A Note on the Complexity of Scheduling for Precedence Constrained Messages in Distributed Systems＊

Koji GODA，Toshinori YAMADA，and Shuichi UENO ${ }^{\dagger}$
Department of Communications and Integrated Systems， Graduate School of Science and Engineering，Tokyo Institute of Technology \ddagger

1 Introduction

This note considers a problem of minimum length scheduling for a set of messages subject to precedence constraints for switching and communication networks． The problem was first studied by Barcaccia，Bonuccelli， and Di Iannii［1］．

We consider a network with n inputs and n outputs． The messages to be sent are represented by an $n \times n$ matrix $D=\left[d_{i j}\right]$ ，the traffic matrix，with nonnegative integer entries．Entry $d_{i j}$ represents the number of mes－ sages to be sent from input i to output j ．In order to specify precedence constraints among messages，we rep－ resent a traffic matrix D by a sequence of $n \times n$ matrices $\mathbf{D}=\left(D^{(1)}, D^{(2)}, \ldots, D^{(k)}\right)$ such that $D=\sum_{i=1}^{k} D^{(i)}$ ． We consider precedence constraints on the rows，which means that the entries in each row of $D^{(i+1)}$ can be scheduled only if the entries in the corresponding row of $D^{(i)}$ have already been scheduled $(1 \leq i \leq k-1)$ ．

A switching matrix is a binary matrix with at most one nonzero entry in each row and in each column．A switching matrix represents messages that can be sent simultaneously without conflicts．

A sequence of $n \times n$ switching matrices $\mathbf{S}=$ $\left(S^{(1)}, S^{(2)}, \ldots, S^{(t)}\right)$ is called a switching schedule for \mathbf{D} if the following conditions are satisfied：

$$
\begin{equation*}
\sum_{i=1}^{t} S^{(i)}=\sum_{i=1}^{k} D^{(i)}=D \tag{1}
\end{equation*}
$$

（2）For any integers $p, 1 \leq p \leq k$ ，and $i, 1 \leq i \leq n$ ， there exists an integer $q, 1 \leq q \leq t$ ，such that

$$
\sum_{r=1}^{q} s_{i j}^{(r)}=\sum_{r=1}^{p} d_{i j}^{(r)}
$$

holds for every $j, 1 \leq j \leq n$ ．
Notice that condition（2）corresponds to the precedence constraints on the rows．Integer t is called the length of \mathbf{S} and denoted by $|\mathbf{S}|$ ．

We consider the following problems．
Problem 1 （PCRMS）Given $\mathbf{D}=\left(D^{(1)}, D^{(2)}, \ldots\right.$ ， $D^{(k)}$ ）and positive integer h ，decide if there exists a switching schedule \mathbf{S} for \mathbf{D} with $|\mathbf{S}| \leq h$ ．

[^0]Problem 2 （MIN－PCRMS－k）Given $\mathbf{D}=\left(D^{(1)}\right.$ ， $\left.D^{(2)}, \ldots, D^{(k)}\right)$ ，find a switching schedule \mathbf{S} for \mathbf{D} with minimum length．

It is shown in［1］that PCRMS is NP－complete if $k=$ $2, D^{(1)}$ is a binary matrix and $D^{(2)}$ is a ternary matrix， and $h=3$ ．We improve this by showing the following ．
Theorem 1 PCRMS is NP－complete if $k=2, D^{(1)}$ and $D^{(2)}$ are binary matrices，and $h=3$ ．
It should be noted that PCRMS can be solved in poly－ nomial time if $k=1$ or $h \leq 2$ ．

It follows from Theorem 1 that even MIN－PCRMS－2 is NP－hard．It is proved in［1］that for any positive in－ teger k and positive number $\epsilon<4 / 3$ ，there exists no polynomial time ϵ－approximation algorithm for MIN－ PCRMS－k unless $\mathrm{P}=\mathrm{NP}$ ．It is also mentioned in［1］ that the following naive algorithm is a polynomial time k－approximation algorithm for MIN－PCRMS－k ．

Algorithm 1

Step 1：Find an optimal switching schedule for $D^{(i)}$ $(1 \leq i \leq k)$ ．
Step 2：Schedule $D^{(i+1)}$ after the schedule for $D^{(i)}$ $(1 \leq i \leq k-1)$.
Thus，the approximation ratio of a polynomial time ap－ proximation algorithm for MIN－PCRMS－k is between $4 / 3$ and k if $k \geq 2$ ．

We show an estimate of the approximation ratio of Algorithm 1 by means of the structure of \mathbf{D} ．For an $n \times n$ matrix $M=\left[m_{i j}\right]$ ，define that

$$
\begin{aligned}
L(M) & =\max \left\{\sum_{k=1}^{n} m_{i k}, \sum_{k=1}^{n} m_{k j} \mid 1 \leq i, j \leq n\right\}, \\
l(M) & =\min \left\{\sum_{k=1}^{n} m_{i k}, \sum_{k=1}^{n} m_{k j} \mid 1 \leq i, j \leq n\right\} .
\end{aligned}
$$

For $\mathbf{D}=\left(D^{(1)}, D^{(2)}, \ldots, D^{(k)}\right)$ ，define that

$$
\begin{aligned}
& \alpha(\mathbf{D})=\min \left\{\left.\frac{l\left(D^{(i)}\right)}{L\left(D^{(i)}\right)} \right\rvert\, 1 \leq i \leq k\right\}, \\
& \beta(\mathbf{D})=\max \left\{\left.\frac{l\left(D^{(i)}\right)}{L\left(D^{(i)}\right)} \right\rvert\, 1 \leq i \leq k\right\} .
\end{aligned}
$$

Theorem 2 The approximation ratio of Algorithm 1 for MIN－PCRMS－k is at most $2-\beta(\mathbf{D})$ if $k=2$ ，and at most $k-(k-1) \alpha(\mathbf{D})$ if $k \geq 3$ ．
Theorem 3 The approximation ratio of Algorithm 1 for MIN－PCRMS－k is at least $k-(k-1) \beta(\mathbf{D})$ for any positive integer k ．

2 Proof of Theorem 1

We first need some preliminaries. Let $B=(X, Y, E)$ be a bipartite graph with maximum vertex degree 3 , where (X, Y) is a bipartition of B, and E is the set of edges of B. We denote by X^{δ} and Y^{δ} the sets of vertices in X and Y with degree δ, respectively. Let E_{1} be a perfect matching of B, and E_{2} be a perfect matching of ($X^{\prime}, Y^{\prime}, E-E_{1}$), where X^{\prime} and Y^{\prime} denote the sets of nonisolated vertices in X and Y, respectively, after the removal of the edges in $E_{1} .\left(E_{1}, E_{2}\right)$ is called a double perfect matching for B. It is mentioned in [1] that the following problem is NP-complete:

Problem 3 (DPM-3) Given a bipartite graph $B=$ (X, Y, E) with maximum vertex degree 3 , and $\left|X^{\delta}\right|=$ $\left|Y^{\delta}\right|(1 \leq \delta \leq 3)$, decide if there exists a double perfect matching for B.

Now we are ready to prove the theorem. It is obvious that our problem is in NP. We prove the theorem by showing a polynomial time reduction from DPM-3 to PCRMS.

Let $B=(X, Y, E)$ be a bipartite graph as an instance of DPM-3. Let $X=\left\{x_{1}, \ldots, x_{n}\right\}, X^{1}=\left\{x_{1}, \ldots, x_{n_{1}}\right\}$, $X^{2}=\left\{x_{n_{1}+1}, \ldots, x_{n_{1}+n_{2}}\right\}, Y=\left\{y_{1}, \ldots, y_{n}\right\}, Y^{1}=$ $\left\{y_{1}, \ldots, y_{n_{1}}\right\}$, and $Y^{2}=\left\{y_{n_{1}+1}, \ldots, y_{n_{1}+n_{2}}\right\}$. We assume without loss of generality that $n_{1} \neq 1$.

For any $F \subseteq X \times Y, M(F)=\left[m_{i j}\right]$ is an $n \times n$ binary matrix defined as:

$$
m_{i j}= \begin{cases}1 & \text { if }\left(x_{i}, y_{j}\right) \in F \\ 0 & \text { otherwise }\end{cases}
$$

M is considered as a bijection from $2^{X \times Y}$ to the set of $n \times n$ binary matrices.

We define matrices $D^{(1)}$ and $D^{(2)}$ as follows: $D^{(1)}=$ $M(E) ; D^{(2)}=D^{\prime(2)}+D^{\prime \prime(2)}$ where $D^{\prime(2)}=\left[d_{i j}^{\prime(2)}\right]$ and $D^{\prime(2)}=\left[d_{i j}^{(2)}\right]$ are binary matrices defined as

$$
\begin{aligned}
d_{i j}^{\prime(2)} & = \begin{cases}1 & \text { if } j=i+1 \leq n_{1} \text { or }(i, j)=\left(n_{1}, 1\right), \\
0 & \text { otherwise }\end{cases} \\
d_{i j}^{\prime \prime(2)} & = \begin{cases}1 & \text { if } i=j \leq n_{1}+n_{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Since $\left|X^{\delta}\right|=\left|Y^{\delta}\right|=n_{\delta}(\delta=1,2), L\left(D^{(1)}+D^{(2)}\right)=$ $l\left(D^{(1)}+D^{(2)}\right)=3$. It is easy to see that binary matrices $D^{(1)}$ and $D^{(2)}$ can be constructed in polynomial time.

We will prove that there exists a double perfect matching $\left(E_{1}, E_{2}\right)$ for B if and only if there exists a switching schedule \mathbf{S} for $\mathbf{D}=\left(D^{(1)}, D^{(2)}\right)$ with $|\mathbf{S}|=3$.

If there exists a double perfect matching $\left(E_{1}, E_{2}\right)$ for B, then $\left(M\left(E_{1}\right), M\left(E_{2}\right)+D^{\prime(2)}, M\left(E-\left(E_{1} \cup E_{2}\right)\right)+\right.$ $\left.D^{\prime \prime(2)}\right)$ is a switching schedule for D with length 3 .

Conversely, if there exists a switching schedule $\mathbf{S}=$ $\left(S^{(1)}, S^{(2)}, S^{(3)}\right)$ for \mathbf{D}, then $\left(M^{-1}\left(S^{(1)}\right), M^{-1}\left(Q S^{(2)}\right)\right)$ is a double perfect matching for B, where $Q=\left[q_{i j}\right]$ is an $n \times n$ binary matrix defined as

$$
q_{i j}= \begin{cases}1 & \text { if } i=j \geq n_{1}+1 \\ 0 & \text { otherwise }\end{cases}
$$

3 Proof of Theorem 2

Let $L_{i}=L\left(D^{(i)}\right)$ and $l_{i}=l\left(D^{(i)}\right), 1 \leq i \leq k$, and ρ be the approximation ration of Algorithm 1. It is easy to see that

$$
\rho \leq \frac{L_{1}+L_{2}+\cdots+L_{k}}{\max _{i}\left\{L_{i}+\sum_{j \neq i} l_{i}\right\}} .
$$

We first consider the case when $k=2$. Assume without loss of generality that $\rho(\mathbf{D})=l\left(D^{(1)}\right) / L\left(D^{(1)}\right)$. We distinguish two cases.
(i) If $L_{1}+l_{2} \leq l_{1}+L_{2}$ then we have

$$
\begin{aligned}
\rho & \leq \frac{L_{1}+L_{2}}{l_{1}+L_{2}}=1+\frac{L_{1}-l_{1}}{l_{1}+L_{2}} \leq 1+\frac{L_{1}-l_{1}}{L_{1}+l_{2}} \\
& \leq 1+\frac{L_{1}-l_{1}}{L_{1}}=2-\beta(\mathbf{D}) .
\end{aligned}
$$

(ii) If $L_{1}+l_{2}>l_{1}+L_{2}$ then we have

$$
\begin{aligned}
\rho & \leq \frac{L_{1}+L_{2}}{L_{1}+l_{2}}=1+\frac{L_{2}-l_{2}}{L_{1}+l_{2}}<1+\frac{L_{1}-l_{1}}{L_{1}+l_{2}} \\
& \leq 1+\frac{L_{1}-l_{1}}{L_{1}}=2-\beta(\mathbf{D})
\end{aligned}
$$

We next consider the case when $k \geq 3$. Assume without loss of generality that $\max _{i}\left\{L_{i}+\sum_{j \neq i} l_{i}\right\}=$ $L_{1}+l_{2}+\cdots+l_{k}$. Then, we have $L_{1}+l_{i} \geq l_{1}+L_{i}$ for any $i \geq 2$, and

$$
\begin{aligned}
\rho & \leq 1+\frac{\sum_{i=2}^{k}\left(L_{i}-l_{i}\right)}{L_{1}+l_{2}+\cdots+l_{k}} \leq 1+\frac{(k-1)\left(L_{1}-l_{1}\right)}{L_{1}+l_{2}+\cdots+l_{k}} \\
& \leq 1+\frac{(k-1)\left(L_{1}-l_{1}\right)}{L_{1}}=k-(k-1) \alpha(\mathbf{D})
\end{aligned}
$$

4 Proof of Theorem 3

Considering $\mathbf{D}=\left(D^{(1)}, D^{(2)}, \ldots, D^{(k)}\right)$ defined as:

$$
\begin{aligned}
d_{i j}^{(1)} & = \begin{cases}1 & \text { if } i=j \text { or } i=1, \\
0 & \text { otherwise; }\end{cases} \\
d_{i j}^{(r)} & =\left\{\begin{array}{ll}
1 & \text { if } i=r \text { and } i \neq j, \\
0 & \text { otherwise },
\end{array}(2 \leq r \leq k)\right.
\end{aligned}
$$

we can see that

$$
\rho \geq \frac{\frac{1}{\beta(\mathbf{D})}+(k-1)\left(\frac{1}{\beta(\mathbf{D})}-1\right)}{\frac{1}{\beta(\mathbf{D})}}=k-(k-1) \beta(\mathbf{D}) .
$$

References

[1] P. Barcaccia, M.A. Bounccelli, and M.D. Ianni. Complexity of Minimum Length Scheduling for Precedence Constrained Messages in Distributed Systems. IEEE Transactions on Parallel and Distributed Systems, 11(10):1090-1102, 2000.

[^0]: ＊分散システムの先行制約を考慮した通信スケジュールの計算複稚度 について
 †合田浩二，山田敏規，上野修一
 き東京工業大学 大学院理工学研究科 集積システム専攻

