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Implementations of Three-generational Garbage Collection
Based on a Mark-and-compact Scheme

KEIKO HIRAOKA,* SHINJI KODERAT and MOTOAKI TERASHIMA'

We describe implementations and evaluation of three-generational garbage collection based
on a sliding compaction (mark-and-compact) scheme that moves data objects being in use
toward an end of a heap preserving their allocated order. The GC based on the sliding com-
paction scheme preserves the allocated order of generations as a group of data objects, so
that the generations are simply classified according to their addresses of the heap. Our gen-
erational GC processes three generations efficiently and collectively by choosing a continuous
space being subjected to GC from the heap. The GC for a young generation (minor collection)
chooses the space that has been consumed since the last GC invocation and contains newest
data objects. The objects that were subjected to the process of a single GC invocation changes
to an old generation. The old generation is processed by the GC if its amount exceeds a pre-
scribed value, and then changes to the oldest generation. This GC (major collection) chooses
the continuous space that contains both the young and the old generations that is larger than
the space for the minor collection. The oldest generation is free from the GC provided that
the heap is not full of objects. Our generational GC also adopts dynamic adjustment of the
space for the minor collection in order to reduce the amount of the old generation that affects
the GC performance largely.
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