Vol. 44 No. SIG 2(PRO 16) goooooooooboooooooo Feb. 2003

good

godbogbououbnboobodogoooboobnonug

O o o of oo o of oo o of

oooooooooooo0ooO0oooOo0oO0oboo00oo0oooooo0o00o0o0o0nOd mark-
and-compact00 00 000000000000 00O0O000DOO0O0O0O00O0OOOOOO0OOO
0ooobDo0oooooOoooGCoOoUOoOo0ooD0ooOOO0DOo00OoD00oO0ooOO0obDOOo0DoOn
gooooooOoooOoooooooo0ooo0GCO Gecoooooooooooo 10000
oooooos3s0ooooooooooo0oOo0ooOoOO0O00O0O00O0oDoO0O00000 GC
0oooooDooooOoOo0oDoOO0DOOODOO0000D00O0D0 GCOoOoOooDoDoooooo
GCOO00O0100 Gecooooooooooooooooooooooooooooooooon
GgCoOoboooooobooOoooooooboOO0 GecooooooOoooooooooDooOooon
00000000 obO0o00o0O0O000O0 GeooooooooooooOooOOooOOooobOOo0oDoOo
0000000000000 Gecoooooooooooooooooooooooooooooon
ooboooOooooboOoOoO0ooboOooOobobooboooo

Implementations of Three-generational Garbage Collection
Based on a Mark-and-compact Scheme

KEIKO HIRAOKA,* SHINJI KODERAT and MOTOAKI TERASHIMA'

We describe implementations and evaluation of three-generational garbage collection based
on a sliding compaction (mark-and-compact) scheme that moves data objects being in use
toward an end of a heap preserving their allocated order. The GC based on the sliding com-
paction scheme preserves the allocated order of generations as a group of data objects, so
that the generations are simply classified according to their addresses of the heap. Our gen-
erational GC processes three generations efficiently and collectively by choosing a continuous
space being subjected to GC from the heap. The GC for a young generation (minor collection)
chooses the space that has been consumed since the last GC invocation and contains newest
data objects. The objects that were subjected to the process of a single GC invocation changes
to an old generation. The old generation is processed by the GC if its amount exceeds a pre-
scribed value, and then changes to the oldest generation. This GC (major collection) chooses
the continuous space that contains both the young and the old generations that is larger than
the space for the minor collection. The oldest generation is free from the GC provided that
the heap is not full of objects. Our generational GC also adopts dynamic adjustment of the
space for the minor collection in order to reduce the amount of the old generation that affects
the GC performance largely.

oo0b 14060 170000

t00o000o00D00b00o0Dooooo0on
Graduate School of Information Systems, The Univer-
sity of Electro-Communications

36



