1Q- 1 Balanced bowtie decomposition algorithm of symmetric complete tripartite multi-digraphs

Kazuhiko Ushio Hideaki Fujimoto
Department of Industrial Engineering Department of Electronic Engineering
Faculty of Science and Technology
Kinki University

ushio@is.kindai.ac.jp fujimoto@ele.kindai.ac.jp

1. Introduction

Let K_{n_1,n_2,n_3}^* denote the symmetric complete tripartite digraph with partite sets V_1 , V_2 , V_3 of n_1 , n_2 , n_3 vertices each. The symmetric complete tripartite multi-digraph $\lambda K_{n_1,n_2,n_3}^*$ is the symmetric complete tripartite digraph K_{n_1,n_2,n_3}^* in which every edge is taken λ times. The bowtie (or the 2-windmill) is a graph of 2 edge-disjoint triangles with a common vertex and the common vertex is called the center of the bowtie. When $\lambda K_{n_1,n_2,n_3}^*$ is decomposed into edge-disjoint sum of bowties, it is called that $\lambda K_{n_1,n_2,n_3}^*$ has a $bowtie \ decomposition.$ Moreover, when every vertex of $\lambda K_{n_1,n_2,n_3}^*$ appears in the same number of bowties, it is called that $\lambda K_{n_1,n_2,n_3}^*$ has a balanced bowtie decomposition and this number is called the replication number.

2. Balanced bowtie decomposition of $\lambda K_{n_1,n_2,n_3}^*$

Notation. We denote a bowtie passing through $v_1 - v_2 - v_3 - v_1 - v_4 - v_5 - v_1$ by $\{(v_1, v_2, v_3), (v_1, v_4, v_5)\}.$

Lemma 1. If $\lambda K_{n,n,n}^*$ has a balanced bowtie decomposition, then $s\lambda K_{n,n,n}^*$ has a balanced bowtie decomposition.

Lemma 2. If $\lambda K_{n,n,n}^*$ has a balanced bowtie decomposition, then $\lambda K_{sn,sn,sn}^*$ has a balanced bowtie decomposition.

Theorem 3. $\lambda K_{n_1,n_2,n_3}^*$ has a balanced bowtie decomposition if and only if

- (i) $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$ for $\lambda \equiv 1, 2 \pmod{3}$ and
- (ii) $n_1 = n_2 = n_3 \ge 2 \text{ for } \lambda \equiv 0 \pmod{3}$.

Proof. (Necessity) Suppose that $\lambda K_{n_1,n_2,n_3}^*$ has a balanced bowtie decomposition. Let b be the number of bowties and r be the replication number. Then $b = \lambda (n_1 n_2 + n_1 n_3 + n_2 n_3)/3$ and $r = 5\lambda(n_1n_2 + n_1n_3 + n_2n_3)/3(n_1 + n_2 + n_3).$ Among r bowties having vertex v in V_i , ler r_{ii} be the number of bowties in which the centers are in V_i . Then $r_{11} + r_{12} + r_{13} = r_{21} + r_{22} + r_{23} =$ $r_{31}+r_{32}+r_{33}=r$. Counting the number of vertices adjacent to vertex v in V_1 , $2r_{11}+r_{12}+r_{13}=$ $2\lambda n_2$ and $2r_{11} + r_{12} + r_{13} = 2\lambda n_3$. Counting the number of vertices adjacent to vertex v in V_2 , $r_{21} + 2r_{22} + r_{23} = 2\lambda n_1$ and $r_{21} + 2r_{22} + r_{23} =$ $2\lambda n_3$. Counting the number of vertices adjacent to vertex v in V_3 , $r_{31} + r_{32} + 2r_{33} = 2\lambda n_1$ and $r_{31} + r_{32} + 2r_{33} = 2\lambda n_2.$

Therefore, $n_1 = n_2 = n_3$. Put $n_1 = n_2 = n_3 = n$. Then $b = \lambda n^2$, $r = 5\lambda n/3$, $r_{11} = r_{22} = r_{33} = \lambda n/3$ and $r_{12} + r_{13} = r_{21} + r_{23} = r_{31} + r_{32} = 4\lambda n/3$. Thus $\lambda n \equiv 0 \pmod{3}$. Since a bowtie is a subgraph of $\lambda K_{n,n,n}^*$, $n \geq 2$.

Therefore, (i) $n_1 = n_2 = n_3 \equiv 0 \pmod{3}$ for $\lambda \equiv 1, 2 \pmod{3}$ and (ii) $n_1 = n_2 = n_3 \geq 2$ for $\lambda \equiv 0 \pmod{3}$ are necessary.

(Sufficiency) Case (i). $n \equiv 0 \pmod{3}$. Put n = 3s. When s = 1, let $V_1 = \{1, 2, 3\}$, $V_2 = \{4, 5, 6\}$, $V_3 = \{7, 8, 9\}$.

Construct a balanced bowtie decomposition of $K_{3,3,3}^*$:

 $B_1 = \{(1, 5, 8), (1, 9, 6)\}$

 $B_2 = \{(2,6,9), (2,7,4)\}$

 $B_3 = \{(3,4,7), (3,8,5)\}$

 $B_4 = \{(4, 8, 2), (4, 3, 9)\}$

 $B_5 = \{(5, 9, 3), (5, 1, 7)\}$

 $B_6 = \{(6,7,1), (6,2,8)\}$

 $B_7 = \{(7,2,5), (7,6,3)\}$

 $B_8 = \{(8,3,6), (8,4,1)\}$

 $B_9 = \{(9, 1, 4), (9, 5, 2)\}.$

Therefore, $\lambda K_{n,n,n}^*$ has a balanced bowtie decomposition.

Case (ii). $n \geq 2$ and $\lambda \equiv 0 \pmod{3}$. Let $V_1 = \{1, 2, ..., n\}, V_2 = \{1', 2', ..., n'\}, V_3 =$ $\{1'', 2'', ..., n''\}.$

Construct a balanced bowtie decomposition of $3K_{n,n,n}^*$:

$$B_{ij}^{(1)} = \{(i, j', (i+j-1)''), (i, (i+j)'', (j+1)')\}$$

$$B_{ij}^{(2)} = \{(i', j'', i+j-1), (i', i+j, (j+1)'')\}$$

$$B_{ij}^{(3)} = \{(i'', j, (i+j-1)'), (i'', (i+j)', j+1)\}.$$
Therefore, $\lambda K_{n,n,n}^*$ has a balanced bowtie de-

$$B_{ij}^{(3)} = \{(i'', j, (i+j-1)'), (i'', (i+j)', j+1)\}$$

composition.

References

- [1] P. Horák and A. Rosa, Decomposing Steiner triple systems into small configurations, Ars Combinatoria 26 (1988), pp. 91-105.
- [2] W. D. Wallis, Combinatorial Designs. Marcel Dekker, New York and Basel (1988).