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1 Introduction

This note considers a problem of minimum length
scheduling for a set of messages subject to precedence
constraints for switching and communication networks.
The problem was first studied by Barcaccia, Bonuccelli,
and Di Tannii [1].

We consider a network with n inputs and n outputs.
The messages to be sent are represented by an n x n
matrix D = [d;;], the traffic matrix, with nonnegative
integer entries. Entry d;; represents the number of mes-
sages to be sent from input 7 to output j. In order to
specify precedence constraints among messages, we rep-
resent a traffic matrix D by a sequence of n X n matrices
D = (DM, D@ ... D®) such that D = 3% DO,
We consider precedence constraints on the rows, Wthh
means that the entries in each row of DUt can be
scheduled only if the entries in the corresponding row of
D have already been scheduled (1 <i <k —1).

A switching matrix is a binary matrix with at most
one nonzero entry in each row and in each column. A
switching matrix represents messages that can be sent
simultaneously without conflicts.

A sequence of n x m switching matrices S =
(S(l), s@ S(t)) is called a switching schedule for D
if the following conditions are satisfied:
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(2) For any integers p, 1 < p < k,and i, 1 <i<n
there exists an integer ¢, 1 < g < ¢, such that
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holds for every j, 1 < j < n.

Notice that condition (2) corresponds to the precedence
constraints on the rows. Integer ¢ is called the length of
S and denoted by |S|.

We consider the following problems.

Problem 1 (PCRMS) Given D = (DM, D@ ..
D®)Y and positive integer h, decide if there exists a
switching schedule S for D with |S| < h. ]
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Problem 2 (MIN-PCRMS-k) Given D = (DWW,
D® ... . DW), find a switching schedule S for D with
minimum length. [

It is shown in [1] that PCRMS is NP-complete if k =
2, DW is a binary matrix and D is a ternary matrix,
and h = 3. We improve this by showing the following .

Theorem 1 PCRMS is NP-complete if k = 2, DM
and D@ are binary matrices, and h = 3. [ ]

It should be noted that PCRMS can be solved in poly-
nomial time if K =1 or h < 2.

It follows from Theorem 1 that even MIN-PCRMS-2
is NP-hard. It is proved in [1] that for any positive in-
teger k and positive number ¢ < 4/3, there exists no
polynomial time e-approximation algorithm for MIN-
PCRMS-k unless P = NP. It is also mentioned in [1]
that the following naive algorithm is a polynomial time
k-approximation algorithm for MIN-PCRMS-k.

Algorithm 1
Step 1: Find an optimal switching schedule for D(*)

(1<i<k).
Step 2: Schedule DUTY after the schedule for D
1<i<k-1). n

Thus, the approximation ratio of a polynomial time ap-
proximation algorithm for MIN-PCRMS-k is between
4/3 and k if k > 2.

We show an estimate of the approximation ratio of
Algorithm 1 by means of the structure of D. For an
n x n matrix M = [m;;], define that

L(M) = max{Zmik7kaj’1 <i,j < n} ,
k=1 k=1
(M) = min{Zmik,ZmM‘l <i,j< n} .
k=1 k=1
For D = (DM, D@ ... D®)) define that

(D) —min{ Z(D(i)) ‘1 <i< k:}

L(D®)
3(D) = max{ (D()>‘1 k;}

Theorem 2 The approzimation ratio of Algorithm 1
for MIN-PCRMS-k is at most 2 — (D) if k = 2, and
at most k — (k — 1)a(D) if k > 3. ]

Theorem 3 The approximation ratio of Algorithm 1
for MIN-PCRMS-k is at least k — (k — 1)3(D) for any
positive integer k. [
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2 Proof of Theorem 1

We first need some preliminaries. Let B = (X,Y, F) be
a bipartite graph with maximum vertex degree 3, where
(X,Y) is a bipartition of B, and E is the set of edges
of B. We denote by X% and Y the sets of vertices
in X and Y with degree 4, respectively. Let E; be a
perfect matching of B, and F5 be a perfect matching
of (X", Y',E — Ey), where X’ and Y’ denote the sets of
nonisolated vertices in X and Y, respectively, after the
removal of the edges in E;. (E1, F») is called a double
perfect matching for B. Tt is mentioned in [1] that the
following problem is NP-complete:

Problem 3 (DPM-3) Given a bipartite graph B =
(X,Y, E) with mazimum vertex degree 3, and |X°| =
Y9 (1 <6< 3), decide if there exists a double perfect
matching for B. [

Now we are ready to prove the theorem. It is obvious
that our problem is in NP. We prove the theorem by
showing a polynomial time reduction from DPM-3 to
PCRMS.

Let B = (X,Y, E) be a bipartite graph as an instance

of DPM-3. Let X = {z1,...,2,}, X' = {x1,..., 7, },
X2 = {xn1+la~--;xgl+n2}a Y = {y17-~-ayn}7 Yl =
{y1,-- - Un, b, and Y2 = {yn 41,y Un,tno ). We as-

sume without loss of generality that ny # 1.
For any F C X XY, M(F) = [m;;] is an n x n binary
matrix defined as:

1 if (z,y;) € F,
mij = .
J 0 otherwise.

M is considered as a bijection from 2X*Y to the set of
n X n binary matrices.

We define matrices D™ and D@ as follows: D) =
M(E); D® = D'® 4 D"?) where D'?) = [d;g?)] and

D' = [d;f)] are binary matrices defined as

pac)

{1 itj=i+1<n or(i,j) = (n,1),
ij

0 otherwise;

J4'®

1 1fz:]§n1+n2,
)

0 otherwise.

Since |X%| = |Y%| = ns (6 = 1,2), L(DW + D?)) =
(DM +D®@) = 3. Tt is easy to see that binary matrices
DM and D® can be constructed in polynomial time.

We will prove that there exists a double perfect
matching (E1, Es) for B if and only if there exists a
switching schedule S for D = (D), D®?)) with |S| = 3.

If there exists a double perfect matching (E7, Fs) for
B, then (M(E1), M(Ez) + D'®), M(E — (E1 U Ey)) +
D)) is a switching schedule for D with length 3.

Conversely, if there exists a switching schedule S =
(SM, 82 §G)) for D, then (M~1(SM), M~1(QS?))
is a double perfect matching for B, where Q = [g;;] is
an n X n binary matrix defined as

1 ifi=g e,
4ij = 0 otherwise.

3 Proof of Theorem 2

Let L; = L(DW) and I; = I(D®), 1 <i < k, and p be
the approximation ration of Algorithm 1. It is easy to
see that

Li+Ly+---+ Ly
- maxi{Li + E]»?éi lz} '
We first consider the case when k = 2. Assume with-
out loss of generality that p(D) = I(D™M)/L(DM). We
distinguish two cases.

(i) If Ly + 12 <11 + Lo then we have

L+ Ly Li -1 Ly -1
p< = <
l1+ Lo l1+ Lo Li+1p
Ly —1
<1+ "1 _—2_p5MD).
Ly
(ii) If Ly 4+ I3 > 13 + Lo then we have
L1+L2 LQ*ZQ Llfll
p< = 1
Ly 41y Ly + 1o Ly 41y
L. —
§1+1711:2—ﬁ(D).
L,

We next consider the case when k& > 3. Assume
without loss of generality that max;{L; + >, l;} =
Li+1ls+---+ 1. Then, we have L1 +1; > 1 + L; for
any ¢ > 2, and

S (Li — 1)
<14 L=
p= Ly+la+-+1 —
(k—1)(L1— 1)
Ly

(k—1)(L1 — 1)
Ly+la 4.+

(k — 1)a(D).

<1+ =k-—

4 Proof of Theorem 3

Considering D = (D™, D®) ... D®) defined as:

piey 1 ifi=jori=1,
K 0 otherwise;
r 1 ifi=randi#j
dm 2<r<k
I {0 otherwise, @srs<k)
we can see that
1 1
o + (k= Dy ~ )
D D
p> 12 PP~k — (k- 1)B(D).
B(D)
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