Vol. 43 No. SIG 8(PRO 15) goooooooooboooooooo Sep. 2002

good

oo oboooooogo

O o o of oo o of oo o of

0000000000000 0000000000000000000000000 00000 mark-
and-compact GCOOOO0OO00O00O0O0O00O00O00O0OO0OO0DOO00ODOOOO0OO0OO0O
0000000000000 00O0O0000000000000000DO0O00D00DODO0O000DO
goooooo0oooo0oooooooono GCoooooooo Gcooooooooooo
pooooooOooo0oo0oOOo0obOoO0O0OD0ODO0ObOO000000O00OO0OO0O0O000O0
000oo0oo0oo0ooooO0oO0O0O0O000000D0ODO0000D0DOO0O0O0 GCoOoOooooooo
write-barrier 0 0 0 O O snapshot-at-the-beginning0 00 000000000000 OODOCOO
0000000D0O0read00000000D0O0DOOOODODOOODOOOOOOOOODOOOO
pooooooooOoo GecOo0OoooOooOoOoOooOooOoO00ooOoOoO0oO0Oo0o0oDoO0O0n
gooooooo0oo0oooooooo0oooooooooD GeoooooopooooGged
0oooooooOooooooOoO0o000ooOO0o0bDOo000o0oOoO000O0bOOoO00oDoOO0
00000000 1000000000000000000O0000O000O0O0O0O0O0O000GCO
00000 mutator 000 0000000000000 0O0O00OO Lisp00000O0O0O0OOODO
oo GcGcoOooooooo

An Incremental Garbage Collector
Based on a Lazy Garbage Collection Scheme

MITSUHISA YAMAMURO, AYAKO MORITA'
and MOTOAKI TERASHIMA'

The implementation and evaluation of an incremental garbage collector based on mark-and-
compact garbage collection (GC) are presented that put collection of unused data objects off.
Such lazy GC does not scavenge a space where new objects are allocated and put collection
of unused objects of the space off for a one GC cycle, so that relatively short-lived objects
are omitted from GC processing. In addition to this, the promotion that long-lived objects
with GC experiences are omitted from future GC, as seen in generational GC, makes objects
with a certain lifetime processed. The decrement of objects being compacted is shown by a
prototype of stop-and-collect version. The incremental version uses two techniques, namely,
snapshot-at-the-beginning using write-barrier and duplication of objects. The former is less
costly in time for coordination with mutator that performs many read operations, and has
good effects on the lazy GC where new objects remain unprocessed. The latter is to relocate
objects in use stepwise so that both the relocated and original objects exists till the relocated
objects are updated, and this enables the GC to break it process at any stage. According as
the GC proceeds, a continuous empty space appears between the space of compacted objects
and the space of unprocessed objects. This space is useful to avoid starvation. The analysis
of the GC on its performance is done by implementing co-routine made of the GC and the
mutator routines, and obtained from the execution of typical Lisp programs.

0001401020000

t00o000o00D00b00o0Dooooo0on
Graduate School of Information Systems, The Univer-
sity of Electro-Communications

112



