5S-04 QoS-based Checkpoint Protocol for Multimedia Network Systems * Kengo Hiraga and Hiroaki Higaki[†] Tokyo Denki University [‡] ## 1 Introduction The advanced computer and network technologies have lead to the development of distributed systems. Here, an application is realized by multiple processes computing and communicating by exchanging messages through communication channels. Some missioncritical applications are required to be executed faulttolerantly. One important method for fault-tolerance is checkpoint-recovery. For restarting execution correctly after recovery, a set of checkpoints taken by all the processes should form a consistent global checkpoint [1]. Distributed multimedia applications such as distance learning, tele-conference, tele-medicine and video on demand have recently been developed on communication networks. A multimedia message is so large that it is required to take checkpoints even during transmission and reception of the message. In addition, an application can accept a message even if a part of the message is lost. Based on the properties, the authors have proposed a measurement for consistency of a global checkpoint [2]. According to it, this paper discusses checkpoint protocols for multimedia network systems. These protocols are non-blocking for supporting realtime applications. Here, consistency and timeliness are QoS parameters. #### 2 Global Consistency Let $\mathcal{S} = \langle \mathcal{V}, \mathcal{L} \rangle$ be a distributed system where $\mathcal{V} = \{p_1, \dots, p_n\}$ is a set of processes p_i and $\mathcal{L} \subseteq \mathcal{V}^2$ is a set of communication channels $\langle p_i, p_j \rangle$ from p_i to p_j . During failure-free execution, p_i takes a checkpoint c_i . A set $\{c_1, \dots, c_n\}$ is a global checkpoint $C_{\mathcal{V}}$. Global consistency GC is determined by channel consistency CC for all the channels in \mathcal{L} . CC for $\langle p_i, p_j \rangle$ is determined by message consistency MC for all the messages transmitted through $\langle p_i, p_j \rangle$. Finally, MC for a message m is determined by timing relation between m and $C_{\{p_i,p_j\}} = \{c_i,c_j\}$. The measurement of consistency in [2] is upper compatible with the conventional one in [1]. [Message consistency] A multimedia message m is decomposed into a sequence $\langle pa_1,\ldots,pa_l\rangle$ of packets for transmission. Suppose p_i takes c_i between transmissions of pk_s and pk_{s+1} and p_j takes c_j between receptions of pk_t and pk_{t+1} . If s>t, $\{pk_{t+1},\ldots,pk_s\}$ is a set of lost packets which are not retransmitted after recovery. Thus, lost packets decrease MC. On the other hand, if s< t, $\{pk_{s+1},\ldots,pk_t\}$ is a set of orphan packets. These packets are surely retransmitted after recovery. Thus, orphan packets do not affect ‡東京電機大学 MC. Therefore, lost consistency is induced as a ratio of value of lost packets to value of m. Since m is transmitted after compression, value of packets is not unique as in MPEG. $MC(m, s, t) = 1 - \frac{\sum_{k=t+1}^{s} value(pa_k)}{value(m)}$ (1) [Channel consistency] Here, \mathcal{M}_{ij} is a set of messages transmitted through $\langle p_i, p_j \rangle$. $$CC(\langle p_i, p_j \rangle) = \prod_{m \in \mathcal{M}_{ij}} MC(m)$$ (2) [Global consistency] $$GC(C_{\mathcal{V}}) = \left(\prod_{\langle p_i, p_j \rangle \in \mathcal{L}} CC(\langle p_i, p_j \rangle)\right)^{1/|\mathcal{L}|}$$ (3) ## 3 Basic Checkpoint Protocol A basic checkpoint protocol $\mathcal{P}_{\mathcal{B}}$ is designed where GC is adapted as a QoS parameter. Though $\mathcal{P}_{\mathcal{B}}$ is based on a 3-phase coordinated checkpoint protocol, it is non-blocking. Each process is not required to suspend execution as in a conventional protocols for data communication systems. Here, a sequence number seq(m) of m and $rvalue(pa_k, m) = value(pa_k)/value(m)$ are piggied back to pa_k . Figure 1: Basic protocol $\mathcal{P}_{\mathcal{B}}$. #### [Basic protocol $\mathcal{P}_{\mathcal{B}}$ (Figure 1)] - 1) Let RC be required consistency. A coordinator p_c sends a request message Req to every $p_i \in \mathcal{V}$. - 2) On receiving Req, p_i takes a tentative checkpoint tc_i and sends back an acknowledgement message Ack_i to p_c . For every $\langle p_i, p_j \rangle$ ($\langle p_j, p_i \rangle$), $seq(m_{ij})$ ($seq(m_{ji})$) and $tvalue(m_{ij}) = \sum rvalue(pa_k, m_{ij})$ ($tvalue(m_{ji}) = \sum rvalue(pa_k, m_{ji})$) for pa_k of the last message m_{ij} (m_{ji}) sent (received) before tc_i are piggied back to Ack_i . ^{*}マルチメディアネットワークのための QoS に基づいたチェック ポイントプロトコル [†]平賀 研吾, 桧垣 博章 {hira,hig}@higlab.k.dendai.ac.jp - 3) On receiving all Ack_i , p_c calculates GC. If GC > RC, p_c sends Done to p_i . Otherwise, p_c sends Cancel to p_i . - 4) On receipt of Done, p_i changes tc_i to c_i . On receipt of Cancel, p_i discards tc_i . \square #### 4 Extended Protocol Though $\mathcal{P}_{\mathcal{B}}$ is non-blocking for supporting realtime multimedia applications, it is not certain to take $C_{\mathcal{V}}$ with required global consistency. According to the definition of GC, the less lost packets are, the higher global consistency we archive. Thus, the following modification in step 2) of $\mathcal{P}_{\mathcal{B}}$ for higher probability to take $C_{\mathcal{V}}$ and higher $GC(C_{\mathcal{V}})$ is introduced. - If p_i is sending a message, p_i takes tc_i soon. - Otherwise, p_i postpones taking tc_i for ΔT_i . If p_i starts sending another message or p_i starts receiving additional message while receiving a message, p_i takes tc_i . Here, we introduce an additional QoS parameter τ for timeliness. p_c is required to receive Ack_i within τ since the transmission of Req. Thus, $\Delta T_i = \tau - 2\delta_i$ where δ_i is transmission delay between p_c and p_i . #### [Extended protocol $\mathcal{P}_{\mathcal{E}}$] - 1) Let RC and τ are required consistency and timeliness. p_c sends Req to every $p_i \in \mathcal{V}$. τ is piggied back to Req. - 2) On receiving Req, p_i takes tc_i as follows: - 2-1) If p_i is sending a message, p_i takes tc_i . - 2-2) Otherwise, p_i postpones taking tc_i for ΔT_i . During this period, - if p_i is receiving a message and starts sending another message, p_i takes tc_i immediately. - if p_i is not communicating and starts sending or receiving a message, p_i takes tc_i immediately. On taking tc_i , p_i sends Ack_i as in step 2) of $\mathcal{P}_{\mathcal{B}}$. 3) and 4) are same as in $\mathcal{P}_{\mathcal{B}}$. \square #### 5 Evaluation Now, we evaluate $\mathcal{P}_{\mathcal{B}}$ and $\mathcal{P}_{\mathcal{E}}$. Here, $s \leq 0$ $(t \leq 0)$ means that p_i (p_j) takes c_i (c_j) before sending (receiving) pa_1 and $s \geq l$ $(t \geq l)$ means that p_i (p_j) takes c_i (c_j) after sending (receiving) pk_l . MC in $\mathcal{P}_{\mathcal{B}}$ is shown in Figure 2. - $MC = f_2(s)$ where $df_2(s)/ds \le 0$, $\lim_{s\to 0} f_1(s) = 1$ and $\lim_{s\to l} f_1(s) = 0$ if 0 < s < l and $t \le 0$. - $MC = f_1(s,t)$ where $f_1(u,u) = 1$, $df_1(s,t)/ds \le 0$, $df_1(s,t)/dt \ge 0$, $\lim_{s\to l} f_1(s,t) = f_3(t)$ and $\lim_{t\to 0} f_1(s,t) = f_2(s)$ if 0 < s < l and 0 < t < s. - $MC = f_3(t)$ where $df_3(t)/dt \ge 0$, $\lim_{t\to 0} f_3(t) = 0$ and $\lim_{t\to l} f_3(t) = 1$ if l < s and 0 < t < l. By introducing a delaying method, MC in $\mathcal{P}_{\mathcal{E}}$ is changed as in Figure 3. Here, Δl represents a number of packets transmitted for ΔT_i . - MC = 0 if $s < -\Delta l$ and t > 0. - $MC = g_2(s) = f_2(s)$ if 0 < s < l and $t \le 0$. - MC = 1 if $-\Delta l < s < 0$ and $t \ge 0$. - $MC = g_1(s,t) = f_1(s,t+\Delta l)$, if $\Delta l < s < l$ and $0 < t < s \Delta l$. - MC = 1 if 0 < s < l, $t \ge s \Delta l$ and $t \ge 0$. - $MC = g_3(t) = f_3(t + \Delta l)$ if s > l and $0 < t < l \Delta l$. - MC = 1 if s > l and $t > l \Delta l$. Figure 2: MC in $\mathcal{P}_{\mathcal{B}}$. Figure 3: MC in $\mathcal{P}_{\mathcal{E}}$. Since $df_1(s,t)/dt \geq 0$ and $df_3(t)/dt \geq 0$, MC in $\mathcal{P}_{\mathcal{E}}$ is always higher than or equal to MC in $\mathcal{P}_{\mathcal{B}}$. #### 6 Concluding Remarks This paper proposed two checkpoint protocols for multimedia network systems. These protocols are based on a novel global consistency as a QoS parameter. For higher consistency, delayed checkpointing is introduced with another QoS parameter, timeliness. Finally, we evaluate these protocols. In future work, we will implement and evaluate the protocols for MPEG. ## References - [1] Chandy, K.M. and Lamport, L., "Distributed Snapshot: Determining Global States of Distributed Systems," ACM Trans. on Computer Systems, Vol. 3, No. 1, pp. 63–75 (1985). - [2] Hiraga, K. and Higaki, H., "Consistent Global Checkpoint in Multimedia Network Systems," Proc. of the 8th Workshop on Multimedia Communication and Distributed Processing Systems, pp. 253–258 (2000).