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An Incremental Garbage Collector
Based on a Lazy Garbage Collection Scheme

MITSUHISA YAMAMURO, AYAKO MORITA'
and MOTOAKI TERASHIMA'

The implementation and evaluation of an incremental garbage collector based on mark-and-
compact garbage collection (GC) are presented that put collection of unused data objects off.
Such lazy GC does not scavenge a space where new objects are allocated and put collection
of unused objects of the space off for a one GC cycle, so that relatively short-lived objects
are omitted from GC processing. In addition to this, the promotion that long-lived objects
with GC experiences are omitted from future GC, as seen in generational GC, makes objects
with a certain lifetime processed. The decrement of objects being compacted is shown by a
prototype of stop-and-collect version. The incremental version uses two techniques, namely,
snapshot-at-the-beginning using write-barrier and duplication of objects. The former is less
costly in time for coordination with mutator that performs many read operations, and has
good effects on the lazy GC where new objects remain unprocessed. The latter is to relocate
objects in use stepwise so that both the relocated and original objects exists till the relocated
objects are updated, and this enables the GC to break it process at any stage. According as
the GC proceeds, a continuous empty space appears between the space of compacted objects
and the space of unprocessed objects. This space is useful to avoid starvation. The analysis
of the GC on its performance is done by implementing co-routine made of the GC and the
mutator routines, and obtained from the execution of typical Lisp programs.
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