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Selective Optimization of Locks by
Runtime Statistics and Just-in-time Compilation

REI OpAIRAT and KEI HIRAKIt

Recently, server-side components running on a Java virtual machine (JVM) have become
popular. These components are compiled into native code (JIT compilation) and optimized at
runtime for high performance. However, previous researches on JIT compilers for Java have
been focused on only bytecode optimizations. In this presentation, we propose a method in
which a JIT compiler performs system-level runtime optimizations. The proposed method is
the one which optimizes system management code inside native code by using runtime statis-
tics and a JIT compiler. In this presentation, we apply the method to the optimization that
manages both throughput and fairness by changing behavior of particular locks. In server-side
Java, it occurs frequently that multiple threads access the same object lock simultaneously.
Thus if we use usual locks that allow preemption during critical sections, contention makes
the frequency of context switches too high or too low, compared with the time slice. To
solve the problem, temporally non-preemption (TNP) was proposed: the method which de-
lays preemption during critical sections. TNP, however, increases unnecessary overhead on
locks that induce no contention. Using runtime statistics, our method detects locks at which
contention occurs and applies TNP to the locks by JIT compilation. We implemented the
method to Kaffe, one of the implementations of JVM, and evaluated it. The result shows
that our method reduces overhead at a maximum of 3.4% against TNP, and manages both
throughput and fairness thanks to the consistency between the frequency of context switches
and the time slice.
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