Vol. 43 No. SIG 8(PRO 15) goooooooooboooooooo Sep. 2002

good

000 000000000000 0000000 Devirtualization

0O o o of o o o of
0O o o of o o o of

J00000Javal0 0000000000 DOO0O0O0O000OOODO0O0O0OOOOOOOOOODO
000000 devirtualization 0 00 0 0000000000000 OO0ODOOOOOOOOOOO
000000 devirtualization 0O OO OO0 000000000000 0OO0OOOOOOOOOOOO
000000000 22000000000000000000000000O0O0OODOO00O00O0O0O
J0000000000000000000000000000000oOn devirtualization 00
00d0oooooo0o0oo000o0ooUooo0o0o0o0o0ooooo0oo0oooo0o0oooooooon
0000000000000 ooooo 20000000000000000000000
Jooo0ooooooo0oooooO0o0o0oooo00ooU0oooDoDo00Do0oooDooooOoOOoO
00000000 000oooooooooooooo0o00dooo0oO devirtualization 00O OO
go0o000d JavaO Just-In-Time 000 0000000000000 OOOOO Odevirtualization
00000000000SPECjvm980 SPECjbb20000 000 00 181%0 00 24%000000
goooooooo

A Direct Devirtualization Technique
with the Code Patching Mechanism

KAzvuaki IsHIZAKI,T TOSHIAKI YASUE,! MOTOHIRO KAWAHITO!
and HIDEAKI KOMATSUT

This presentation presents a direct devirtualization technique for a language such as Java
with dynamic class loading. The implementation of this technique is easy. For a given dynamic
method call, a compiler generates the inlined code of the method, together with the code of
making the dynamic call. Only the inlined code is actually executed until our assumption
about the devirtualization becomes invalidated, at which time the compiler performs code
patching to make the code of dynamic call executed subsequently. This technique does not
require the complicated implementation such as deoptimization to recompile the method that
is active on stack. Since this technique prevents some optimizations across the merge point
between the inlined code and the dynamic call, we have further more proposed optimization
techniques effectively. We made some experiments to understand the effectiveness and char-
acteristics of the devirtualization techniques in our Java Just-In-Time compiler. In summary,
we improved the execution performance of SPECjvm98 and SPECjbb2000 by ranging from
0% to 181% (with the geometric mean of 24%).

o0b14010290000

00 IBMOOOOOOOOOOO
Tokyo Research Laboratory, IBM Japan Ltd.

110



