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A Direct Devirtualization Technique
with the Code Patching Mechanism

KAzvuaki IsHIZAKI,T TOSHIAKI YASUE,! MOTOHIRO KAWAHITO!
and HIDEAKI KOMATSUT

This presentation presents a direct devirtualization technique for a language such as Java
with dynamic class loading. The implementation of this technique is easy. For a given dynamic
method call, a compiler generates the inlined code of the method, together with the code of
making the dynamic call. Only the inlined code is actually executed until our assumption
about the devirtualization becomes invalidated, at which time the compiler performs code
patching to make the code of dynamic call executed subsequently. This technique does not
require the complicated implementation such as deoptimization to recompile the method that
is active on stack. Since this technique prevents some optimizations across the merge point
between the inlined code and the dynamic call, we have further more proposed optimization
techniques effectively. We made some experiments to understand the effectiveness and char-
acteristics of the devirtualization techniques in our Java Just-In-Time compiler. In summary,
we improved the execution performance of SPECjvm98 and SPECjbb2000 by ranging from
0% to 181% (with the geometric mean of 24%).
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