Explicit Construction of Optimal Fault－Tolerant Linear Arrays＊

Toshinori Yamada and Shuichi Ueno ${ }^{\dagger}$
Department of Communications and Integrated Systems，Graduate School of Science and Engineering
Tokyo Institute of Technology，Tokyo 152－8552，Japan ${ }^{\ddagger}$

1 Introduction

We consider the following problem motivated by the design of fault－tolerant linear array multiprocessor sys－ tems．Let G be a graph，and let $V(G)$ and $E(G)$ denote the vertex set and edge set of G ，respectively．$\Delta(G)$ is the maximum degree of a vertex in G ．For any $S \subseteq V(G), G-S$ is the graph obtained from G by deleting the vertices of S together with the edges inci－ dent with the vertices in S ．Let k be a positive integer． A graph G is called a k－FT（ k－fault－tolerant）graph for a graph H if $G-F$ contains H as a subgraph for every $F \subseteq V(G)$ with $|F| \leq k$ ．Our problem is to construct a k－FT graph G for an n－vertex path P_{n} such that both $|V(G)|$ and $\Delta(G)$ are as small as possible．

A large amount of research has been devoted to con－ structing k－FT graphs for $P_{n}[1-3,6-8,10-13]$ ．Among others，Bruck，Cypher，and Ho［2］show a k－FT graph for P_{n} with $n+k^{2}$ vertices and maximum degree of 4．Zhang $[12,13]$ shows a k－FT graph for P_{n} with $n+O(k \log k)$ vertices and $O(\log k)$ maximum degree， and a k－FT graph for P_{n} with $n+O\left(k \log ^{2} k\right)$ vertices and $O(1)$ maximum degree．Zhang $[12,13]$ also raised the following open question：Is it possible to construct an explicit k－FT graph for P_{n} with $n+O(k)$ vertices and $O(1)$ maximum degree？It should be noted that such a k－FT graph is optimal in the sense that every k－FT graph for P_{n} has $n+\Omega(k)$ vertices and $\Omega(1)$ max－ imum degree．

In this paper，we settle the question by showing the following．

Theorem 1 For any positive integers n and k ，we can explicitly construct a k－FT graph G for P_{n} such that $|V(G)|=n+O(k)$ and $\Delta(G)=3$ ．

We note that Alon and Chung［1］proved that for any positive integers n and $k=\Omega(n)$ ，we can ex－ plicitly construct a k－FT graph G for P_{n} such that $|V(G)|=n+O(k)$ and $\Delta(G)=O(1)$ ．
Due to space limitation，we omit the proofs of Lem－ mas 1－4 below．

2 Proof of Theorem 1

Let $\Gamma_{G}(v)$ denote the set of vertices adjacent to v in a graph $G, \Gamma_{G}(X)=\bigcup_{v \in X} \Gamma_{G}(v)$ ，and $\partial X=\Gamma_{G}(X)-X$ for any $X \subseteq V(G)$ ．We define that $\operatorname{deg}_{G}(v)=\left|\Gamma_{G}(v)\right|$ ， and $\Delta(G)=\max _{v \in V(G)} \operatorname{deg}_{G}(v)$ ．

In order to prove Theorem 1，we first need a few re－ sults on magnifiers．

[^0]
2．1 Magnifiers

Let $c \leq 1$ ．A graph G is an (n, d, c)－magnifier if the following three conditions are satisfied：

1．$|V(G)|=n$ ；
2．$\Delta(G) \leq d$ ；
3．$|\partial X| \geq c|X|$ for every $X \subset V(G)$ with $|X| \leq n / 2$ ．
For any positive integer m ，let $[m]=\{0,1, \ldots, m-1\}$ ． For any positive integer $m, M(m)$ is the graph de－ fined as follows：$V(M(m))=[m]^{2}$ ；Each vertex $[i, j] \in$ $V(M(m))$ is connected with 12 vertices $[i \pm 2 j, j],[i \pm$ $(2 j+1), j],[i \pm(2 j+2)],[i, j \pm 2 i],[i, j \pm(2 i+1)],[i, j \pm$ $(2 j+2)]$ ，each by an edge．Lemma 1 is immediate from a result on expanders in［5］．
Lemma 1 For any positive integer $m, M(m)$ is an $\left(m^{2}, 12,(2-\sqrt{3}) / 4\right)$－magnifier．
Lemma 2 If G is an（ n, d, c ）－magnifier and $k \leq c n / 4$ is a positive integer then $G-F$ contains a connected component of size at least $n-(1+1 / c) k$ for any $F \subset$ $V(G)$ with $|F| \leq k$ ．

2．2 Products of Magnifiers and Paths

For any two graphs G and H ，the product of G and H ， denoted by $G \times H$ ，is the graph defined as follows：$V(G \times$ $H)=V(G) \times V(H) ;$ Any two vertices $[u, x]$ and $[v, y]$ in $G \times H$ are joined by an edge if one of the following conditions is satisfied：
1．$(u, v) \in E(G)$ and $x=y$ ，or
2．$u=v$ and $(x, y) \in E(H)$ ．
Lemma 3 Let n_{1} and n_{2} be two positive integers，and k be a positive integer with $k \leq \min \left\{n_{1} / 4, n_{2}-1\right\}$ ．If G is an（ n_{1}, d, c ）－magnifier for some positive integer d and positive number c then $G \times P_{n_{2}}-F$ contains a connected component of size at least $n-(1+1 / c) k$ for any $F \subseteq$ $V\left(G \times P_{n_{2}}\right)$ with $|F|=k$ ，where $n=n_{1} n_{2}$ is the number of vertices in $G \times P_{n_{2}}$ ．

2．3 Proof of Theorem 1

Let $c=(2-\sqrt{3}) / 4$ ．we define that

$$
H_{n, k}= \begin{cases}M\left(m_{1}\right) \times P_{n_{2}} & \text { if } 1 \leq k \leq \sqrt{n / 8} \\ M\left(m_{2}\right) & \text { if } \sqrt{n / 8}<k \leq c n /(3-c) \\ H_{n_{3}, k} & \text { otherwise }\end{cases}
$$

where $m_{1}, n_{2}, m_{2}, n_{3}$ are integers such that $\left(m_{1}-1\right)^{2}<$ $4 k \leq m_{1}^{2}, n_{2}=\left\lceil(n+(1+1 / c) k) / m_{1}^{2}\right\rceil,\left(m_{2}-1\right)^{2}<$ $n+(1+1 / c) k \leq m_{2}^{2}$ ，and $n_{3}=\lceil(3-c) k / c\rceil$ ．By Lemmas 1,2 ，and 3 ，we obtain the following lemma．

Lemma $4 H_{n, k}$ satisfies the following three conditions:
(c1) $H_{n, k}-F$ contains a connected component of size at least n for any $F \subseteq V\left(H_{n, k}\right)$ with $|F| \leq k$,
(c2) $\left|V\left(H_{n, k}\right)\right| \leq n+\gamma k+\delta$ for some constants γ and δ, and
(c3) $\Delta\left(H_{n, k}\right) \leq 14$.
Now, we are ready to prove Theorem 1.
Proof of Theorem 1: Let $d=14, n^{\prime}=\lceil n / 2 d\rceil$, and f_{u} be a one-to-one mapping from $\Gamma_{H_{n^{\prime}, k}}(u)$ to $[d] . \quad G_{n, k}$ is the graph defined as follows: $V\left(G_{n, k}\right)=$ $V\left(H_{n^{\prime}, k}\right) \times[2 d] ;$ Any two vertices $[u, i],[v, j] \in V\left(G_{n, k}\right)$ are connected by an edge if one of the following two conditions is satisfied:
(i) $u=v$ and $j=(i \pm 1) \bmod (2 d)$;
(ii) $(u, v) \in E\left(H_{n^{\prime}, k}\right), i=2 f_{u}(v)+r, j=2 f_{v}(u)+r$, and $r \in[2]$.

We are going to show that $G_{n, k}$ is a desired k-FT graph for P_{n}. It is easy to see the following two lemmas.
Lemma $5\left|V\left(G_{n, k}\right)\right| \leq n+2 d \gamma k+2 d(\delta+1)$.
Lemma $6 \Delta\left(G_{n, k}\right)=3$.
It remains to show the following:
Lemma $7 G_{n, k}$ is a k-FT graph for P_{n}.
Proof : We show that for any $F \subseteq V\left(G_{n, k}\right)$ with $|F| \leq k, G_{n, k}-F$ contains P_{n} as a subgraph. Let $F^{\prime}=\left\{v \in V\left(H_{n^{\prime}, k}\right):[v, j] \in F, j \in[2 d]\right\}$. Since $\left|F^{\prime}\right| \leq|F| \leq k$ by definition, $H_{n^{\prime}, k}-F^{\prime}$ contains a connected component \mathcal{H} of size at least n^{\prime}. Let T denote a spanning tree of \mathcal{H}. A vertex r of T is designated as a root, and T is considered as a rooted tree. For any $v \in V(T)$, let $T(v)$ is a subtree of T consisting of the descendants of v. Define that

$$
\begin{aligned}
X(v) & =\{[v, j]: j \in[2 d]\}, \\
Y(v) & =\{[u, i]: u \in T(v), i \in[2 d]\},
\end{aligned}
$$

and $\mathcal{G}(v)$ denote the subgraph of $G_{n, k}$ induced by $Y(v)$.
Claim 1 Let v_{0}, \ldots, v_{m-1} be the children of $u \in V(T)$. If $\mathcal{G}\left(v_{l}\right)$ has a Hamilton cycle for every $l \in[m]$ then $\mathcal{G}(u)$ has a Hamilton cycle.

Proof of Claim 1: For each $l \in[m]$, let C^{l} denote a Hamilton cycle of $\mathcal{G}\left(v_{l}\right)$, and let $C(u)$ denote the subgraph of $G_{n, k}$ induced by $X(u)$, which is isomorphic to $C_{2 d}$. Define C as the graph obtained from $C^{0}, C^{1}, \ldots, C^{m-1}$, and $C(u)$ by replacing two edges $\left(\left[u, 2 f_{u}\left(v_{l}\right)\right],\left[u, 2 f_{u}\left(v_{l}\right)+1\right]\right)$ and $\left(\left[v_{l}, 2 f_{v_{l}}(u)\right]\right.$, $\left.\left[v_{l}, 2 f_{v_{l}}(u)+1\right]\right)$ with $\left(\left[u, 2 f_{u}\left(v_{l}\right)\right],\left[v_{l}, 2 f_{v_{l}}(u)\right]\right)$ and $\left(\left[u, 2 f_{u}\left(v_{l}\right)+1\right],\left[v_{l}, 2 f_{v_{l}}(u)+1\right]\right)$ for each $l \in[m]$. It is easy to see that C is a Hamilton cycle of $\mathcal{G}(u)$.

It is easy to see that $\mathcal{G}(v)$ has a Hamilton cycle if $v \in V(T)$ is a leaf. Hence, we obtain by Claim 1 a Hamilton cycle of $\mathcal{G}(r)$. Since

$$
|V(\mathcal{G}(r))|=2 d \cdot|V(T)| \geq 2 d n_{1} \geq 2 d \cdot \frac{n}{2 d}=n
$$

$G_{n, k}-F$ contains P_{n} as a subgraph. Hence, we conclude that $G_{n, k}$ is a k-FT graph for P_{n}.

Lemmas 5, 6, and 7 complete the proof of Theorem 1.

References

[1] N. Alon and F. Chung. Explicit construction of linear sized tolerant networks. Discrete Math., 72:1519, 1988.
[2] J. Bruck, R. Cypher, and C. Ho. Fault-tolerant meshes with small degree. SIAM Journal on Computing, 26:1764-1784, 1997.
[3] S. Dutt and J. Hayes. Designing fault-tolerant systems using automorphisms. Journal of Parallel and Distributed Computing, 12:249-268, 1991.
[4] P. Erdös, R. Graham, and E. Szemerédi. On sparse graphs with dense long paths. Comp. and Math. with Appl., 1:145-161, 1975.
[5] O. Gabber and Z. Galil. Explicit constructions of linear-sized superconcentrators. Journal of Computer and System Sciences, 22:407-420, 1981.
[6] F. Harary and J. Hayes. Node fault tolerance in graphs. Networks, 27:19-23, 1996.
[7] J. Hayes. A graph model for fault-tolerant computing systems. IEEE Trans. on Comput., C-25:875883, 1976.
[8] M. Paoli, W. Wong, and C. Wong. Minimum khamiltonian graphs, II. J. Graph Theory, 10:79-95, 1986.
[9] S. Ueno, A. Bagchi, S. Hakimi, and E. Schmeichel. On minimum fault-tolerant networks. SIAM J. on Discrete Mathematics, 6(4):565-574, November 1993.
[10] W. Wong and C. Wong. Minimum k-hamiltonian graphs. J. Graph Theory, 8:155-165, 1984.
[11] T. Yamada and S. Ueno. Optimal faulttolerant linear arrays. Technical Report of IEICE, 102(426):CAS2002-88, 2002.
[12] L. Zhang. Fault tolerant networks with small degree. In Proceedings of Twelfth annual ACM Symposium on Parallel Algorithms and Architectures, pp. 64-69, 2000.
[13] L. Zhang. Fault-tolerant meshes with small degree. IEEE Transactions on Computers, 51(5):553-560, May 2002.

[^0]: ＊耐故障線形配列の最適構成
 †山田 敏規，上野 修一
 き東京工業大学 大学院理工学研究科 集積システム専攻，〒 152 8552，東京都

