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1 Introduction

We consider the following problem motivated by the
design of fault-tolerant linear array multiprocessor sys-
tems. Let G be a graph, and let V (G) and E(G) denote
the vertex set and edge set of G, respectively. ∆(G)
is the maximum degree of a vertex in G. For any
S ⊆ V (G), G − S is the graph obtained from G by
deleting the vertices of S together with the edges inci-
dent with the vertices in S. Let k be a positive integer.
A graph G is called a k-FT (k-fault-tolerant) graph for
a graph H if G− F contains H as a subgraph for every
F ⊆ V (G) with |F | ≤ k. Our problem is to construct a
k-FT graph G for an n-vertex path Pn such that both
|V (G)| and ∆(G) are as small as possible.

A large amount of research has been devoted to con-
structing k-FT graphs for Pn [1–3, 6–8, 10–13]. Among
others, Bruck, Cypher, and Ho [2] show a k-FT graph
for Pn with n + k2 vertices and maximum degree of
4. Zhang [12, 13] shows a k-FT graph for Pn with
n + O(k log k) vertices and O(log k) maximum degree,
and a k-FT graph for Pn with n + O(k log2 k) vertices
and O(1) maximum degree. Zhang [12, 13] also raised
the following open question: Is it possible to construct
an explicit k-FT graph for Pn with n + O(k) vertices
and O(1) maximum degree? It should be noted that
such a k-FT graph is optimal in the sense that every
k-FT graph for Pn has n+Ω(k) vertices and Ω(1) max-
imum degree.

In this paper, we settle the question by showing the
following.

Theorem 1 For any positive integers n and k, we can
explicitly construct a k-FT graph G for Pn such that
|V (G)| = n + O(k) and ∆(G) = 3.

We note that Alon and Chung [1] proved that for
any positive integers n and k = Ω(n), we can ex-
plicitly construct a k-FT graph G for Pn such that
|V (G)| = n + O(k) and ∆(G) = O(1).

Due to space limitation, we omit the proofs of Lem-
mas 1–4 below.

2 Proof of Theorem 1

Let ΓG(v) denote the set of vertices adjacent to v in a
graph G, ΓG(X) =

⋃
v∈X ΓG(v), and ∂X = ΓG(X)−X

for any X ⊆ V (G). We define that degG(v) = |ΓG(v)|,
and ∆(G) = maxv∈V (G) degG(v).

In order to prove Theorem 1, we first need a few re-
sults on magnifiers.
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2.1 Magnifiers

Let c ≤ 1. A graph G is an (n, d, c)-magnifier if the
following three conditions are satisfied:

1. |V (G)| = n;

2. ∆(G) ≤ d;

3. |∂X| ≥ c|X| for every X ⊂ V (G) with |X| ≤ n/2.

For any positive integer m, let [m] = {0, 1, . . . , m−1}.
For any positive integer m, M(m) is the graph de-
fined as follows: V (M(m)) = [m]2; Each vertex [i, j] ∈
V (M(m)) is connected with 12 vertices [i ± 2j, j], [i ±
(2j + 1), j], [i± (2j + 2)], [i, j± 2i], [i, j± (2i + 1)], [i, j±
(2j + 2)], each by an edge. Lemma 1 is immediate from
a result on expanders in [5].

Lemma 1 For any positive integer m, M(m) is an
(m2, 12, (2−√3)/4)-magnifier.

Lemma 2 If G is an (n, d, c)-magnifier and k ≤ cn/4
is a positive integer then G − F contains a connected
component of size at least n − (1 + 1/c)k for any F ⊂
V (G) with |F | ≤ k.

2.2 Products of Magnifiers and Paths

For any two graphs G and H, the product of G and H,
denoted by G×H, is the graph defined as follows: V (G×
H) = V (G) × V (H); Any two vertices [u, x] and [v, y]
in G × H are joined by an edge if one of the following
conditions is satisfied:

1. (u, v) ∈ E(G) and x = y, or

2. u = v and (x, y) ∈ E(H).

Lemma 3 Let n1 and n2 be two positive integers, and
k be a positive integer with k ≤ min{n1/4, n2− 1}. If G
is an (n1, d, c)-magnifier for some positive integer d and
positive number c then G×Pn2−F contains a connected
component of size at least n − (1 + 1/c)k for any F ⊆
V (G×Pn2) with |F | = k, where n = n1n2 is the number
of vertices in G× Pn2 .

2.3 Proof of Theorem 1

Let c = (2−√3)/4. we define that

Hn,k =





M(m1)× Pn2 if 1 ≤ k ≤
√

n/8,
M(m2) if

√
n/8 < k ≤ cn/(3− c),

Hn3,k otherwise,

where m1, n2,m2, n3 are integers such that (m1− 1)2 <
4k ≤ m2

1, n2 = d(n + (1 + 1/c)k)/m2
1e, (m2 − 1)2 <

n+(1+1/c)k ≤ m2
2, and n3 = d(3−c)k/ce. By Lemmas

1, 2, and 3, we obtain the following lemma.
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Lemma 4 Hn,k satisfies the following three conditions:

(c1) Hn,k−F contains a connected component of size at
least n for any F ⊆ V (Hn,k) with |F | ≤ k,

(c2) |V (Hn,k)| ≤ n + γk + δ for some constants γ and
δ, and

(c3) ∆(Hn,k) ≤ 14.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1: Let d = 14, n′ = dn/2de,
and fu be a one-to-one mapping from ΓHn′,k(u) to
[d]. Gn,k is the graph defined as follows: V (Gn,k) =
V (Hn′,k)× [2d]; Any two vertices [u, i], [v, j] ∈ V (Gn,k)
are connected by an edge if one of the following two
conditions is satisfied:

(i) u = v and j = (i± 1) mod (2d);

(ii) (u, v) ∈ E(Hn′,k), i = 2fu(v) + r, j = 2fv(u) + r,
and r ∈ [2].

We are going to show that Gn,k is a desired k-FT
graph for Pn. It is easy to see the following two lemmas.

Lemma 5 |V (Gn,k)| ≤ n + 2dγk + 2d(δ + 1).

Lemma 6 ∆(Gn,k) = 3.

It remains to show the following:

Lemma 7 Gn,k is a k-FT graph for Pn.

Proof : We show that for any F ⊆ V (Gn,k) with
|F | ≤ k, Gn,k − F contains Pn as a subgraph. Let
F ′ = {v ∈ V (Hn′,k) : [v, j] ∈ F, j ∈ [2d]}. Since
|F ′| ≤ |F | ≤ k by definition, Hn′,k − F ′ contains a
connected component H of size at least n′. Let T denote
a spanning tree of H. A vertex r of T is designated as
a root, and T is considered as a rooted tree. For any
v ∈ V (T ), let T (v) is a subtree of T consisting of the
descendants of v. Define that

X(v) = {[v, j] : j ∈ [2d]},
Y (v) = {[u, i] : u ∈ T (v), i ∈ [2d]},

and G(v) denote the subgraph of Gn,k induced by Y (v).

Claim 1 Let v0, . . . , vm−1 be the children of u ∈ V (T ).
If G(vl) has a Hamilton cycle for every l ∈ [m] then G(u)
has a Hamilton cycle.

Proof of Claim 1: For each l ∈ [m], let Cl

denote a Hamilton cycle of G(vl), and let C(u) de-
note the subgraph of Gn,k induced by X(u), which
is isomorphic to C2d. Define C as the graph ob-
tained from C0, C1, . . . , Cm−1, and C(u) by replacing
two edges ([u, 2fu(vl)], [u, 2fu(vl)+1]) and ([vl, 2fvl

(u)],
[vl, 2fvl

(u) + 1]) with ([u, 2fu(vl)], [vl, 2fvl
(u)]) and

([u, 2fu(vl) + 1], [vl, 2fvl
(u) + 1]) for each l ∈ [m]. It

is easy to see that C is a Hamilton cycle of G(u).

It is easy to see that G(v) has a Hamilton cycle if
v ∈ V (T ) is a leaf. Hence, we obtain by Claim 1 a
Hamilton cycle of G(r). Since

|V (G(r))| = 2d · |V (T )| ≥ 2dn1 ≥ 2d · n

2d
= n,

Gn,k−F contains Pn as a subgraph. Hence, we conclude
that Gn,k is a k-FT graph for Pn.

Lemmas 5, 6, and 7 complete the proof of Theorem
1.
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