3C-3

gooboboboobesooogn

Explicit Construction of Optimal Fault-Tolerant Linear Arrays *

Toshinori Yamada and Shuichi Ueno |

Department of Communications and Integrated Systems, Graduate School of Science and Engineering
Tokyo Institute of Technology, Tokyo 152-8552, Japan i

1 Introduction

We consider the following problem motivated by the
design of fault-tolerant linear array multiprocessor sys-
tems. Let G be a graph, and let V(G) and E(G) denote
the vertex set and edge set of G, respectively. A(G)
is the maximum degree of a vertex in G. For any
S C V(G), G — S is the graph obtained from G by
deleting the vertices of S together with the edges inci-
dent with the vertices in S. Let k be a positive integer.
A graph G is called a k-FT (k-fault-tolerant) graph for
a graph H if G — F contains H as a subgraph for every
F C V(G) with |F| < k. Our problem is to construct a
k-FT graph G for an n-vertex path P, such that both
|[V(G)] and A(G) are as small as possible.

A large amount of research has been devoted to con-
structing k-FT graphs for P, [1-3,6-8,10-13]. Among
others, Bruck, Cypher, and Ho [2] show a k-FT graph
for P, with n + k2 vertices and maximum degree of
4. Zhang [12,13] shows a k-FT graph for P, with
n + O(klogk) vertices and O(log k) maximum degree,
and a k-FT graph for P, with n + O(klog?® k) vertices
and O(1) maximum degree. Zhang [12,13] also raised
the following open question: Is it possible to construct
an explicit k-FT graph for P, with n + O(k) vertices
and O(1) maximum degree? It should be noted that
such a k-FT graph is optimal in the sense that every
kE-FT graph for P, has n+ Q(k) vertices and (1) max-
imum degree.

In this paper, we settle the question by showing the
following.

Theorem 1 For any positive integers n and k, we can
explicitly construct a k-F'T graph G for P, such that
V(G)| =n+O(k) and A(G) = 3. |

We note that Alon and Chung [1] proved that for
any positive integers n and k = Q(n), we can ex-
plicitly construct a k-FT graph G for P, such that
[V(G)| =n+ O(k) and A(G) = O(1).

Due to space limitation, we omit the proofs of Lem-
mas 1-4 below.

2 Proof of Theorem 1

Let T'¢(v) denote the set of vertices adjacent to v in a
graph G, I'g(X) = U,ex 'a(v), and 0X =T'g(X) - X
for any X C V(G). We define that degs(v) = |Ta(v)],
and A(G) = max,ey(g) degg(v).

In order to prove Theorem 1, we first need a few re-
sults on magnifiers.
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2.1 Magnifiers

Let ¢ < 1. A graph G is an (n,d, c)-magnifier if the
following three conditions are satisfied:

L V(G| =
2. A(G) <d;
3. |0X| > | X]| for every X C V(G) with | X| < n/2.

For any positive integer m, let [m] = {0,1,...,m—1}.
For any positive integer m, M(m) is the graph de-
fined as follows: V(M (m)) = [m]?; Each vertex [i,j] €
V(M (m)) is connected with 12 vertices [i £ 27, 7], [i £
(2 +1), 1, [i £ (24 +2)], i & 2], [i,j = (26 + D). [, j &
(25 +2)], each by an edge. Lemma 1 is immediate from
a result on expanders in [5].

Lemma 1 For any positive integer m, M(m) is an

(m?,12, (2 — V/3)/4)-magnifier. |

Lemma 2 If G is an (n,d,c)-magnifier and k < cn/4
s a positive integer then G — F contains a connected
component of size at least n — (1 4+ 1/c)k for any F C
V(G) with |F| < k.

2.2 Products of Magnifiers and Paths

For any two graphs G and H, the product of G and H,
denoted by G x H, is the graph defined as follows: V(G x
H) = V(GQ) x V(H); Any two vertices [u,x] and [v,y]
in G x H are joined by an edge if one of the following
conditions is satisfied:

1. (u,v) € E(G) and z =y, or

2. w=wvand (z,y) € E(H).
Lemma 3 Let ny and ny be two positive integers, and
k be a positive integer with k < min{n,/4,ns —1}. If G
is an (n1,d, c)-magnifier for some positive integer d and
positive number ¢ then G x P,, —F contains a connected
component of size at least n — (1 4+ 1/¢)k for any F C
V(G x P,,) with |F| = k, where n = niny is the number
of vertices in G X Pp,. |

2.3 Proof of Theorem 1
Let ¢ = (2 — v/3)/4. we define that

M(my) x P, if1<k<\/n/8,

H, ;= § M(ms) if Vn/8<k<en/(3-c),
H,, otherwise,

where m1,na, ma, n3 are integers such that (m; —1)? <
1k < m3, ny = [(n+ (1+ 1/k)/md], (ma — 1)° <
n+(14+1/c)k < m2, and n3 = [(3—c)k/c]. By Lemmas
1, 2, and 3, we obtain the following lemma.
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Lemma 4 H, ; satisfies the following three conditions:

(cl) Hp—F contains a connected component of size at
least n for any F' C V(H, ) with |F| <k,

(c2) |V(Hp)| < n+~k+ 3§ for some constants v and
§, and

(c3) A(H, ) < 14. |

Now, we are ready to prove Theorem 1.

Proof of Theorem 1: Let d = 14, n’ = [n/2d],
and f, be a one-to-one mapping from I'y , (u) to
[d]. Gn is the graph defined as follows: V(G k) =
V(Hy ) % [2d]; Any two vertices [u, ], [v,j] € V(Gn.k)
are connected by an edge if one of the following two
conditions is satisfied:

(i) w=wvand j = (i £ 1) mod (2d);

(ii) (u,v) € E(Hp ), @ = 2f,(v) + 7, 5 = 2f,(u) + 7,
and r € [2].

We are going to show that G, is a desired k-FT
graph for P,. It is easy to see the following two lemmas.

Lemma 5 |V(G, )| < n+ 2dyk +2d(6 +1). |
Lemma 6 A(G, %) = 3. |
It remains to show the following:

Lemma 7 G, is a k-FT graph for P,.

Proof : We show that for any F' C V(G ) with
|F| < k, Gnx — F contains P, as a subgraph. Let
F'={veVHyr) : [vjl € F,j e [2d]}. Since
|F'| < |F| < k by definition, H, , — F’ contains a
connected component H of size at least n’. Let T denote
a spanning tree of H. A vertex r of T is designated as
a root, and T is considered as a rooted tree. For any
v € V(T), let T(v) is a subtree of T' consisting of the
descendants of v. Define that

X(w) = {lv,j]:je2d]},
Yw) = {[u,i:ueT(),iec][2d]},

and G(v) denote the subgraph of G,, ;, induced by Y (v)

Claim 1 Let vg,...,V,—1 be the children of u € V(T).
If G(v;) has a Hamilton cycle for everyl € [m] then G(u)
has a Hamilton cycle.

Proof of Claim 1: For each | € [m], let C!
denote a Hamilton cycle of G(v;), and let C(u) de-
note the subgraph of G, ; induced by X(u), which
is isomorphic to Csy. Define C' as the graph ob-
tained from C°,C',...,C™~! and C(u) by replacing
two edges ([u, 2fu(v1)], [u, 2fu(vi) +1]) and ([vr, 2y, (w)],
(01,2, (u) + 1)) with ([u, 2fu(0)], [or, 2f0, (w)]) and
([w, 2fu(vr) + 1), [vr, 2f0, (u) + 1]) for each | € [m]. It
is easy to see that C' is a Hamilton cycle of G(u). |

It is easy to see that G(v) has a Hamilton cycle if
v € V(T) is a leaf. Hence, we obtain by Claim 1 a
Hamilton cycle of G(r). Since

n

V(G(r)I =2d- |[V(T)| = 2dny 2 2d - o =

n,

Gy —F contains P, as a subgraph. Hence, we conclude
that G, is a k-FT graph for P,. |

Lemmas 5, 6, and 7 complete the proof of Theorem
1.
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