence Constrained Messages in Distributed Systems *

Koji GODA, Toshinori YAMADA, and Shuichi UENO[†] Department of Communications and Integrated Systems, Graduate School of Science and Engineering, Tokyo Institute of Technology[‡]

1 Introduction

This note considers a problem of minimum length scheduling for a set of messages subject to precedence constraints for switching and communication networks. The problem was first studied by Barcaccia, Bonuccelli, and Di Iannii [1].

We consider a network with n inputs and n outputs. The messages to be sent are represented by an $n \times n$ matrix $D = [d_{ij}]$, the traffic matrix, with nonnegative integer entries. Entry d_{ij} represents the number of messages to be sent from input i to output j. In order to specify precedence constraints among messages, we represent a traffic matrix D by a sequence of $n \times n$ matrices $\mathbf{D} = (D^{(1)}, D^{(2)}, \dots, D^{(k)})$ such that $D = \sum_{i=1}^{k} D^{(i)}$. We consider precedence constraints on the rows, which means that the entries in each row of $D^{(i+1)}$ can be scheduled only if the entries in the corresponding row of $D^{(i)}$ have already been scheduled $(1 \le i \le k - 1)$.

A switching matrix is a binary matrix with at most one nonzero entry in each row and in each column. A switching matrix represents messages that can be sent simultaneously without conflicts.

A sequence of $n \times n$ switching matrices $\mathbf{S} = (S^{(1)}, S^{(2)}, \dots, S^{(t)})$ is called a switching schedule for \mathbf{D} if the following conditions are satisfied:

(1)
$$\sum_{i=1}^{t} S^{(i)} = \sum_{i=1}^{k} D^{(i)} = D;$$

(2) For any integers $p, 1 \le p \le k$, and $i, 1 \le i \le n$, there exists an integer $q, 1 \le q \le t$, such that

$$\sum_{r=1}^{q} s_{ij}^{(r)} = \sum_{r=1}^{p} d_{ij}^{(r)}$$

holds for every $j, 1 \leq j \leq n$.

Notice that condition (2) corresponds to the precedence constraints on the rows. Integer t is called the length of **S** and denoted by $|\mathbf{S}|$.

We consider the following problems.

Problem 1 (PCRMS) Given $\mathbf{D} = (D^{(1)}, D^{(2)}, \dots, D^{(k)})$ and positive integer h, decide if there exists a switching schedule \mathbf{S} for \mathbf{D} with $|\mathbf{S}| \leq h$.

Problem 2 (MIN-PCRMS-k) Given $\mathbf{D} = (D^{(1)}, D^{(2)}, \ldots, D^{(k)})$, find a switching schedule **S** for **D** with minimum length.

It is shown in [1] that PCRMS is NP-complete if $k = 2, D^{(1)}$ is a binary matrix and $D^{(2)}$ is a ternary matrix, and h = 3. We improve this by showing the following.

Theorem 1 PCRMS is NP-complete if k = 2, $D^{(1)}$ and $D^{(2)}$ are binary matrices, and h = 3.

It should be noted that PCRMS can be solved in polynomial time if k = 1 or $h \leq 2$.

It follows from Theorem 1 that even MIN-PCRMS-2 is NP-hard. It is proved in [1] that for any positive integer k and positive number $\epsilon < 4/3$, there exists no polynomial time ϵ -approximation algorithm for MIN-PCRMS-k unless P = NP. It is also mentioned in [1] that the following naive algorithm is a polynomial time k-approximation algorithm for MIN-PCRMS-k.

Algorithm 1

Step 1: Find an optimal switching schedule for $D^{(i)}$ $(1 \le i \le k)$.

Step 2: Schedule
$$D^{(i+1)}$$
 after the schedule for $D^{(i)}$
 $(1 \le i \le k-1)$.

Thus, the approximation ratio of a polynomial time approximation algorithm for MIN-PCRMS-k is between 4/3 and k if $k \ge 2$.

We show an estimate of the approximation ratio of Algorithm 1 by means of the structure of **D**. For an $n \times n$ matrix $M = [m_{ij}]$, define that

$$L(M) = \max\left\{\sum_{k=1}^{n} m_{ik}, \sum_{k=1}^{n} m_{kj} \left| 1 \le i, j \le n \right\}, \\ l(M) = \min\left\{\sum_{k=1}^{n} m_{ik}, \sum_{k=1}^{n} m_{kj} \left| 1 \le i, j \le n \right\}.\right\}$$

For $\mathbf{D} = (D^{(1)}, D^{(2)}, \dots, D^{(k)})$, define that

$$\begin{split} \alpha(\mathbf{D}) &= \min\left\{\frac{l(D^{(i)})}{L(D^{(i)})}\Big| 1 \le i \le k\right\},\\ \beta(\mathbf{D}) &= \max\left\{\frac{l(D^{(i)})}{L(D^{(i)})}\Big| 1 \le i \le k\right\}. \end{split}$$

Theorem 2 The approximation ratio of Algorithm 1 for MIN-PCRMS-k is at most $2 - \beta(\mathbf{D})$ if k = 2, and at most $k - (k-1)\alpha(\mathbf{D})$ if $k \ge 3$.

Theorem 3 The approximation ratio of Algorithm 1 for MIN-PCRMS-k is at least $k - (k-1)\beta(\mathbf{D})$ for any positive integer k.

^{*}分散システムの先行制約を考慮した通信スケジュールの計算複雑度 について

[†]合田浩二,山田敏規,上野修一

[‡]東京工業大学 大学院理工学研究科 集積システム専攻

2 Proof of Theorem 1

We first need some preliminaries. Let B = (X, Y, E) be a bipartite graph with maximum vertex degree 3, where (X, Y) is a bipartition of B, and E is the set of edges of B. We denote by X^{δ} and Y^{δ} the sets of vertices in X and Y with degree δ , respectively. Let E_1 be a perfect matching of B, and E_2 be a perfect matching of $(X', Y', E - E_1)$, where X' and Y' denote the sets of nonisolated vertices in X and Y, respectively, after the removal of the edges in E_1 . (E_1, E_2) is called a double perfect matching for B. It is mentioned in [1] that the following problem is NP-complete:

Problem 3 (DPM-3) Given a bipartite graph B = (X, Y, E) with maximum vertex degree 3, and $|X^{\delta}| = |Y^{\delta}|$ $(1 \le \delta \le 3)$, decide if there exists a double perfect matching for B.

Now we are ready to prove the theorem. It is obvious that our problem is in NP. We prove the theorem by showing a polynomial time reduction from DPM-3 to PCRMS.

Let B = (X, Y, E) be a bipartite graph as an instance of DPM-3. Let $X = \{x_1, ..., x_n\}, X^1 = \{x_1, ..., x_{n_1}\}, X^2 = \{x_{n_1+1}, ..., x_{n_1+n_2}\}, Y = \{y_1, ..., y_n\}, Y^1 = \{y_1, ..., y_{n_1}\}, \text{ and } Y^2 = \{y_{n_1+1}, ..., y_{n_1+n_2}\}.$ We assume without loss of generality that $n_1 \neq 1$.

For any $F \subseteq X \times Y$, $M(F) = [m_{ij}]$ is an $n \times n$ binary matrix defined as:

$$m_{ij} = \begin{cases} 1 & \text{if } (x_i, y_j) \in F, \\ 0 & \text{otherwise.} \end{cases}$$

M is considered as a bijection from $2^{X\times Y}$ to the set of $n\times n$ binary matrices.

We define matrices $D^{(1)}$ and $D^{(2)}$ as follows: $D^{(1)} = M(E)$; $D^{(2)} = D'^{(2)} + D''^{(2)}$ where $D'^{(2)} = [d'_{ij}]$ and $D'^{(2)} = [d'^{(2)}_{ii}]$ are binary matrices defined as

$$d_{ij}^{\prime(2)} = \begin{cases} 1 & \text{if } j = i+1 \le n_1 \text{ or } (i,j) = (n_1,1), \\ 0 & \text{otherwise;} \end{cases}$$
$$d_{ij}^{\prime\prime(2)} = \begin{cases} 1 & \text{if } i = j \le n_1 + n_2, \\ 0 & \text{otherwise.} \end{cases}$$

Since $|X^{\delta}| = |Y^{\delta}| = n_{\delta} \ (\delta = 1, 2), \ L(D^{(1)} + D^{(2)}) = l(D^{(1)} + D^{(2)}) = 3$. It is easy to see that binary matrices $D^{(1)}$ and $D^{(2)}$ can be constructed in polynomial time.

We will prove that there exists a double perfect matching (E_1, E_2) for *B* if and only if there exists a switching schedule **S** for **D** = $(D^{(1)}, D^{(2)})$ with $|\mathbf{S}| = 3$.

If there exists a double perfect matching (E_1, E_2) for *B*, then $(M(E_1), M(E_2) + D'^{(2)}, M(E - (E_1 \cup E_2)) + D''^{(2)})$ is a switching schedule for *D* with length 3.

Conversely, if there exists a switching schedule $\mathbf{S} = (S^{(1)}, S^{(2)}, S^{(3)})$ for \mathbf{D} , then $(M^{-1}(S^{(1)}), M^{-1}(QS^{(2)}))$ is a double perfect matching for B, where $Q = [q_{ij}]$ is an $n \times n$ binary matrix defined as

$$q_{ij} = \begin{cases} 1 & \text{if } i = j \ge n_1 + 1, \\ 0 & \text{otherwise.} \end{cases}$$

3 Proof of Theorem 2

Let $L_i = L(D^{(i)})$ and $l_i = l(D^{(i)})$, $1 \le i \le k$, and ρ be the approximation ration of Algorithm 1. It is easy to see that

$$\rho \le \frac{L_1 + L_2 + \dots + L_k}{\max_i \{L_i + \sum_{j \ne i} l_i\}}.$$

We first consider the case when k = 2. Assume without loss of generality that $\rho(\mathbf{D}) = l(D^{(1)})/L(D^{(1)})$. We distinguish two cases.

(i) If
$$L_1 + l_2 \leq l_1 + L_2$$
 then we have

$$\begin{split} \rho &\leq \frac{L_1 + L_2}{l_1 + L_2} = 1 + \frac{L_1 - l_1}{l_1 + L_2} \leq 1 + \frac{L_1 - l_1}{L_1 + l_2} \\ &\leq 1 + \frac{L_1 - l_1}{L_1} = 2 - \beta(\mathbf{D}). \end{split}$$

(ii) If $L_1 + l_2 > l_1 + L_2$ then we have

$$\begin{split} \rho &\leq \frac{L_1 + L_2}{L_1 + l_2} = 1 + \frac{L_2 - l_2}{L_1 + l_2} < 1 + \frac{L_1 - l_1}{L_1 + l_2} \\ &\leq 1 + \frac{L_1 - l_1}{L_1} = 2 - \beta(\mathbf{D}). \end{split}$$

We next consider the case when $k \geq 3$. Assume without loss of generality that $\max_i \{L_i + \sum_{j \neq i} l_i\} = L_1 + l_2 + \cdots + l_k$. Then, we have $L_1 + l_i \geq l_1 + L_i$ for any $i \geq 2$, and

$$\rho \le 1 + \frac{\sum_{i=2}^{k} (L_i - l_i)}{L_1 + l_2 + \dots + l_k} \le 1 + \frac{(k-1)(L_1 - l_1)}{L_1 + l_2 + \dots + l_k}$$
$$\le 1 + \frac{(k-1)(L_1 - l_1)}{L_1} = k - (k-1)\alpha(\mathbf{D}).$$

4 Proof of Theorem 3

Considering $\mathbf{D} = (D^{(1)}, D^{(2)}, \dots, D^{(k)})$ defined as:

$$\begin{aligned} d_{ij}^{(1)} &= \begin{cases} 1 & \text{if } i = j \text{ or } i = 1, \\ 0 & \text{otherwise;} \end{cases} \\ d_{ij}^{(r)} &= \begin{cases} 1 & \text{if } i = r \text{ and } i \neq j, \\ 0 & \text{otherwise,} \end{cases} (2 \le r \le k) \end{aligned}$$

we can see that

$$\rho \ge \frac{\frac{1}{\beta(\mathbf{D})} + (k-1)(\frac{1}{\beta(\mathbf{D})} - 1)}{\frac{1}{\beta(\mathbf{D})}} = k - (k-1)\beta(\mathbf{D}).$$

References

 P. Barcaccia, M.A. Bounccelli, and M.D. Ianni. Complexity of Minimum Length Scheduling for Precedence Constrained Messages in Distributed Systems. *IEEE Transactions on Parallel and Distributed Systems*, 11(10):1090–1102, 2000.