Vol. 44 No. SIG 2(PRO 16) goooooooooboooooooo Feb. 2003

good

O00000 Just-in-time0 00 000 000O0OO0ODOOOOOO

O 0 ot o o Of

O00Java00O0O0O0OOO0OCOJVMOOOOOOOOOOOOOOODOOODOODODODODOODOD
gooooOoOooOoOoO0oO0OoOoO0O0OoOO0OOOO0OOOOOOOOODOOOOOOOOOOJITO
0000@M0o00000o0O0000o00 Javad JITOOODOOODOODODOODOOOODDOODOO
joodo0oooooooooooooooJIToooooooO00o0ooooooooooooo
gooooooOoOoOoooooUOOooOooOOOoDoOoOOOoOoOoOoOOoODOOOOOOOJITOO
00000o00oo0o0o0ooo0o0O0Oo00OoOU0OoOo0DO0O0ObOOOO0O0DULOOOOoDODOOOOOO
000000000ooooo0o0o00oooooonD Javad0000O00O0OO0ODOOODOOOOOO
gooooo0oooooooooUOoUOooOoUOooUobOOoooooOOooooooooooOn
j00o000oo0U0ooOUOoOoU0U0U000O0o00DU000o00oLO0oOoOooOooOooooOoUoooooo
goo0ooo000000000O0000000000000000000000DO0O0O0O00O0
temporally non-preemptiond] TNPOO OOOOOOOOODOODOTNPOOOOOOOOODOOO
jo0ooo0o00oO000O000O0C000O0O0OOU00O0OO0OO00D00OUDU0DODODODOOOOoUoo
0000000o0oooO0o0ooOJITOODDODO0DOO0ODOOOOOOO TNPOOOODOOOODODO
o000 JvMO0O00 10000 KaffeOOOOOOOOOOOQOOOOOOTNPOOOOOODO
0000000 34%000000000000000000000000000O0OO00O0O0O0O0
00000000 0o00ooooooOoooOoooo

Selective Optimization of Locks by
Runtime Statistics and Just-in-time Compilation

REI OpAIRAT and KEI HIRAKIt

Recently, server-side components running on a Java virtual machine (JVM) have become
popular. These components are compiled into native code (JIT compilation) and optimized at
runtime for high performance. However, previous researches on JIT compilers for Java have
been focused on only bytecode optimizations. In this presentation, we propose a method in
which a JIT compiler performs system-level runtime optimizations. The proposed method is
the one which optimizes system management code inside native code by using runtime statis-
tics and a JIT compiler. In this presentation, we apply the method to the optimization that
manages both throughput and fairness by changing behavior of particular locks. In server-side
Java, it occurs frequently that multiple threads access the same object lock simultaneously.
Thus if we use usual locks that allow preemption during critical sections, contention makes
the frequency of context switches too high or too low, compared with the time slice. To
solve the problem, temporally non-preemption (TNP) was proposed: the method which de-
lays preemption during critical sections. TNP, however, increases unnecessary overhead on
locks that induce no contention. Using runtime statistics, our method detects locks at which
contention occurs and applies TNP to the locks by JIT compilation. We implemented the
method to Kaffe, one of the implementations of JVM, and evaluated it. The result shows
that our method reduces overhead at a maximum of 3.4% against TNP, and manages both
throughput and fairness thanks to the consistency between the frequency of context switches
and the time slice.

0001080210000

f0000000000D00OO00DOODoOOOO
Department of Computer Science, Graduate School of
Information Science and Technology, The University of
Tokyo

44



